2462 lines
76 KiB
Rust
Raw Normal View History

2012-02-09 15:30:19 +01:00
import std::{ufind, map, smallintmap};
import std::map::hashmap;
import driver::session;
import session::session;
import syntax::ast;
import syntax::ast::*;
import syntax::ast_util;
import syntax::codemap::span;
import metadata::csearch;
import util::common::*;
import util::ppaux::ty_to_str;
import util::ppaux::ty_constr_to_str;
import syntax::print::pprust::*;
export node_id_to_type;
export node_id_to_type_params;
export arg;
export args_eq;
export ast_constr_to_constr;
export block_ty;
export class_item_type;
export class_items_as_fields;
export constr;
export constr_general;
export constr_table;
export count_ty_params;
export ctxt;
export def_has_ty_params;
export expr_has_ty_params;
export expr_ty;
export expr_ty_params_and_ty;
export expr_is_lval;
export fold_ty;
export field;
export field_idx;
export get_field;
export get_fields;
export fm_general;
export get_element_type;
export is_binopable;
2011-08-24 17:24:58 -07:00
export is_pred_ty;
export lookup_class_items;
export lookup_item_type;
export method;
export method_idx;
export mk_class;
export mk_ctxt;
export mk_with_id, type_def_id;
export mt;
export node_type_table;
export pat_ty;
export sequence_element_type;
export sort_methods;
export stmt_node_id;
export sty;
export substitute_type_params;
export t;
export new_ty_hash;
export enum_variants, substd_enum_variants;
export iface_methods, store_iface_methods, impl_iface;
export enum_variant_with_id;
export ty_param_bounds_and_ty;
export ty_bool, mk_bool, type_is_bool;
export ty_bot, mk_bot, type_is_bot;
export ty_box, mk_box, mk_imm_box, type_is_box, type_is_boxed;
export ty_constr, mk_constr;
export ty_opaque_closure_ptr, mk_opaque_closure_ptr;
export ty_opaque_box, mk_opaque_box;
export ty_constr_arg;
export ty_float, mk_float, mk_mach_float, type_is_fp;
export ty_fn, fn_ty, mk_fn;
export ty_fn_proto, ty_fn_ret, ty_fn_ret_style;
export ty_int, mk_int, mk_mach_int, mk_char;
export ty_str, mk_str, type_is_str;
export ty_vec, mk_vec, type_is_vec;
export ty_nil, mk_nil, type_is_nil;
export ty_iface, mk_iface;
export ty_res, mk_res;
export ty_param, mk_param;
export ty_ptr, mk_ptr, mk_mut_ptr, type_is_unsafe_ptr;
export ty_rec, mk_rec;
export ty_enum, mk_enum, type_is_enum;
export ty_tup, mk_tup;
export ty_send_type, mk_send_type;
export ty_type, mk_type;
export ty_uint, mk_uint, mk_mach_uint;
export ty_uniq, mk_uniq, mk_imm_uniq, type_is_unique_box;
export ty_var, mk_var;
export ty_self, mk_self;
export get, type_has_params, type_has_vars, type_id;
export same_type;
export ty_var_id;
export ty_fn_args;
export type_constr;
export kind, kind_sendable, kind_copyable, kind_noncopyable;
export kind_can_be_copied, kind_can_be_sent, proto_kind, kind_lteq, type_kind;
export type_err;
export type_err_to_str;
export type_has_dynamic_size;
export type_needs_drop;
export type_allows_implicit_copy;
export type_is_integral;
export type_is_numeric;
2011-08-04 10:46:10 -07:00
export type_is_pod;
export type_is_scalar;
export type_is_immediate;
export type_is_sequence;
export type_is_signed;
export type_is_structural;
export type_is_copyable;
export type_is_tup_like;
export type_is_unique;
export type_is_c_like_enum;
export type_structurally_contains;
export type_structurally_contains_uniques;
export type_autoderef;
export type_param;
export canon_mode;
export resolved_mode;
export arg_mode;
export unify_mode;
export set_default_mode;
export unify;
export variant_info;
export walk_ty;
export occurs_check_fails;
2011-12-15 11:06:48 -08:00
export closure_kind;
2012-01-10 06:49:15 -08:00
export ck_block;
export ck_box;
export ck_uniq;
2012-01-02 12:00:40 +01:00
export param_bound, param_bounds, bound_copy, bound_send, bound_iface;
export param_bounds_to_kind;
export default_arg_mode_for_ty;
export item_path;
export item_path_str;
// Data types
// Note: after typeck, you should use resolved_mode() to convert this mode
// into an rmode, which will take into account the results of mode inference.
type arg = {mode: ast::mode, ty: t};
2011-07-27 14:19:39 +02:00
type field = {ident: ast::ident, mt: mt};
2012-01-02 12:00:40 +01:00
type param_bounds = @[param_bound];
type method = {ident: ast::ident,
tps: @[param_bounds],
fty: fn_ty,
purity: ast::purity};
type constr_table = hashmap<ast::node_id, [constr]>;
type mt = {ty: t, mutbl: ast::mutability};
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
type creader_cache = hashmap<{cnum: int, pos: uint, len: uint}, t>;
type intern_key = {struct: sty, o_def_id: option<ast::def_id>};
type ctxt =
@{interner: hashmap<intern_key, t_box>,
mutable next_id: uint,
2011-07-27 14:19:39 +02:00
sess: session::session,
def_map: resolve::def_map,
node_types: node_type_table,
node_type_substs: hashmap<node_id, [t]>,
2011-07-27 14:19:39 +02:00
items: ast_map::map,
freevars: freevars::freevar_map,
tcache: type_cache,
rcache: creader_cache,
2011-09-02 15:34:58 -07:00
short_names_cache: hashmap<t, @str>,
needs_drop_cache: hashmap<t, bool>,
kind_cache: hashmap<t, kind>,
ast_ty_to_ty_cache: hashmap<@ast::ty, option<t>>,
enum_var_cache: hashmap<def_id, @[variant_info]>,
iface_method_cache: hashmap<def_id, @[method]>,
ty_param_bounds: hashmap<ast::node_id, param_bounds>,
inferred_modes: hashmap<ast::node_id, ast::mode>};
type t_box = @{struct: sty,
id: uint,
has_params: bool,
has_vars: bool,
o_def_id: option<ast::def_id>};
// To reduce refcounting cost, we're representing types as unsafe pointers
// throughout the compiler. These are simply casted t_box values. Use ty::get
// to cast them back to a box. (Without the cast, compiler performance suffers
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
enum t_opaque {}
type t = *t_opaque;
pure fn get(t: t) -> t_box unsafe {
let t2 = unsafe::reinterpret_cast::<t, t_box>(t);
let t3 = t2;
unsafe::leak(t2);
t3
}
fn type_has_params(t: t) -> bool { get(t).has_params }
fn type_has_vars(t: t) -> bool { get(t).has_vars }
fn type_def_id(t: t) -> option<ast::def_id> { get(t).o_def_id }
fn type_id(t: t) -> uint { get(t).id }
2012-01-19 14:24:03 -08:00
enum closure_kind {
2012-01-19 17:56:05 -08:00
ck_block,
ck_box,
ck_uniq,
2011-12-15 11:06:48 -08:00
}
type fn_ty = {proto: ast::proto,
inputs: [arg],
output: t,
ret_style: ret_style,
constraints: [@constr]};
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in front/ast::rs as well.
2012-01-19 14:24:03 -08:00
enum sty {
2012-01-19 17:56:05 -08:00
ty_nil,
ty_bot,
ty_bool,
ty_int(ast::int_ty),
ty_uint(ast::uint_ty),
ty_float(ast::float_ty),
ty_str,
ty_enum(def_id, [t]),
2012-01-19 17:56:05 -08:00
ty_box(mt),
ty_uniq(mt),
ty_vec(mt),
ty_ptr(mt),
ty_rec([field]),
ty_fn(fn_ty),
ty_iface(def_id, [t]),
ty_class(def_id, [t]),
2012-01-19 17:56:05 -08:00
ty_res(def_id, t, [t]),
ty_tup([t]),
ty_var(int), // type variable during typechecking
ty_param(uint, def_id), // type parameter
ty_self([t]), // interface method self type
2012-01-19 17:56:05 -08:00
ty_type, // type_desc*
ty_send_type, // type_desc* that has been cloned into exchange heap
ty_opaque_box, // used by monomorphizer to represend any @ box
2012-01-19 17:56:05 -08:00
ty_constr(t, [@type_constr]),
ty_opaque_closure_ptr(closure_kind), // ptr to env for fn, fn@, fn~
}
// In the middle end, constraints have a def_id attached, referring
// to the definition of the operator in the constraint.
type constr_general<ARG> = spanned<constr_general_<ARG, def_id>>;
type type_constr = constr_general<@path>;
type constr = constr_general<uint>;
// Data structures used in type unification
2012-01-19 14:24:03 -08:00
enum type_err {
2012-01-19 17:56:05 -08:00
terr_mismatch,
terr_ret_style_mismatch(ast::ret_style, ast::ret_style),
terr_box_mutability,
2012-02-21 17:02:02 +01:00
terr_ptr_mutability,
2012-01-19 17:56:05 -08:00
terr_vec_mutability,
terr_tuple_size(uint, uint),
terr_record_size(uint, uint),
terr_record_mutability,
terr_record_fields(ast::ident, ast::ident),
terr_arg_count,
terr_mode_mismatch(mode, mode),
terr_constr_len(uint, uint),
terr_constr_mismatch(@type_constr, @type_constr),
}
2012-01-19 14:24:03 -08:00
enum param_bound {
2012-01-19 17:56:05 -08:00
bound_copy,
bound_send,
bound_iface(t),
}
2012-01-02 12:00:40 +01:00
fn param_bounds_to_kind(bounds: param_bounds) -> kind {
let kind = kind_noncopyable;
for bound in *bounds {
alt bound {
bound_copy {
if kind != kind_sendable { kind = kind_copyable; }
}
bound_send { kind = kind_sendable; }
_ {}
}
}
kind
}
2012-01-02 12:09:26 +01:00
type ty_param_bounds_and_ty = {bounds: @[param_bounds], ty: t};
type type_cache = hashmap<ast::def_id, ty_param_bounds_and_ty>;
type node_type_table = @smallintmap::smallintmap<t>;
fn mk_rcache() -> creader_cache {
2011-07-27 14:19:39 +02:00
type val = {cnum: int, pos: uint, len: uint};
fn hash_cache_entry(k: val) -> uint {
ret (k.cnum as uint) + k.pos + k.len;
}
fn eq_cache_entries(a: val, b: val) -> bool {
ret a.cnum == b.cnum && a.pos == b.pos && a.len == b.len;
}
2011-07-25 15:07:48 +02:00
ret map::mk_hashmap(hash_cache_entry, eq_cache_entries);
}
fn new_ty_hash<V: copy>() -> map::hashmap<t, V> {
map::mk_hashmap({|&&t: t| type_id(t)},
{|&&a: t, &&b: t| type_id(a) == type_id(b)})
}
2011-12-20 04:17:47 +08:00
fn mk_ctxt(s: session::session, dm: resolve::def_map, amap: ast_map::map,
2011-07-27 14:19:39 +02:00
freevars: freevars::freevar_map) -> ctxt {
let interner = map::mk_hashmap({|&&k: intern_key|
hash_type_structure(k.struct) +
option::maybe(0u, k.o_def_id, ast_util::hash_def_id)
}, {|&&a, &&b| a == b});
@{interner: interner,
mutable next_id: 0u,
sess: s,
def_map: dm,
node_types: @smallintmap::mk(),
node_type_substs: map::new_int_hash(),
items: amap,
freevars: freevars,
tcache: new_def_hash(),
rcache: mk_rcache(),
short_names_cache: new_ty_hash(),
needs_drop_cache: new_ty_hash(),
kind_cache: new_ty_hash(),
ast_ty_to_ty_cache: map::mk_hashmap(ast_util::hash_ty, ast_util::eq_ty),
enum_var_cache: new_def_hash(),
iface_method_cache: new_def_hash(),
ty_param_bounds: map::new_int_hash(),
inferred_modes: map::new_int_hash()}
}
// Type constructors
fn mk_t(cx: ctxt, st: sty) -> t { mk_t_with_id(cx, st, none) }
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for t above).
fn mk_t_with_id(cx: ctxt, st: sty, o_def_id: option<ast::def_id>) -> t {
let key = {struct: st, o_def_id: o_def_id};
alt cx.interner.find(key) {
some(t) { unsafe { ret unsafe::reinterpret_cast(t); } }
_ {}
}
let has_params = false, has_vars = false;
fn derive_flags(&has_params: bool, &has_vars: bool, tt: t) {
let t = get(tt);
has_params |= t.has_params;
has_vars |= t.has_vars;
}
2011-07-27 14:19:39 +02:00
alt st {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_str | ty_type | ty_send_type | ty_opaque_closure_ptr(_) |
ty_opaque_box {}
ty_param(_, _) { has_params = true; }
ty_var(_) | ty_self(_) { has_vars = true; }
ty_enum(_, tys) | ty_iface(_, tys) | ty_class(_, tys) {
for tt in tys { derive_flags(has_params, has_vars, tt); }
}
ty_box(m) | ty_uniq(m) | ty_vec(m) | ty_ptr(m) {
derive_flags(has_params, has_vars, m.ty);
2011-07-27 14:19:39 +02:00
}
ty_rec(flds) {
for f in flds { derive_flags(has_params, has_vars, f.mt.ty); }
2011-07-27 14:19:39 +02:00
}
2011-08-15 12:08:05 +02:00
ty_tup(ts) {
for tt in ts { derive_flags(has_params, has_vars, tt); }
}
ty_fn(f) {
for a in f.inputs { derive_flags(has_params, has_vars, a.ty); }
derive_flags(has_params, has_vars, f.output);
2011-07-27 14:19:39 +02:00
}
ty_res(_, tt, tps) {
derive_flags(has_params, has_vars, tt);
for tt in tps { derive_flags(has_params, has_vars, tt); }
2011-07-27 14:19:39 +02:00
}
ty_constr(tt, _) {
derive_flags(has_params, has_vars, tt);
}
}
let t = @{struct: st,
id: cx.next_id,
has_params: has_params,
has_vars: has_vars,
o_def_id: o_def_id};
cx.interner.insert(key, t);
cx.next_id += 1u;
unsafe { unsafe::reinterpret_cast(t) }
}
fn mk_nil(cx: ctxt) -> t { mk_t(cx, ty_nil) }
2011-04-21 19:30:53 -07:00
fn mk_bot(cx: ctxt) -> t { mk_t(cx, ty_bot) }
fn mk_bool(cx: ctxt) -> t { mk_t(cx, ty_bool) }
fn mk_int(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i)) }
fn mk_float(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f)) }
fn mk_uint(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u)) }
fn mk_mach_int(cx: ctxt, tm: ast::int_ty) -> t { mk_t(cx, ty_int(tm)) }
fn mk_mach_uint(cx: ctxt, tm: ast::uint_ty) -> t { mk_t(cx, ty_uint(tm)) }
fn mk_mach_float(cx: ctxt, tm: ast::float_ty) -> t { mk_t(cx, ty_float(tm)) }
fn mk_char(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_char)) }
fn mk_str(cx: ctxt) -> t { mk_t(cx, ty_str) }
fn mk_enum(cx: ctxt, did: ast::def_id, tys: [t]) -> t {
mk_t(cx, ty_enum(did, tys))
}
fn mk_box(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_box(tm)) }
fn mk_imm_box(cx: ctxt, ty: t) -> t { mk_box(cx, {ty: ty,
mutbl: ast::m_imm}) }
fn mk_uniq(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_uniq(tm)) }
fn mk_imm_uniq(cx: ctxt, ty: t) -> t { mk_uniq(cx, {ty: ty,
mutbl: ast::m_imm}) }
fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
fn mk_mut_ptr(cx: ctxt, ty: t) -> t { mk_ptr(cx, {ty: ty,
mutbl: ast::m_mutbl}) }
fn mk_vec(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_vec(tm)) }
2011-06-09 16:23:19 -07:00
fn mk_rec(cx: ctxt, fs: [field]) -> t { mk_t(cx, ty_rec(fs)) }
fn mk_constr(cx: ctxt, t: t, cs: [@type_constr]) -> t {
mk_t(cx, ty_constr(t, cs))
}
fn mk_tup(cx: ctxt, ts: [t]) -> t { mk_t(cx, ty_tup(ts)) }
fn mk_fn(cx: ctxt, fty: fn_ty) -> t { mk_t(cx, ty_fn(fty)) }
fn mk_iface(cx: ctxt, did: ast::def_id, tys: [t]) -> t {
mk_t(cx, ty_iface(did, tys))
}
fn mk_class(cx: ctxt, class_id: ast::def_id, tys: [t]) -> t {
mk_t(cx, ty_class(class_id, tys))
}
fn mk_res(cx: ctxt, did: ast::def_id, inner: t, tps: [t]) -> t {
mk_t(cx, ty_res(did, inner, tps))
}
fn mk_var(cx: ctxt, v: int) -> t { mk_t(cx, ty_var(v)) }
fn mk_self(cx: ctxt, tps: [t]) -> t { mk_t(cx, ty_self(tps)) }
fn mk_param(cx: ctxt, n: uint, k: def_id) -> t { mk_t(cx, ty_param(n, k)) }
fn mk_type(cx: ctxt) -> t { mk_t(cx, ty_type) }
fn mk_send_type(cx: ctxt) -> t { mk_t(cx, ty_send_type) }
2011-12-15 11:06:48 -08:00
fn mk_opaque_closure_ptr(cx: ctxt, ck: closure_kind) -> t {
mk_t(cx, ty_opaque_closure_ptr(ck))
2011-12-15 11:06:48 -08:00
}
fn mk_opaque_box(cx: ctxt) -> t { mk_t(cx, ty_opaque_box) }
fn mk_with_id(cx: ctxt, base: t, def_id: ast::def_id) -> t {
mk_t_with_id(cx, get(base).struct, some(def_id))
}
// Converts s to its machine type equivalent
pure fn mach_sty(cfg: @session::config, t: t) -> sty {
alt get(t).struct {
ty_int(ast::ty_i) { ty_int(cfg.int_type) }
ty_uint(ast::ty_u) { ty_uint(cfg.uint_type) }
ty_float(ast::ty_f) { ty_float(cfg.float_type) }
s { s }
}
}
fn default_arg_mode_for_ty(ty: ty::t) -> ast::rmode {
if ty::type_is_immediate(ty) { ast::by_val }
else { ast::by_ref }
}
2012-01-31 12:38:22 +01:00
fn walk_ty(cx: ctxt, ty: t, f: fn(t)) {
alt get(ty).struct {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str | ty_send_type | ty_type | ty_opaque_box |
2012-01-31 12:38:22 +01:00
ty_opaque_closure_ptr(_) | ty_var(_) | ty_param(_, _) {}
ty_box(tm) | ty_vec(tm) | ty_ptr(tm) { walk_ty(cx, tm.ty, f); }
ty_enum(_, subtys) | ty_iface(_, subtys) | ty_class(_, subtys)
| ty_self(subtys) {
2012-01-31 12:38:22 +01:00
for subty: t in subtys { walk_ty(cx, subty, f); }
2011-07-27 14:19:39 +02:00
}
ty_rec(fields) {
2012-01-31 12:38:22 +01:00
for fl: field in fields { walk_ty(cx, fl.mt.ty, f); }
2011-07-27 14:19:39 +02:00
}
2012-01-31 12:38:22 +01:00
ty_tup(ts) { for tt in ts { walk_ty(cx, tt, f); } }
ty_fn(ft) {
for a: arg in ft.inputs { walk_ty(cx, a.ty, f); }
walk_ty(cx, ft.output, f);
2011-07-27 14:19:39 +02:00
}
ty_res(_, sub, tps) {
2012-01-31 12:38:22 +01:00
walk_ty(cx, sub, f);
for tp: t in tps { walk_ty(cx, tp, f); }
2011-07-27 14:19:39 +02:00
}
2012-01-31 12:38:22 +01:00
ty_constr(sub, _) { walk_ty(cx, sub, f); }
ty_uniq(tm) { walk_ty(cx, tm.ty, f); }
}
2012-01-31 12:38:22 +01:00
f(ty);
}
2012-01-19 14:24:03 -08:00
enum fold_mode {
2012-01-19 17:56:05 -08:00
fm_var(fn@(int) -> t),
fm_param(fn@(uint, def_id) -> t),
fm_general(fn@(t) -> t),
}
fn fold_ty(cx: ctxt, fld: fold_mode, ty_0: t) -> t {
2011-07-27 14:19:39 +02:00
let ty = ty_0;
let tb = get(ty);
2011-07-27 14:19:39 +02:00
alt fld {
fm_var(_) { if !tb.has_vars { ret ty; } }
fm_param(_) { if !tb.has_params { ret ty; } }
2011-07-27 14:19:39 +02:00
fm_general(_) {/* no fast path */ }
}
alt tb.struct {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str | ty_type | ty_send_type | ty_opaque_closure_ptr(_) |
ty_opaque_box {}
2011-07-27 14:19:39 +02:00
ty_box(tm) {
ty = mk_box(cx, {ty: fold_ty(cx, fld, tm.ty), mutbl: tm.mutbl});
2011-07-27 14:19:39 +02:00
}
ty_uniq(tm) {
ty = mk_uniq(cx, {ty: fold_ty(cx, fld, tm.ty), mutbl: tm.mutbl});
}
2011-07-27 14:19:39 +02:00
ty_ptr(tm) {
ty = mk_ptr(cx, {ty: fold_ty(cx, fld, tm.ty), mutbl: tm.mutbl});
2011-07-27 14:19:39 +02:00
}
ty_vec(tm) {
ty = mk_vec(cx, {ty: fold_ty(cx, fld, tm.ty), mutbl: tm.mutbl});
2011-07-27 14:19:39 +02:00
}
ty_enum(tid, subtys) {
ty = mk_enum(cx, tid, vec::map(subtys, {|t| fold_ty(cx, fld, t) }));
}
ty_iface(did, subtys) {
ty = mk_iface(cx, did, vec::map(subtys, {|t| fold_ty(cx, fld, t) }));
2011-07-27 14:19:39 +02:00
}
ty_self(subtys) {
ty = mk_self(cx, vec::map(subtys, {|t| fold_ty(cx, fld, t) }));
}
2011-07-27 14:19:39 +02:00
ty_rec(fields) {
let new_fields: [field] = [];
for fl: field in fields {
2011-07-27 14:19:39 +02:00
let new_ty = fold_ty(cx, fld, fl.mt.ty);
let new_mt = {ty: new_ty, mutbl: fl.mt.mutbl};
new_fields += [{ident: fl.ident, mt: new_mt}];
2011-07-27 14:19:39 +02:00
}
ty = mk_rec(cx, new_fields);
2011-07-27 14:19:39 +02:00
}
2011-08-15 12:08:05 +02:00
ty_tup(ts) {
let new_ts = [];
for tt in ts { new_ts += [fold_ty(cx, fld, tt)]; }
ty = mk_tup(cx, new_ts);
}
ty_fn(f) {
let new_args: [arg] = [];
for a: arg in f.inputs {
2011-07-27 14:19:39 +02:00
let new_ty = fold_ty(cx, fld, a.ty);
new_args += [{mode: a.mode, ty: new_ty}];
2011-07-27 14:19:39 +02:00
}
ty = mk_fn(cx, {inputs: new_args,
output: fold_ty(cx, fld, f.output)
with f});
2011-07-27 14:19:39 +02:00
}
ty_res(did, subty, tps) {
let new_tps = [];
for tp: t in tps { new_tps += [fold_ty(cx, fld, tp)]; }
ty = mk_res(cx, did, fold_ty(cx, fld, subty), new_tps);
2011-07-27 14:19:39 +02:00
}
ty_var(id) {
alt fld { fm_var(folder) { ty = folder(id); } _ {/* no-op */ } }
}
ty_param(id, did) {
alt fld { fm_param(folder) { ty = folder(id, did); } _ {} }
2011-07-27 14:19:39 +02:00
}
ty_constr(subty, cs) {
ty = mk_constr(cx, fold_ty(cx, fld, subty), cs);
}
_ {
2012-03-05 16:27:27 -08:00
cx.sess.bug("unsupported sort of type in fold_ty");
}
}
alt tb.o_def_id {
some(did) { ty = mk_t_with_id(cx, get(ty).struct, some(did)); }
_ {}
}
// If this is a general type fold, then we need to run it now.
2011-07-27 14:19:39 +02:00
alt fld { fm_general(folder) { ret folder(ty); } _ { ret ty; } }
}
// Type utilities
fn type_is_nil(ty: t) -> bool { get(ty).struct == ty_nil }
fn type_is_bot(ty: t) -> bool { get(ty).struct == ty_bot }
fn type_is_bool(ty: t) -> bool { get(ty).struct == ty_bool }
fn type_is_structural(ty: t) -> bool {
alt get(ty).struct {
ty_rec(_) | ty_class(_,_) | ty_tup(_) | ty_enum(_, _) | ty_fn(_) |
ty_iface(_, _) | ty_res(_, _, _) { true }
_ { false }
}
}
fn type_is_copyable(cx: ctxt, ty: t) -> bool {
ret kind_can_be_copied(type_kind(cx, ty));
}
fn type_is_sequence(ty: t) -> bool {
alt get(ty).struct {
ty_str { ret true; }
ty_vec(_) { ret true; }
2011-07-27 14:19:39 +02:00
_ { ret false; }
}
}
fn type_is_str(ty: t) -> bool { get(ty).struct == ty_str }
fn sequence_element_type(cx: ctxt, ty: t) -> t {
alt get(ty).struct {
ty_str { ret mk_mach_uint(cx, ast::ty_u8); }
ty_vec(mt) { ret mt.ty; }
2011-09-02 15:34:58 -07:00
_ { cx.sess.bug("sequence_element_type called on non-sequence value"); }
}
}
pure fn type_is_tup_like(ty: t) -> bool {
alt get(ty).struct {
ty_rec(_) | ty_tup(_) { true }
_ { false }
}
}
fn get_element_type(ty: t, i: uint) -> t {
alt get(ty).struct {
ty_rec(flds) { ret flds[i].mt.ty; }
ty_tup(ts) { ret ts[i]; }
_ { fail "get_element_type called on invalid type"; }
}
}
pure fn type_is_box(ty: t) -> bool {
alt get(ty).struct {
ty_box(_) { ret true; }
_ { ret false; }
}
2011-07-27 14:19:39 +02:00
}
pure fn type_is_boxed(ty: t) -> bool {
alt get(ty).struct {
ty_box(_) | ty_opaque_box { true }
_ { false }
}
}
pure fn type_is_unique_box(ty: t) -> bool {
alt get(ty).struct {
ty_uniq(_) { ret true; }
_ { ret false; }
}
2011-07-27 14:19:39 +02:00
}
pure fn type_is_unsafe_ptr(ty: t) -> bool {
alt get(ty).struct {
ty_ptr(_) { ret true; }
_ { ret false; }
}
}
pure fn type_is_vec(ty: t) -> bool {
ret alt get(ty).struct {
2011-09-02 15:34:58 -07:00
ty_vec(_) { true }
ty_str { true }
2011-09-02 15:34:58 -07:00
_ { false }
};
}
pure fn type_is_unique(ty: t) -> bool {
alt get(ty).struct {
ty_uniq(_) { ret true; }
ty_vec(_) { true }
ty_str { true }
2011-09-02 15:34:58 -07:00
_ { ret false; }
}
}
pure fn type_is_scalar(ty: t) -> bool {
alt get(ty).struct {
ty_nil | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_send_type | ty_type | ty_ptr(_) { true }
_ { false }
2011-07-27 14:19:39 +02:00
}
}
// FIXME maybe inline this for speed?
fn type_is_immediate(ty: t) -> bool {
ret type_is_scalar(ty) || type_is_boxed(ty) ||
type_is_unique(ty);
}
fn type_needs_drop(cx: ctxt, ty: t) -> bool {
alt cx.needs_drop_cache.find(ty) {
2011-07-27 14:19:39 +02:00
some(result) { ret result; }
none {/* fall through */ }
2011-07-27 14:19:39 +02:00
}
let accum = false;
let result = alt get(ty).struct {
2011-07-27 14:19:39 +02:00
// scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) { false }
2011-07-27 14:19:39 +02:00
ty_rec(flds) {
for f in flds { if type_needs_drop(cx, f.mt.ty) { accum = true; } }
accum
2011-07-27 14:19:39 +02:00
}
ty_tup(elts) {
for m in elts { if type_needs_drop(cx, m) { accum = true; } }
accum
}
ty_enum(did, tps) {
let variants = enum_variants(cx, did);
for variant in *variants {
for aty in variant.args {
2011-07-27 14:19:39 +02:00
// Perform any type parameter substitutions.
let arg_ty = substitute_type_params(cx, tps, aty);
if type_needs_drop(cx, arg_ty) { accum = true; }
}
if accum { break; }
}
accum
2011-07-27 14:19:39 +02:00
}
_ { true }
};
cx.needs_drop_cache.insert(ty, result);
2011-07-27 14:19:39 +02:00
ret result;
}
2012-01-19 17:56:05 -08:00
enum kind { kind_sendable, kind_copyable, kind_noncopyable, }
// Using these query functons is preferable to direct comparison or matching
// against the kind constants, as we may modify the kind hierarchy in the
// future.
pure fn kind_can_be_copied(k: kind) -> bool {
ret alt k {
kind_sendable { true }
kind_copyable { true }
kind_noncopyable { false }
};
}
pure fn kind_can_be_sent(k: kind) -> bool {
ret alt k {
kind_sendable { true }
kind_copyable { false }
kind_noncopyable { false }
};
}
fn proto_kind(p: proto) -> kind {
alt p {
ast::proto_any { kind_noncopyable }
ast::proto_block { kind_noncopyable }
ast::proto_box { kind_copyable }
ast::proto_uniq { kind_sendable }
ast::proto_bare { kind_sendable }
}
}
fn kind_lteq(a: kind, b: kind) -> bool {
alt a {
kind_noncopyable { true }
kind_copyable { b != kind_noncopyable }
kind_sendable { b == kind_sendable }
}
}
fn lower_kind(a: kind, b: kind) -> kind {
if kind_lteq(a, b) { a } else { b }
}
fn type_kind(cx: ctxt, ty: t) -> kind {
alt cx.kind_cache.find(ty) {
some(result) { ret result; }
none {/* fall through */ }
}
// Insert a default in case we loop back on self recursively.
cx.kind_cache.insert(ty, kind_sendable);
let result = alt get(ty).struct {
// Scalar and unique types are sendable
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_ptr(_) | ty_send_type | ty_str { kind_sendable }
ty_type { kind_copyable }
ty_fn(f) { proto_kind(f.proto) }
ty_opaque_closure_ptr(ck_block) { kind_noncopyable }
ty_opaque_closure_ptr(ck_box) { kind_copyable }
ty_opaque_closure_ptr(ck_uniq) { kind_sendable }
// Those with refcounts-to-inner raise pinned to shared,
// lower unique to shared. Therefore just set result to shared.
ty_box(_) | ty_iface(_, _) | ty_opaque_box { kind_copyable }
// Boxes and unique pointers raise pinned to shared.
ty_vec(tm) | ty_uniq(tm) { type_kind(cx, tm.ty) }
// Records lower to the lowest of their members.
ty_rec(flds) {
let lowest = kind_sendable;
for f in flds { lowest = lower_kind(lowest, type_kind(cx, f.mt.ty)); }
lowest
}
2011-08-18 18:06:00 -07:00
// Tuples lower to the lowest of their members.
ty_tup(tys) {
let lowest = kind_sendable;
for ty in tys { lowest = lower_kind(lowest, type_kind(cx, ty)); }
lowest
2011-08-18 18:06:00 -07:00
}
// Enums lower to the lowest of their variants.
ty_enum(did, tps) {
let lowest = kind_sendable;
for variant in *enum_variants(cx, did) {
for aty in variant.args {
// Perform any type parameter substitutions.
let arg_ty = substitute_type_params(cx, tps, aty);
lowest = lower_kind(lowest, type_kind(cx, arg_ty));
if lowest == kind_noncopyable { break; }
}
}
lowest
}
// Resources are always noncopyable.
ty_res(did, inner, tps) { kind_noncopyable }
ty_param(_, did) {
param_bounds_to_kind(cx.ty_param_bounds.get(did.node))
}
ty_constr(t, _) { type_kind(cx, t) }
2012-03-05 16:27:27 -08:00
_ { cx.sess.bug("bad type in type_kind"); }
};
cx.kind_cache.insert(ty, result);
ret result;
}
2012-01-23 14:59:00 -08:00
fn type_structurally_contains(cx: ctxt, ty: t, test: fn(sty) -> bool) ->
2011-09-02 15:34:58 -07:00
bool {
let sty = get(ty).struct;
if test(sty) { ret true; }
alt sty {
ty_enum(did, tps) {
for variant in *enum_variants(cx, did) {
for aty in variant.args {
let sty = substitute_type_params(cx, tps, aty);
if type_structurally_contains(cx, sty, test) { ret true; }
}
}
2011-07-27 14:19:39 +02:00
ret false;
}
ty_rec(fields) {
for field in fields {
if type_structurally_contains(cx, field.mt.ty, test) { ret true; }
}
2011-07-27 14:19:39 +02:00
ret false;
}
2011-08-15 12:08:05 +02:00
ty_tup(ts) {
for tt in ts {
if type_structurally_contains(cx, tt, test) { ret true; }
}
ret false;
}
2011-07-27 14:19:39 +02:00
ty_res(_, sub, tps) {
let sty = substitute_type_params(cx, tps, sub);
ret type_structurally_contains(cx, sty, test);
2011-07-27 14:19:39 +02:00
}
_ { ret false; }
2011-07-27 14:19:39 +02:00
}
}
pure fn type_has_dynamic_size(cx: ctxt, ty: t) -> bool unchecked {
/* type_structurally_contains can't be declared pure
because it takes a function argument. But it should be
referentially transparent, since a given type's size should
never change once it's created.
(It would be interesting to think about how to make such properties
actually checkable. It seems to me like a lot of properties
that the type context tracks about types should be immutable.)
*/
type_has_params(ty) && type_structurally_contains(cx, ty) {|sty|
alt sty {
ty_param(_, _) { true }
_ { false }
}
}
}
// Returns true for noncopyable types and types where a copy of a value can be
// distinguished from the value itself. I.e. types with mutable content that's
// not shared through a pointer.
fn type_allows_implicit_copy(cx: ctxt, ty: t) -> bool {
ret !type_structurally_contains(cx, ty, {|sty|
alt sty {
ty_param(_, _) { true }
ty_vec(mt) {
mt.mutbl != ast::m_imm
}
ty_rec(fields) {
for field in fields {
if field.mt.mutbl != ast::m_imm {
ret true;
}
}
false
}
_ { false }
}
}) && type_kind(cx, ty) != kind_noncopyable;
}
fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool {
ret type_structurally_contains(cx, ty, {|sty|
ret alt sty {
ty_uniq(_) { ret true; }
ty_vec(_) { true }
ty_str { true }
_ { ret false; }
};
});
}
fn type_is_integral(ty: t) -> bool {
alt get(ty).struct {
ty_int(_) | ty_uint(_) | ty_bool { true }
_ { false }
2011-07-27 14:19:39 +02:00
}
}
fn type_is_fp(ty: t) -> bool {
alt get(ty).struct {
ty_float(_) { true }
_ { false }
2011-07-27 14:19:39 +02:00
}
}
fn type_is_numeric(ty: t) -> bool {
ret type_is_integral(ty) || type_is_fp(ty);
}
fn type_is_signed(ty: t) -> bool {
alt get(ty).struct {
ty_int(_) { true }
_ { false }
2011-07-27 14:19:39 +02:00
}
}
// Whether a type is Plain Old Data -- meaning it does not contain pointers
// that the cycle collector might care about.
fn type_is_pod(cx: ctxt, ty: t) -> bool {
2011-08-04 10:46:10 -07:00
let result = true;
alt get(ty).struct {
// Scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_send_type | ty_type | ty_ptr(_) { result = true; }
// Boxed types
ty_str | ty_box(_) | ty_uniq(_) | ty_vec(_) | ty_fn(_) |
ty_iface(_, _) | ty_opaque_box { result = false; }
// Structural types
ty_enum(did, tps) {
let variants = enum_variants(cx, did);
for variant: variant_info in *variants {
let tup_ty = mk_tup(cx, variant.args);
// Perform any type parameter substitutions.
tup_ty = substitute_type_params(cx, tps, tup_ty);
if !type_is_pod(cx, tup_ty) { result = false; }
}
}
ty_rec(flds) {
for f: field in flds {
if !type_is_pod(cx, f.mt.ty) { result = false; }
2011-08-04 10:46:10 -07:00
}
}
ty_tup(elts) {
for elt in elts { if !type_is_pod(cx, elt) { result = false; } }
}
ty_res(_, inner, tps) {
result = type_is_pod(cx, substitute_type_params(cx, tps, inner));
}
ty_constr(subt, _) { result = type_is_pod(cx, subt); }
ty_param(_, _) { result = false; }
ty_opaque_closure_ptr(_) { result = true; }
_ { cx.sess.bug("unexpected type in type_is_pod"); }
2011-08-04 10:46:10 -07:00
}
ret result;
}
fn type_is_enum(ty: t) -> bool {
alt get(ty).struct {
ty_enum(_, _) { ret true; }
_ { ret false;}
}
}
2012-01-19 14:24:03 -08:00
// Whether a type is enum like, that is a enum type with only nullary
// constructors
fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool {
alt get(ty).struct {
ty_enum(did, tps) {
let variants = enum_variants(cx, did);
let some_n_ary = vec::any(*variants, {|v| vec::len(v.args) > 0u});
ret !some_n_ary;
}
_ { ret false;}
}
}
fn type_param(ty: t) -> option<uint> {
alt get(ty).struct {
ty_param(id, _) { ret some(id); }
2011-07-27 14:19:39 +02:00
_ {/* fall through */ }
}
2011-07-21 15:46:03 -07:00
ret none;
}
2011-08-18 15:00:12 -07:00
// Returns a vec of all the type variables
// occurring in t. It may contain duplicates.
fn vars_in_type(cx: ctxt, ty: t) -> [int] {
2012-01-31 12:38:22 +01:00
let rslt = [];
walk_ty(cx, ty) {|ty|
alt get(ty).struct { ty_var(v) { rslt += [v]; } _ { } }
}
2012-01-31 12:38:22 +01:00
rslt
}
fn type_autoderef(cx: ctxt, t: t) -> t {
let t1 = t;
2011-07-27 14:19:39 +02:00
while true {
alt get(t1).struct {
ty_box(mt) | ty_uniq(mt) { t1 = mt.ty; }
ty_res(_, inner, tps) {
2011-07-27 14:19:39 +02:00
t1 = substitute_type_params(cx, tps, inner);
}
ty_enum(did, tps) {
let variants = enum_variants(cx, did);
if vec::len(*variants) != 1u || vec::len(variants[0].args) != 1u {
2011-07-27 14:19:39 +02:00
break;
}
t1 = substitute_type_params(cx, tps, variants[0].args[0]);
2011-07-27 14:19:39 +02:00
}
_ { break; }
}
}
ret t1;
}
// Type hashing.
fn hash_type_structure(st: sty) -> uint {
fn hash_uint(id: uint, n: uint) -> uint { (id << 2u) + n }
2011-07-27 14:19:39 +02:00
fn hash_def(id: uint, did: ast::def_id) -> uint {
let h = (id << 2u) + (did.crate as uint);
(h << 2u) + (did.node as uint)
2011-04-20 14:34:17 -07:00
}
fn hash_subty(id: uint, subty: t) -> uint { (id << 2u) + type_id(subty) }
2011-12-15 11:06:48 -08:00
fn hash_subtys(id: uint, subtys: [t]) -> uint {
let h = id;
for s in subtys { h = (h << 2u) + type_id(s) }
h
2011-12-15 11:06:48 -08:00
}
fn hash_type_constr(id: uint, c: @type_constr) -> uint {
2011-07-27 14:19:39 +02:00
let h = id;
h = (h << 2u) + hash_def(h, c.node.id);
// FIXME this makes little sense
for a in c.node.args {
2011-07-27 14:19:39 +02:00
alt a.node {
carg_base { h += h << 2u; }
carg_lit(_) { fail "lit args not implemented yet"; }
carg_ident(p) { h += h << 2u; }
}
}
h
2011-04-20 14:34:17 -07:00
}
2011-07-27 14:19:39 +02:00
alt st {
ty_nil { 0u } ty_bool { 1u }
ty_int(t) {
alt t {
ast::ty_i { 2u } ast::ty_char { 3u } ast::ty_i8 { 4u }
ast::ty_i16 { 5u } ast::ty_i32 { 6u } ast::ty_i64 { 7u }
2011-07-27 14:19:39 +02:00
}
}
ty_uint(t) {
alt t {
ast::ty_u { 8u } ast::ty_u8 { 9u } ast::ty_u16 { 10u }
ast::ty_u32 { 11u } ast::ty_u64 { 12u }
}
}
ty_float(t) {
alt t { ast::ty_f { 13u } ast::ty_f32 { 14u } ast::ty_f64 { 15u } }
}
ty_str { 17u }
ty_enum(did, tys) {
2011-07-27 14:19:39 +02:00
let h = hash_def(18u, did);
for typ: t in tys { h = hash_subty(h, typ); }
h
2011-07-27 14:19:39 +02:00
}
ty_box(mt) { hash_subty(19u, mt.ty) }
ty_vec(mt) { hash_subty(21u, mt.ty) }
2011-07-27 14:19:39 +02:00
ty_rec(fields) {
let h = 26u;
for f in fields { h = hash_subty(h, f.mt.ty); }
h
2011-07-27 14:19:39 +02:00
}
ty_tup(ts) { hash_subtys(25u, ts) }
ty_fn(f) {
let h = 27u;
for a in f.inputs { h = hash_subty(h, a.ty); }
hash_subty(h, f.output)
}
ty_var(v) { hash_uint(30u, v as uint) }
ty_param(pid, did) { hash_def(hash_uint(31u, pid), did) }
ty_self(ts) {
let h = 28u;
for t in ts { h = hash_subty(h, t); }
h
}
ty_type { 32u }
ty_bot { 34u }
ty_ptr(mt) { hash_subty(35u, mt.ty) }
2011-07-27 14:19:39 +02:00
ty_res(did, sub, tps) {
let h = hash_subty(hash_def(18u, did), sub);
hash_subtys(h, tps)
2011-07-27 14:19:39 +02:00
}
ty_constr(t, cs) {
let h = hash_subty(36u, t);
for c in cs { h = (h << 2u) + hash_type_constr(h, c); }
h
2011-07-27 14:19:39 +02:00
}
ty_uniq(mt) { hash_subty(37u, mt.ty) }
ty_send_type { 38u }
ty_iface(did, tys) {
let h = hash_def(40u, did);
for typ: t in tys { h = hash_subty(h, typ); }
h
}
ty_opaque_closure_ptr(ck_block) { 41u }
ty_opaque_closure_ptr(ck_box) { 42u }
ty_opaque_closure_ptr(ck_uniq) { 43u }
ty_opaque_box { 44u }
ty_class(did, tys) {
let h = hash_def(45u, did);
for typ: t in tys { h = hash_subty(h, typ); }
h
}
2011-04-20 14:34:17 -07:00
}
}
2012-01-23 14:59:00 -08:00
fn arg_eq<T>(eq: fn(T, T) -> bool,
a: @sp_constr_arg<T>,
b: @sp_constr_arg<T>)
-> bool {
2011-07-27 14:19:39 +02:00
alt a.node {
ast::carg_base {
alt b.node { ast::carg_base { ret true; } _ { ret false; } }
2011-07-27 14:19:39 +02:00
}
ast::carg_ident(s) {
alt b.node { ast::carg_ident(t) { ret eq(s, t); } _ { ret false; } }
}
ast::carg_lit(l) {
alt b.node {
ast::carg_lit(m) { ret ast_util::lit_eq(l, m); } _ { ret false; }
}
2011-07-27 14:19:39 +02:00
}
}
}
2012-01-23 14:59:00 -08:00
fn args_eq<T>(eq: fn(T, T) -> bool,
a: [@sp_constr_arg<T>],
b: [@sp_constr_arg<T>]) -> bool {
2011-07-27 14:19:39 +02:00
let i: uint = 0u;
for arg: @sp_constr_arg<T> in a {
if !arg_eq(eq, arg, b[i]) { ret false; }
i += 1u;
}
ret true;
}
fn constr_eq(c: @constr, d: @constr) -> bool {
fn eq_int(&&x: uint, &&y: uint) -> bool { ret x == y; }
ret path_to_str(c.node.path) == path_to_str(d.node.path) &&
2011-06-16 16:55:46 -07:00
// FIXME: hack
args_eq(eq_int, c.node.args, d.node.args);
}
fn constrs_eq(cs: [@constr], ds: [@constr]) -> bool {
2011-08-15 16:38:23 -07:00
if vec::len(cs) != vec::len(ds) { ret false; }
2011-07-27 14:19:39 +02:00
let i = 0u;
for c: @constr in cs { if !constr_eq(c, ds[i]) { ret false; } i += 1u; }
ret true;
}
fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t {
alt smallintmap::find(*cx.node_types, id as uint) {
some(t) { t }
none { cx.sess.bug(#fmt("node_id_to_type: unbound node ID %?", id)); }
}
}
fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> [t] {
alt cx.node_type_substs.find(id) {
none { ret []; }
some(ts) { ret ts; }
}
}
fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool {
ret cx.node_type_substs.contains_key(id);
}
// Returns the number of distinct type parameters in the given type.
fn count_ty_params(cx: ctxt, ty: t) -> uint {
2012-01-31 12:38:22 +01:00
let param_indices = [];
walk_ty(cx, ty) {|t|
alt get(t).struct {
ty_param(param_idx, _) {
2012-01-31 12:38:22 +01:00
if !vec::any(param_indices, {|i| i == param_idx}) {
param_indices += [param_idx];
}
2011-07-27 14:19:39 +02:00
}
2012-01-31 12:38:22 +01:00
_ {}
}
}
2012-01-31 12:38:22 +01:00
vec::len(param_indices)
}
// Type accessors for substructures of types
fn ty_fn_args(fty: t) -> [arg] {
alt get(fty).struct {
ty_fn(f) { f.inputs }
_ { fail "ty_fn_args() called on non-fn type"; }
}
}
fn ty_fn_proto(fty: t) -> ast::proto {
alt get(fty).struct {
ty_fn(f) { f.proto }
_ { fail "ty_fn_proto() called on non-fn type"; }
2011-07-29 20:51:18 +02:00
}
2011-01-03 18:22:39 -08:00
}
pure fn ty_fn_ret(fty: t) -> t {
alt get(fty).struct {
ty_fn(f) { f.output }
_ { fail "ty_fn_ret() called on non-fn type"; }
}
2011-01-03 18:22:39 -08:00
}
fn ty_fn_ret_style(fty: t) -> ast::ret_style {
alt get(fty).struct {
ty_fn(f) { f.ret_style }
_ { fail "ty_fn_ret_style() called on non-fn type"; }
}
}
fn is_fn_ty(fty: t) -> bool {
alt get(fty).struct {
ty_fn(_) { ret true; }
2011-07-27 14:19:39 +02:00
_ { ret false; }
}
2011-01-03 18:22:39 -08:00
}
2011-08-24 17:24:58 -07:00
// Just checks whether it's a fn that returns bool,
// not its purity.
fn is_pred_ty(fty: t) -> bool {
is_fn_ty(fty) && type_is_bool(ty_fn_ret(fty))
2011-08-24 17:24:58 -07:00
}
fn ty_var_id(typ: t) -> int {
alt get(typ).struct {
ty_var(vid) { ret vid; }
_ { #error("ty_var_id called on non-var ty"); fail; }
}
}
2011-01-03 18:22:39 -08:00
// Type accessors for AST nodes
fn block_ty(cx: ctxt, b: ast::blk) -> t {
ret node_id_to_type(cx, b.node.id);
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
fn pat_ty(cx: ctxt, pat: @ast::pat) -> t {
ret node_id_to_type(cx, pat.id);
}
// Returns the type of an expression as a monotype.
//
// NB: This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
// expr_ty_params_and_ty() below.
fn expr_ty(cx: ctxt, expr: @ast::expr) -> t {
ret node_id_to_type(cx, expr.id);
}
fn expr_ty_params_and_ty(cx: ctxt, expr: @ast::expr) -> {params: [t], ty: t} {
2011-07-27 14:19:39 +02:00
ret {params: node_id_to_type_params(cx, expr.id),
ty: node_id_to_type(cx, expr.id)};
}
fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool {
ret node_id_has_type_params(cx, expr.id);
}
fn expr_is_lval(method_map: typeck::method_map, e: @ast::expr) -> bool {
alt e.node {
ast::expr_path(_) | ast::expr_unary(ast::deref, _) { true }
ast::expr_field(_, _, _) | ast::expr_index(_, _) {
!method_map.contains_key(e.id)
}
_ { false }
}
}
fn stmt_node_id(s: @ast::stmt) -> ast::node_id {
2011-07-27 14:19:39 +02:00
alt s.node {
ast::stmt_decl(_, id) | stmt_expr(_, id) | stmt_semi(_, id) {
ret id;
}
}
}
fn field_idx(id: ast::ident, fields: [field]) -> option<uint> {
let i = 0u;
for f in fields { if f.ident == id { ret some(i); } i += 1u; }
ret none;
}
fn get_field(rec_ty: t, id: ast::ident) -> field {
alt check vec::find(get_fields(rec_ty), {|f| str::eq(f.ident, id) }) {
some(f) { f }
}
}
fn get_fields(rec_ty:t) -> [field] {
alt check get(rec_ty).struct {
ty_rec(fields) { fields }
}
}
fn method_idx(id: ast::ident, meths: [method]) -> option<uint> {
let i = 0u;
for m in meths { if m.ident == id { ret some(i); } i += 1u; }
ret none;
}
fn sort_methods(meths: [method]) -> [method] {
fn method_lteq(a: method, b: method) -> bool {
2012-02-03 03:28:49 -08:00
ret str::le(a.ident, b.ident);
}
ret std::sort::merge_sort(bind method_lteq(_, _), meths);
}
fn occurs_check_fails(tcx: ctxt, sp: option<span>, vid: int, rt: t) ->
bool {
// Fast path
if !type_has_vars(rt) { ret false; }
// Occurs check!
if vec::contains(vars_in_type(tcx, rt), vid) {
alt sp {
some(s) {
// Maybe this should be span_err -- however, there's an
// assertion later on that the type doesn't contain
// variables, so in this case we have to be sure to die.
2011-09-12 12:39:38 +02:00
tcx.sess.span_fatal
2012-03-05 16:27:27 -08:00
(s, "type inference failed because I \
2011-09-12 12:39:38 +02:00
could not find a type\n that's both of the form "
+ ty_to_str(tcx, mk_var(tcx, vid)) +
2011-09-12 12:39:38 +02:00
" and of the form " + ty_to_str(tcx, rt) +
2012-03-05 16:27:27 -08:00
" - such a type would have to be infinitely large.");
}
_ { ret true; }
}
} else { ret false; }
}
// Maintains a little union-set tree for inferred modes. `canon()` returns
// the current head value for `m0`.
fn canon<T:copy>(tbl: hashmap<ast::node_id, ast::inferable<T>>,
m0: ast::inferable<T>) -> ast::inferable<T> {
alt m0 {
ast::infer(id) {
alt tbl.find(id) {
none { m0 }
some(m1) {
let cm1 = canon(tbl, m1);
// path compression:
if cm1 != m1 { tbl.insert(id, cm1); }
cm1
}
}
}
_ { m0 }
}
}
// Maintains a little union-set tree for inferred modes. `resolve_mode()`
// returns the current head value for `m0`.
fn canon_mode(cx: ctxt, m0: ast::mode) -> ast::mode {
canon(cx.inferred_modes, m0)
}
// Returns the head value for mode, failing if `m` was a infer(_) that
// was never inferred. This should be safe for use after typeck.
fn resolved_mode(cx: ctxt, m: ast::mode) -> ast::rmode {
alt canon_mode(cx, m) {
ast::infer(_) {
cx.sess.bug(#fmt["mode %? was never resolved", m]);
}
ast::expl(m0) { m0 }
}
}
fn arg_mode(cx: ctxt, a: arg) -> ast::rmode { resolved_mode(cx, a.mode) }
// Unifies `m1` and `m2`. Returns unified value or failure code.
fn unify_mode(cx: ctxt, m1: ast::mode, m2: ast::mode)
-> result::t<ast::mode, type_err> {
alt (canon_mode(cx, m1), canon_mode(cx, m2)) {
(m1, m2) if (m1 == m2) {
result::ok(m1)
}
(ast::infer(id1), ast::infer(id2)) {
cx.inferred_modes.insert(id2, m1);
result::ok(m1)
}
(ast::infer(id), m) | (m, ast::infer(id)) {
cx.inferred_modes.insert(id, m);
result::ok(m1)
}
(m1, m2) {
result::err(terr_mode_mismatch(m1, m2))
}
}
}
// If `m` was never unified, unifies it with `m_def`. Returns the final value
// for `m`.
fn set_default_mode(cx: ctxt, m: ast::mode, m_def: ast::rmode) {
alt canon_mode(cx, m) {
ast::infer(id) {
cx.inferred_modes.insert(id, ast::expl(m_def));
}
ast::expl(_) { }
}
}
// Type unification via Robinson's algorithm (Robinson 1965). Implemented as
// described in Hoder and Voronkov:
//
// http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf
mod unify {
export fixup_result;
export fixup_vars;
export fix_ok;
export fix_err;
export mk_var_bindings;
export resolve_type_structure;
export resolve_type_var;
export result;
export unify;
export ures_ok;
export ures_err;
export var_bindings;
export precise, in_bindings;
2012-01-19 17:56:05 -08:00
enum result { ures_ok(t), ures_err(type_err), }
enum union_result { unres_ok, unres_err(type_err), }
2012-01-19 14:24:03 -08:00
enum fixup_result {
2012-01-19 17:56:05 -08:00
fix_ok(t), // fixup succeeded
fix_err(int), // fixup failed because a type variable was unresolved
}
type var_bindings =
{sets: ufind::ufind, types: smallintmap::smallintmap<t>};
2012-01-19 14:24:03 -08:00
enum unify_style {
2012-01-19 17:56:05 -08:00
precise,
in_bindings(@var_bindings),
}
type uctxt = {st: unify_style, tcx: ctxt};
fn mk_var_bindings() -> @var_bindings {
ret @{sets: ufind::make(), types: smallintmap::mk::<t>()};
}
// Unifies two sets.
fn union(cx: @uctxt, set_a: uint, set_b: uint,
variance: variance) -> union_result {
let vb = alt cx.st {
in_bindings(vb) { vb }
2012-03-05 16:27:27 -08:00
_ { cx.tcx.sess.bug("someone forgot to document an invariant \
in union"); }
};
ufind::grow(vb.sets, math::max(set_a, set_b) + 1u);
let root_a = ufind::find(vb.sets, set_a);
let root_b = ufind::find(vb.sets, set_b);
2011-07-27 14:19:39 +02:00
let replace_type = (
fn@(vb: @var_bindings, t: t) {
ufind::union(vb.sets, set_a, set_b);
let root_c: uint = ufind::find(vb.sets, set_a);
smallintmap::insert::<t>(vb.types, root_c, t);
}
);
2011-07-27 14:19:39 +02:00
alt smallintmap::find(vb.types, root_a) {
none {
alt smallintmap::find(vb.types, root_b) {
none { ufind::union(vb.sets, set_a, set_b); ret unres_ok; }
some(t_b) { replace_type(vb, t_b); ret unres_ok; }
2011-07-27 14:19:39 +02:00
}
}
some(t_a) {
alt smallintmap::find(vb.types, root_b) {
none { replace_type(vb, t_a); ret unres_ok; }
2011-07-27 14:19:39 +02:00
some(t_b) {
alt unify_step(cx, t_a, t_b, variance) {
ures_ok(t_c) { replace_type(vb, t_c); ret unres_ok; }
2011-07-27 14:19:39 +02:00
ures_err(terr) { ret unres_err(terr); }
}
2011-07-27 14:19:39 +02:00
}
}
2011-07-27 14:19:39 +02:00
}
}
}
2012-02-21 17:02:02 +01:00
fn record_var_binding(cx: @uctxt, key: int, typ: t, variance: variance)
-> result {
let vb = alt check cx.st { in_bindings(vb) { vb } };
ufind::grow(vb.sets, (key as uint) + 1u);
let root = ufind::find(vb.sets, key as uint);
2011-07-27 14:19:39 +02:00
let result_type = typ;
alt smallintmap::find(vb.types, root) {
2011-07-27 14:19:39 +02:00
some(old_type) {
alt unify_step(cx, old_type, typ, variance) {
2011-07-27 14:19:39 +02:00
ures_ok(unified_type) { result_type = unified_type; }
rs { ret rs; }
}
2011-07-27 14:19:39 +02:00
}
none {/* fall through */ }
}
2012-02-21 17:02:02 +01:00
smallintmap::insert(vb.types, root, result_type);
ret ures_ok(mk_var(cx.tcx, key));
}
// Simple structural type comparison.
fn struct_cmp(cx: @uctxt, expected: t, actual: t) -> result {
let tcx = cx.tcx;
let cfg = tcx.sess.targ_cfg;
if mach_sty(cfg, expected) == mach_sty(cfg, actual) {
ret ures_ok(expected);
}
ret ures_err(terr_mismatch);
}
// Right now this just checks that the lists of constraints are
// pairwise equal.
fn unify_constrs(base_t: t, expected: [@type_constr],
actual: [@type_constr]) -> result {
2011-08-15 16:38:23 -07:00
let expected_len = vec::len(expected);
let actual_len = vec::len(actual);
2011-07-27 14:19:39 +02:00
if expected_len != actual_len {
ret ures_err(terr_constr_len(expected_len, actual_len));
}
2011-07-27 14:19:39 +02:00
let i = 0u;
let rslt;
for c: @type_constr in expected {
rslt = unify_constr(base_t, c, actual[i]);
2011-07-27 14:19:39 +02:00
alt rslt { ures_ok(_) { } ures_err(_) { ret rslt; } }
i += 1u;
}
ret ures_ok(base_t);
}
fn unify_constr(base_t: t, expected: @type_constr,
actual_constr: @type_constr) -> result {
2011-07-27 14:19:39 +02:00
let ok_res = ures_ok(base_t);
let err_res = ures_err(terr_constr_mismatch(expected, actual_constr));
if expected.node.id != actual_constr.node.id { ret err_res; }
2011-08-15 16:38:23 -07:00
let expected_arg_len = vec::len(expected.node.args);
let actual_arg_len = vec::len(actual_constr.node.args);
2011-07-27 14:19:39 +02:00
if expected_arg_len != actual_arg_len { ret err_res; }
let i = 0u;
let actual;
for a: @ty_constr_arg in expected.node.args {
actual = actual_constr.node.args[i];
2011-07-27 14:19:39 +02:00
alt a.node {
carg_base {
alt actual.node { carg_base { } _ { ret err_res; } }
2011-07-27 14:19:39 +02:00
}
carg_lit(l) {
alt actual.node {
carg_lit(m) { if l != m { ret err_res; } }
_ { ret err_res; }
}
2011-07-27 14:19:39 +02:00
}
carg_ident(p) {
alt actual.node {
carg_ident(q) { if p.node != q.node { ret err_res; } }
_ { ret err_res; }
}
2011-07-27 14:19:39 +02:00
}
}
i += 1u;
}
ret ok_res;
}
// Unifies two mutability flags.
fn unify_mut(expected: ast::mutability, actual: ast::mutability,
variance: variance) ->
option<(ast::mutability, variance)> {
// If you're unifying on something mutable then we have to
// be invariant on the inner type
let newvariance = alt expected {
ast::m_mutbl {
variance_transform(variance, invariant)
}
_ {
variance_transform(variance, covariant)
}
};
if expected == actual { ret some((expected, newvariance)); }
if variance == covariant {
if expected == ast::m_const {
ret some((actual, newvariance));
}
} else if variance == contravariant {
if actual == ast::m_const {
ret some((expected, newvariance));
}
}
2011-07-21 15:46:03 -07:00
ret none;
}
fn unify_fn_proto(e_proto: ast::proto, a_proto: ast::proto,
variance: variance) -> option<result> {
// Prototypes form a diamond-shaped partial order:
//
// block
// ^ ^
// shared send
// ^ ^
// bare
//
// where "^" means "subtype of" (forgive the abuse of the term
// subtype).
fn sub_proto(p_sub: ast::proto, p_sup: ast::proto) -> bool {
ret alt (p_sub, p_sup) {
(_, ast::proto_any) { true }
(ast::proto_bare, _) { true }
// Equal prototypes are always subprotos:
(_, _) { p_sub == p_sup }
};
}
ret alt variance {
invariant if e_proto == a_proto { none }
covariant if sub_proto(a_proto, e_proto) { none }
contravariant if sub_proto(e_proto, a_proto) { none }
_ { some(ures_err(terr_mismatch)) }
};
}
fn unify_args(cx: @uctxt, e_args: [arg], a_args: [arg],
variance: variance) -> either::t<result, [arg]> {
if !vec::same_length(e_args, a_args) {
ret either::left(ures_err(terr_arg_count));
}
// The variance changes (flips basically) when descending
// into arguments of function types
let variance = variance_transform(variance, contravariant);
// Would use vec::map2(), but for the need to return in case of
// error:
let i = 0u, result = [];
for expected_input in e_args {
let actual_input = a_args[i];
i += 1u;
// Unify the result modes.
let result_mode =
alt unify_mode(cx.tcx, expected_input.mode,
actual_input.mode) {
result::err(err) { ret either::left(ures_err(err)); }
result::ok(m) { m }
};
alt unify_step(cx, expected_input.ty, actual_input.ty,
variance) {
ures_ok(rty) { result += [{mode: result_mode, ty: rty}]; }
err { ret either::left(err); }
}
}
either::right(result)
}
fn unify_fn(cx: @uctxt, e_f: fn_ty, a_f: fn_ty, variance: variance)
-> result {
alt unify_fn_proto(e_f.proto, a_f.proto, variance) {
some(err) { ret err; }
none { /* fall through */ }
}
if a_f.ret_style != ast::noreturn && a_f.ret_style != e_f.ret_style {
/* even though typestate checking is mostly
responsible for checking control flow annotations,
this check is necessary to ensure that the
annotation in an object method matches the
declared object type */
ret ures_err(terr_ret_style_mismatch(e_f.ret_style,
a_f.ret_style));
2011-07-27 14:19:39 +02:00
}
let result_ins = alt unify_args(cx, e_f.inputs, a_f.inputs,
variance) {
either::left(err) { ret err; }
either::right(ts) { ts }
};
// Check the output.
alt unify_step(cx, e_f.output, a_f.output, variance) {
ures_ok(rty) {
ures_ok(mk_fn(cx.tcx, {proto: e_f.proto,
inputs: result_ins,
output: rty
with a_f}))
2011-07-27 14:19:39 +02:00
}
x { x }
2011-07-27 14:19:39 +02:00
}
}
2010-12-31 10:26:29 -08:00
// If the given type is a variable, returns the structure of that type.
fn resolve_type_structure(vb: @var_bindings, typ: t) ->
fixup_result {
alt get(typ).struct {
2011-07-27 14:19:39 +02:00
ty_var(vid) {
if vid as uint >= ufind::set_count(vb.sets) { ret fix_err(vid); }
let root_id = ufind::find(vb.sets, vid as uint);
alt smallintmap::find::<t>(vb.types, root_id) {
none { ret fix_err(vid); }
2011-07-27 14:19:39 +02:00
some(rt) { ret fix_ok(rt); }
}
2011-07-27 14:19:39 +02:00
}
_ { ret fix_ok(typ); }
}
}
// Specifies the allowable subtyping between expected and actual types
2012-01-19 14:24:03 -08:00
enum variance {
// Actual may be a subtype of expected
2012-01-19 17:56:05 -08:00
covariant,
// Actual may be a supertype of expected
2012-01-19 17:56:05 -08:00
contravariant,
// Actual must be the same type as expected
2012-01-19 17:56:05 -08:00
invariant,
}
// The calculation for recursive variance
// "Taming the Wildcards: Combining Definition- and Use-Site Variance"
// by John Altidor, et. al.
//
// I'm just copying the table from figure 1 - haven't actually
// read the paper (yet).
fn variance_transform(a: variance, b: variance) -> variance {
alt a {
covariant {
alt b {
covariant { covariant }
contravariant { contravariant }
invariant { invariant }
}
}
contravariant {
alt b {
covariant { contravariant }
contravariant { covariant }
invariant { invariant }
}
}
invariant {
alt b {
covariant { invariant }
contravariant { invariant }
invariant { invariant }
}
}
}
}
fn unify_tps(cx: @uctxt, expected_tps: [t], actual_tps: [t],
2012-02-21 17:02:02 +01:00
variance: variance, finish: fn([t]) -> t) -> result {
let result_tps = [], i = 0u;
for exp in expected_tps {
let act = actual_tps[i];
i += 1u;
let result = unify_step(cx, exp, act, variance);
alt result {
ures_ok(rty) { result_tps += [rty]; }
_ { ret result; }
}
}
2012-02-21 17:02:02 +01:00
ures_ok(finish(result_tps))
}
fn unify_mt(cx: @uctxt, e_mt: mt, a_mt: mt, variance: variance,
mut_err: type_err, finish: fn(ctxt, mt) -> t) -> result {
alt unify_mut(e_mt.mutbl, a_mt.mutbl, variance) {
none { ures_err(mut_err) }
some((mutt, var)) {
alt unify_step(cx, e_mt.ty, a_mt.ty, var) {
ures_ok(result_sub) {
ures_ok(finish(cx.tcx, {ty: result_sub, mutbl: mutt}))
}
err { err }
}
}
}
}
2012-02-21 17:02:02 +01:00
fn unify_step(cx: @uctxt, expected: t, actual: t,
variance: variance) -> result {
// Fast path.
if expected == actual { ret ures_ok(expected); }
2012-02-21 17:02:02 +01:00
alt (get(expected).struct, get(actual).struct) {
(ty_var(e_id), ty_var(a_id)) {
alt union(cx, e_id as uint, a_id as uint, variance) {
unres_ok { ures_ok(actual) }
unres_err(err) { ures_err(err) }
}
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(_, ty_var(a_id)) {
let v = variance_transform(variance, contravariant);
record_var_binding(cx, a_id, expected, v)
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_var(e_id), _) {
let v = variance_transform(variance, covariant);
record_var_binding(cx, e_id, actual, v)
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(_, ty_bot) { ures_ok(expected) }
(ty_bot, _) { ures_ok(actual) }
(ty_nil, _) | (ty_bool, _) | (ty_int(_), _) | (ty_uint(_), _) |
(ty_float(_), _) | (ty_str, _) | (ty_send_type, _) {
struct_cmp(cx, expected, actual)
}
2012-02-21 17:02:02 +01:00
(ty_param(e_n, _), ty_param(a_n, _)) if e_n == a_n {
ures_ok(expected)
}
2012-02-21 17:02:02 +01:00
(ty_enum(e_id, e_tps), ty_enum(a_id, a_tps)) if e_id == a_id {
unify_tps(cx, e_tps, a_tps, variance, {|tps|
mk_enum(cx.tcx, e_id, tps)
})
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_iface(e_id, e_tps), ty_iface(a_id, a_tps)) if e_id == a_id {
unify_tps(cx, e_tps, a_tps, variance, {|tps|
mk_iface(cx.tcx, e_id, tps)
})
}
2012-02-21 17:02:02 +01:00
(ty_class(e_id, e_tps), ty_class(a_id, a_tps)) if e_id == a_id {
unify_tps(cx, e_tps, a_tps, variance, {|tps|
mk_class(cx.tcx, e_id, tps)
})
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_box(e_mt), ty_box(a_mt)) {
unify_mt(cx, e_mt, a_mt, variance, terr_box_mutability, mk_box)
}
2012-02-21 17:02:02 +01:00
(ty_uniq(e_mt), ty_uniq(a_mt)) {
unify_mt(cx, e_mt, a_mt, variance, terr_box_mutability, mk_uniq)
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_vec(e_mt), ty_vec(a_mt)) {
unify_mt(cx, e_mt, a_mt, variance, terr_vec_mutability, mk_vec)
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_ptr(e_mt), ty_ptr(a_mt)) {
unify_mt(cx, e_mt, a_mt, variance, terr_ptr_mutability, mk_ptr)
}
(ty_res(e_id, e_inner, e_tps), ty_res(a_id, a_inner, a_tps))
if e_id == a_id {
alt unify_step(cx, e_inner, a_inner, variance) {
ures_ok(res_inner) {
unify_tps(cx, e_tps, a_tps, variance, {|tps|
mk_res(cx.tcx, a_id, res_inner, tps)
})
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
err { err }
2011-07-27 14:19:39 +02:00
}
}
2012-02-21 17:02:02 +01:00
(ty_rec(e_fields), ty_rec(a_fields)) {
let e_len = e_fields.len(), a_len = a_fields.len();
if e_len != a_len {
ret ures_err(terr_record_size(e_len, a_len));
}
let result_fields = [], i = 0u;
while i < a_len {
let e_field = e_fields[i], a_field = a_fields[i];
if e_field.ident != a_field.ident {
ret ures_err(terr_record_fields(e_field.ident,
a_field.ident));
}
2012-02-21 17:02:02 +01:00
alt unify_mt(cx, e_field.mt, a_field.mt, variance,
terr_record_mutability, {|cx, mt|
result_fields += [{mt: mt with e_field}];
mk_nil(cx)
}) {
ures_ok(_) {}
err { ret err; }
}
2012-02-21 17:02:02 +01:00
i += 1u;
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
ures_ok(mk_rec(cx.tcx, result_fields))
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_tup(e_elems), ty_tup(a_elems)) {
let e_len = e_elems.len(), a_len = a_elems.len();
if e_len != a_len { ret ures_err(terr_tuple_size(e_len, a_len)); }
let result_elems = [], i = 0u;
while i < a_len {
alt unify_step(cx, e_elems[i], a_elems[i], variance) {
ures_ok(rty) { result_elems += [rty]; }
err { ret err; }
}
2012-02-21 17:02:02 +01:00
i += 1u;
}
2012-02-21 17:02:02 +01:00
ures_ok(mk_tup(cx.tcx, result_elems))
}
2012-02-21 17:02:02 +01:00
(ty_fn(e_fty), ty_fn(a_fty)) {
unify_fn(cx, e_fty, a_fty, variance)
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_constr(e_t, e_constrs), ty_constr(a_t, a_constrs)) {
2011-07-27 14:19:39 +02:00
// unify the base types...
2012-02-21 17:02:02 +01:00
alt unify_step(cx, e_t, a_t, variance) {
ures_ok(rty) {
// FIXME: probably too restrictive --
// requires the constraints to be syntactically equal
unify_constrs(expected, e_constrs, a_constrs)
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
err { err }
}
2011-07-27 14:19:39 +02:00
}
2012-02-21 17:02:02 +01:00
(ty_constr(e_t, _), _) {
// If the actual type is *not* a constrained type,
// then we go ahead and just ignore the constraints on
// the expected type. typestate handles the rest.
unify_step(cx, e_t, actual, variance)
}
2012-02-21 17:02:02 +01:00
_ { ures_err(terr_mismatch) }
}
}
fn unify(expected: t, actual: t, st: unify_style,
tcx: ctxt) -> result {
let cx = @{st: st, tcx: tcx};
ret unify_step(cx, expected, actual, covariant);
}
fn dump_var_bindings(tcx: ctxt, vb: @var_bindings) {
2011-07-27 14:19:39 +02:00
let i = 0u;
while i < vec::len::<ufind::node>(vb.sets.nodes) {
2011-09-02 15:34:58 -07:00
let sets = "";
2011-07-27 14:19:39 +02:00
let j = 0u;
while j < vec::len::<option<uint>>(vb.sets.nodes) {
if ufind::find(vb.sets, j) == i { sets += #fmt[" %u", j]; }
j += 1u;
}
2011-07-27 14:19:39 +02:00
let typespec;
alt smallintmap::find::<t>(vb.types, i) {
none { typespec = ""; }
2011-09-02 15:34:58 -07:00
some(typ) { typespec = " =" + ty_to_str(tcx, typ); }
}
#error("set %u:%s%s", i, typespec, sets);
i += 1u;
}
}
// Fixups and substitutions
// Takes an optional span - complain about occurs check violations
// iff the span is present (so that if we already know we're going
// to error anyway, we don't complain)
fn fixup_vars(tcx: ctxt, sp: option<span>, vb: @var_bindings,
typ: t) -> fixup_result {
fn subst_vars(tcx: ctxt, sp: option<span>, vb: @var_bindings,
unresolved: @mutable option<int>,
vars_seen: std::list::list<int>, vid: int) -> t {
// Should really return a fixup_result instead of a t, but fold_ty
// doesn't allow returning anything but a t.
if vid as uint >= ufind::set_count(vb.sets) {
2011-07-21 15:46:03 -07:00
*unresolved = some(vid);
ret mk_var(tcx, vid);
}
let root_id = ufind::find(vb.sets, vid as uint);
alt smallintmap::find::<t>(vb.types, root_id) {
none { *unresolved = some(vid); ret mk_var(tcx, vid); }
2011-07-27 14:19:39 +02:00
some(rt) {
let give_up = false;
std::list::iter(vars_seen) {|v|
if v == vid {
give_up = true;
option::may(sp) {|sp|
tcx.sess.span_fatal(
sp, "can not instantiate infinite type");
}
}
}
// Return the type unchanged, so we can error out
// downstream
if give_up { ret rt; }
ret fold_ty(tcx, fm_var(bind subst_vars(
tcx, sp, vb, unresolved, std::list::cons(vid, @vars_seen),
_)), rt);
2011-07-27 14:19:39 +02:00
}
}
}
let unresolved = @mutable none::<int>;
let rty = fold_ty(tcx, fm_var(bind subst_vars(
tcx, sp, vb, unresolved, std::list::nil, _)), typ);
2011-07-27 14:19:39 +02:00
let ur = *unresolved;
alt ur {
none { ret fix_ok(rty); }
2011-07-27 14:19:39 +02:00
some(var_id) { ret fix_err(var_id); }
}
}
fn resolve_type_var(tcx: ctxt, sp: option<span>, vb: @var_bindings,
vid: int) -> fixup_result {
if vid as uint >= ufind::set_count(vb.sets) { ret fix_err(vid); }
let root_id = ufind::find(vb.sets, vid as uint);
alt smallintmap::find::<t>(vb.types, root_id) {
none { ret fix_err(vid); }
some(rt) { ret fixup_vars(tcx, sp, vb, rt); }
2011-07-27 14:19:39 +02:00
}
}
}
fn same_type(cx: ctxt, a: t, b: t) -> bool {
alt unify::unify(a, b, unify::precise, cx) {
unify::ures_ok(_) { true }
_ { false }
}
}
fn type_err_to_str(err: type_err) -> str {
2011-07-27 14:19:39 +02:00
alt err {
terr_mismatch { ret "types differ"; }
terr_ret_style_mismatch(expect, actual) {
fn to_str(s: ast::ret_style) -> str {
alt s {
ast::noreturn { "non-returning" }
ast::return_val { "return-by-value" }
}
}
ret to_str(actual) + " function found where " + to_str(expect) +
" function was expected";
2011-07-27 14:19:39 +02:00
}
terr_box_mutability { ret "boxed values differ in mutability"; }
terr_vec_mutability { ret "vectors differ in mutability"; }
2012-02-21 17:02:02 +01:00
terr_ptr_mutability { ret "pointers differ in mutability"; }
terr_tuple_size(e_sz, a_sz) {
2011-09-02 15:34:58 -07:00
ret "expected a tuple with " + uint::to_str(e_sz, 10u) +
" elements but found one with " + uint::to_str(a_sz, 10u) +
" elements";
}
2011-07-27 14:19:39 +02:00
terr_record_size(e_sz, a_sz) {
2011-09-02 15:34:58 -07:00
ret "expected a record with " + uint::to_str(e_sz, 10u) +
" fields but found one with " + uint::to_str(a_sz, 10u) +
" fields";
2011-07-27 14:19:39 +02:00
}
terr_record_mutability { ret "record elements differ in mutability"; }
2011-07-27 14:19:39 +02:00
terr_record_fields(e_fld, a_fld) {
2011-09-02 15:34:58 -07:00
ret "expected a record with field '" + e_fld +
"' but found one with field '" + a_fld + "'";
2011-07-27 14:19:39 +02:00
}
terr_arg_count { ret "incorrect number of function parameters"; }
2011-07-27 14:19:39 +02:00
terr_mode_mismatch(e_mode, a_mode) {
ret "expected argument mode " + mode_to_str(e_mode) + " but found " +
mode_to_str(a_mode);
2011-07-27 14:19:39 +02:00
}
terr_constr_len(e_len, a_len) {
2012-03-05 16:27:27 -08:00
ret "expected a type with " + uint::str(e_len) +
2011-09-02 15:34:58 -07:00
" constraints, but found one with " + uint::str(a_len) +
" constraints";
2011-07-27 14:19:39 +02:00
}
terr_constr_mismatch(e_constr, a_constr) {
2012-03-05 16:27:27 -08:00
ret "expected a type with constraint " + ty_constr_to_str(e_constr) +
2011-09-02 15:34:58 -07:00
" but found one with constraint " +
ty_constr_to_str(a_constr);
2011-07-27 14:19:39 +02:00
}
}
}
// Replaces type parameters in the given type using the given list of
// substitions.
fn substitute_type_params(cx: ctxt, substs: [ty::t], typ: t) -> t {
// Precondition? idx < vec::len(substs)
fold_ty(cx, fm_param({|idx, _id| substs[idx]}), typ)
}
fn def_has_ty_params(def: ast::def) -> bool {
2011-07-27 14:19:39 +02:00
alt def {
ast::def_fn(_, _) | ast::def_variant(_, _) { true }
_ { false }
}
}
fn store_iface_methods(cx: ctxt, id: ast::node_id, ms: @[method]) {
cx.iface_method_cache.insert(ast_util::local_def(id), ms);
}
fn iface_methods(cx: ctxt, id: ast::def_id) -> @[method] {
alt cx.iface_method_cache.find(id) {
some(ms) { ret ms; }
_ {}
}
// Local interfaces are supposed to have been added explicitly.
assert id.crate != ast::local_crate;
let result = csearch::get_iface_methods(cx, id);
cx.iface_method_cache.insert(id, result);
result
}
fn impl_iface(cx: ctxt, id: ast::def_id) -> option<t> {
if id.crate == ast::local_crate {
alt cx.items.get(id.node) {
ast_map::node_item(@{node: ast::item_impl(
_, some(@{node: ast::ty_path(_, id), _}), _, _), _}, _) {
some(node_id_to_type(cx, id))
}
_ { none }
}
} else {
csearch::get_impl_iface(cx, id)
}
}
// Enum information
type variant_info = @{args: [t], ctor_ty: t, name: str,
id: ast::def_id, disr_val: int};
2011-07-27 14:19:39 +02:00
fn substd_enum_variants(cx: ctxt, id: ast::def_id, tps: [ty::t])
-> [variant_info] {
vec::map(*enum_variants(cx, id)) { |variant_info|
let substd_args = vec::map(variant_info.args) {|aty|
substitute_type_params(cx, tps, aty)
};
let substd_ctor_ty =
substitute_type_params(cx, tps, variant_info.ctor_ty);
@{args: substd_args, ctor_ty: substd_ctor_ty with *variant_info}
}
}
fn item_path_str(cx: ctxt, id: ast::def_id) -> str {
ast_map::path_to_str(item_path(cx, id))
}
fn item_path(cx: ctxt, id: ast::def_id) -> ast_map::path {
if id.crate != ast::local_crate {
csearch::get_item_path(cx, id)
} else {
let node = cx.items.get(id.node);
alt node {
ast_map::node_item(item, path) {
let item_elt = alt item.node {
item_mod(_) | item_native_mod(_) {
ast_map::path_mod(item.ident)
}
_ {
ast_map::path_name(item.ident)
}
};
*path + [item_elt]
}
ast_map::node_native_item(nitem, _, path) {
*path + [ast_map::path_name(nitem.ident)]
}
ast_map::node_method(method, _, path) {
*path + [ast_map::path_name(method.ident)]
}
ast_map::node_variant(variant, _, path) {
vec::init(*path) + [ast_map::path_name(variant.node.name)]
}
ast_map::node_expr(_) | ast_map::node_arg(_, _) |
ast_map::node_local(_) | ast_map::node_ctor(_) |
ast_map::node_export(_, _) {
cx.sess.bug(#fmt["cannot find item_path for node %?", node]);
}
}
}
}
fn enum_variants(cx: ctxt, id: ast::def_id) -> @[variant_info] {
alt cx.enum_var_cache.find(id) {
some(variants) { ret variants; }
_ { /* fallthrough */ }
}
let result = if ast::local_crate != id.crate {
@csearch::get_enum_variants(cx, id)
} else {
// FIXME: Now that the variants are run through the type checker (to
// check the disr_expr if it exists), this code should likely be
// moved there to avoid having to call eval_const_expr twice.
alt cx.items.get(id.node) {
ast_map::node_item(@{node: ast::item_enum(variants, _), _}, _) {
let disr_val = -1;
@vec::map(variants, {|variant|
let ctor_ty = node_id_to_type(cx, variant.node.id);
let arg_tys = if vec::len(variant.node.args) > 0u {
vec::map(ty_fn_args(ctor_ty), {|a| a.ty})
} else { [] };
alt variant.node.disr_expr {
some (ex) {
// FIXME: issue #1417
disr_val = alt syntax::ast_util::eval_const_expr(ex) {
ast_util::const_int(val) {val as int}
_ { cx.sess.bug("tag_variants: bad disr expr"); }
}
}
_ {disr_val += 1;}
}
@{args: arg_tys,
ctor_ty: ctor_ty,
name: variant.node.name,
id: ast_util::local_def(variant.node.id),
disr_val: disr_val
}
})
2011-07-27 14:19:39 +02:00
}
_ { cx.sess.bug("tag_variants: id not bound to an enum"); }
}
};
cx.enum_var_cache.insert(id, result);
result
}
2012-01-19 14:24:03 -08:00
// Returns information about the enum variant with the given ID:
fn enum_variant_with_id(cx: ctxt, enum_id: ast::def_id,
variant_id: ast::def_id) -> variant_info {
let variants = enum_variants(cx, enum_id);
2011-07-27 14:19:39 +02:00
let i = 0u;
while i < vec::len::<variant_info>(*variants) {
let variant = variants[i];
2011-07-27 14:19:39 +02:00
if def_eq(variant.id, variant_id) { ret variant; }
i += 1u;
}
cx.sess.bug("enum_variant_with_id(): no variant exists with that ID");
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
fn lookup_item_type(cx: ctxt, did: ast::def_id) -> ty_param_bounds_and_ty {
2011-07-27 14:19:39 +02:00
alt cx.tcache.find(did) {
some(tpt) { ret tpt; }
none {
// The item is in this crate. The caller should have added it to the
// type cache already
assert did.crate != ast::local_crate;
2011-07-27 14:19:39 +02:00
let tyt = csearch::get_type(cx, did);
cx.tcache.insert(did, tyt);
ret tyt;
}
}
}
// Look up the list of items for a given class (in the item map).
// Fails if the id is not bound to a class.
fn lookup_class_items(cx: ctxt, did: ast::def_id) -> [@class_item] {
alt cx.items.find(did.node) {
some(ast_map::node_item(i,_)) {
alt i.node {
ast::item_class(_, items, _) {
items
}
_ { cx.sess.bug("class ID bound to non-class"); }
}
}
_ { cx.sess.bug("class ID not bound to an item"); }
}
}
// Return a list of fields corresponding to the class's items
// (as if the class was a record). trans uses this
fn class_items_as_fields(cx:ctxt, did: ast::def_id) -> [field] {
let rslt = [];
for ci in lookup_class_items(cx, did) {
rslt += [alt ci.node.decl {
instance_var(i, _, _, id) {
// consider all instance vars mutable, because the
// constructor may mutate all vars
{ident: i, mt: {ty: node_id_to_type(cx, id),
mutbl: m_mutbl}}
}
class_method(it) {
{ident:it.ident, mt: {ty: node_id_to_type(cx, it.id),
mutbl: m_const}}
}
}];
}
rslt
}
// Looks up the type for a given class item. Must be called
// post-typechecking.
fn class_item_type(cx: ctxt, ci: @ast::class_item) -> t {
alt ci.node.decl {
ast::instance_var(_,_,_,id) { node_id_to_type(cx, id) }
// TODO: only works for local classes
ast::class_method(it) { lookup_item_type(cx,
ast_util::local_def(it.id)).ty }
}
}
fn is_binopable(_cx: ctxt, ty: t, op: ast::binop) -> bool {
2011-07-27 14:19:39 +02:00
const tycat_other: int = 0;
const tycat_bool: int = 1;
const tycat_int: int = 2;
const tycat_float: int = 3;
const tycat_str: int = 4;
const tycat_vec: int = 5;
const tycat_struct: int = 6;
const tycat_bot: int = 7;
2011-07-27 14:19:39 +02:00
const opcat_add: int = 0;
const opcat_sub: int = 1;
const opcat_mult: int = 2;
const opcat_shift: int = 3;
const opcat_rel: int = 4;
const opcat_eq: int = 5;
const opcat_bit: int = 6;
const opcat_logic: int = 7;
fn opcat(op: ast::binop) -> int {
alt op {
ast::add { opcat_add }
ast::subtract { opcat_sub }
ast::mul { opcat_mult }
ast::div { opcat_mult }
ast::rem { opcat_mult }
ast::and { opcat_logic }
ast::or { opcat_logic }
ast::bitxor { opcat_bit }
ast::bitand { opcat_bit }
ast::bitor { opcat_bit }
ast::lsl { opcat_shift }
ast::lsr { opcat_shift }
ast::asr { opcat_shift }
ast::eq { opcat_eq }
ast::ne { opcat_eq }
ast::lt { opcat_rel }
ast::le { opcat_rel }
ast::ge { opcat_rel }
ast::gt { opcat_rel }
2011-07-27 14:19:39 +02:00
}
}
fn tycat(ty: t) -> int {
alt get(ty).struct {
ty_bool { tycat_bool }
ty_int(_) { tycat_int }
ty_uint(_) { tycat_int }
ty_float(_) { tycat_float }
ty_str { tycat_str }
ty_vec(_) { tycat_vec }
2011-07-27 14:19:39 +02:00
ty_rec(_) { tycat_struct }
ty_tup(_) { tycat_struct }
ty_enum(_, _) { tycat_struct }
ty_bot { tycat_bot }
2011-07-27 14:19:39 +02:00
_ { tycat_other }
}
}
const t: bool = true;
const f: bool = false;
/*. add, shift, bit
. sub, rel, logic
. mult, eq, */
2011-09-02 15:34:58 -07:00
/*other*/
/*bool*/
/*int*/
/*float*/
/*str*/
/*vec*/
/*bot*/
let tbl =
[[f, f, f, f, t, t, f, f], [f, f, f, f, t, t, t, t],
[t, t, t, t, t, t, t, f], [t, t, t, f, t, t, f, f],
[t, f, f, f, t, t, f, f], [t, f, f, f, t, t, f, f],
[f, f, f, f, t, t, f, f], [t, t, t, t, t, t, t, t]]; /*struct*/
ret tbl[tycat(ty)][opcat(op)];
}
fn ast_constr_to_constr<T>(tcx: ctxt, c: @ast::constr_general<T>) ->
@constr_general<T> {
2011-07-27 14:19:39 +02:00
alt tcx.def_map.find(c.node.id) {
some(ast::def_fn(pred_id, ast::pure_fn)) {
ret @ast_util::respan(c.span,
{path: c.node.path,
args: c.node.args,
id: pred_id});
2011-07-27 14:19:39 +02:00
}
_ {
tcx.sess.span_fatal(c.span,
2012-03-05 16:27:27 -08:00
"predicate " + path_to_str(c.node.path) +
2011-09-12 12:39:38 +02:00
" is unbound or bound to a non-function or an \
2011-09-02 15:34:58 -07:00
impure function");
2011-07-27 14:19:39 +02:00
}
}
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: