rust/src/comp/middle/ty.rs

2785 lines
88 KiB
Rust
Raw Normal View History

import std.Str;
import std.UInt;
import std.Vec;
import std.Box;
import std.UFind;
import std.Map;
import std.Map.hashmap;
import std.Option;
import std.Option.none;
import std.Option.some;
import driver.session;
import front.ast;
import front.ast.mutability;
import front.creader;
import middle.metadata;
import util.common;
import util.common.ty_u8;
import util.common.ty_u16;
import util.common.ty_u32;
import util.common.ty_u64;
import util.common.ty_i8;
import util.common.ty_i16;
import util.common.ty_i32;
import util.common.ty_i64;
import util.common.ty_f32;
import util.common.ty_f64;
import util.common.new_def_hash;
import util.common.span;
import util.typestate_ann.ts_ann;
// Data types
tag mode {
mo_val;
mo_alias;
mo_either;
}
type arg = rec(mode mode, t ty);
type field = rec(ast.ident ident, mt mt);
type method = rec(ast.proto proto,
ast.ident ident,
vec[arg] inputs,
t output);
type mt = rec(t ty, ast.mutability mut);
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
type creader_cache = hashmap[tup(int,uint,uint),ty.t];
type ctxt = rec(@type_store ts,
session.session sess,
resolve.def_map def_map,
creader_cache rcache,
hashmap[t,str] short_names_cache);
type ty_ctxt = ctxt; // Needed for disambiguation from Unify.ctxt.
// Convert from method type to function type. Pretty easy; we just drop
// 'ident'.
fn method_ty_to_fn_ty(ctxt cx, method m) -> t {
ret mk_fn(cx, m.proto, m.inputs, m.output);
}
// Never construct these manually. These are interned.
//
// TODO: It'd be really nice to be able to hide this definition from the
// outside world, to enforce the above invariants.
type raw_t = rec(sty struct,
Option.t[str] cname,
uint hash,
bool has_params,
bool has_bound_params,
bool has_vars,
bool has_locals);
type t = uint;
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in front/ast.rs as well.
tag sty {
ty_nil;
ty_bool;
ty_int;
ty_float;
ty_uint;
ty_machine(util.common.ty_mach);
ty_char;
ty_str;
ty_tag(ast.def_id, vec[t]);
ty_box(mt);
ty_vec(mt);
ty_port(t);
ty_chan(t);
ty_task;
ty_tup(vec[mt]);
ty_rec(vec[field]);
ty_fn(ast.proto, vec[arg], t);
ty_native_fn(ast.native_abi, vec[arg], t);
ty_obj(vec[method]);
ty_var(int); // ephemeral type var
ty_local(ast.def_id); // type of a local var
ty_param(uint); // fn/tag type param
ty_bound_param(uint); // bound param, only paths
2011-02-01 16:56:21 -06:00
ty_type;
2011-02-10 17:39:55 -06:00
ty_native;
// TODO: ty_fn_arg(t), for a possibly-aliased function argument
}
// Data structures used in type unification
type unify_handler = obj {
fn resolve_local(ast.def_id id) -> Option.t[t];
fn record_local(ast.def_id id, t ty); // TODO: -> Unify.result
fn record_param(uint index, t binding) -> Unify.result;
};
tag type_err {
terr_mismatch;
terr_box_mutability;
terr_vec_mutability;
terr_tuple_size(uint, uint);
terr_tuple_mutability;
terr_record_size(uint, uint);
terr_record_mutability;
terr_record_fields(ast.ident,ast.ident);
2010-12-31 12:26:29 -06:00
terr_meth_count;
terr_obj_meths(ast.ident,ast.ident);
terr_arg_count;
}
type ty_param_count_and_ty = tup(uint, t);
type type_cache = hashmap[ast.def_id,ty_param_count_and_ty];
const uint idx_nil = 0u;
const uint idx_bool = 1u;
const uint idx_int = 2u;
const uint idx_float = 3u;
const uint idx_uint = 4u;
const uint idx_i8 = 5u;
const uint idx_i16 = 6u;
const uint idx_i32 = 7u;
const uint idx_i64 = 8u;
const uint idx_u8 = 9u;
const uint idx_u16 = 10u;
const uint idx_u32 = 11u;
const uint idx_u64 = 12u;
const uint idx_f32 = 13u;
const uint idx_f64 = 14u;
const uint idx_char = 15u;
const uint idx_str = 16u;
const uint idx_task = 17u;
const uint idx_native = 18u;
const uint idx_type = 19u;
const uint idx_first_others = 20u;
type type_store = rec(mutable vec[raw_t] others,
hashmap[raw_t,uint] other_structural);
2011-04-21 21:30:53 -05:00
fn mk_type_store() -> @type_store {
let vec[raw_t] others = vec();
let hashmap[raw_t,uint] ost =
Map.mk_hashmap[raw_t,uint](hash_raw_ty, eq_raw_ty);
auto ts = @rec(mutable others=others, other_structural=ost);
intern(ts, ty_nil, none[str]);
intern(ts, ty_bool, none[str]);
intern(ts, ty_int, none[str]);
intern(ts, ty_float, none[str]);
intern(ts, ty_uint, none[str]);
intern(ts, ty_machine(ty_i8), none[str]);
intern(ts, ty_machine(ty_i16), none[str]);
intern(ts, ty_machine(ty_i32), none[str]);
intern(ts, ty_machine(ty_i64), none[str]);
intern(ts, ty_machine(ty_u8), none[str]);
intern(ts, ty_machine(ty_u16), none[str]);
intern(ts, ty_machine(ty_u32), none[str]);
intern(ts, ty_machine(ty_u64), none[str]);
intern(ts, ty_machine(ty_f32), none[str]);
intern(ts, ty_machine(ty_f64), none[str]);
intern(ts, ty_char, none[str]);
intern(ts, ty_str, none[str]);
intern(ts, ty_task, none[str]);
intern(ts, ty_native, none[str]);
intern(ts, ty_type, none[str]);
assert Vec.len(ts.others) == idx_first_others;
ret ts;
}
fn mk_rcache() -> creader_cache {
fn hash_cache_entry(&tup(int,uint,uint) k) -> uint {
ret (k._0 as uint) + k._1 + k._2;
}
fn eq_cache_entries(&tup(int,uint,uint) a,
&tup(int,uint,uint) b) -> bool {
ret a._0 == b._0 &&
a._1 == b._1 &&
a._2 == b._2;
}
auto h = hash_cache_entry;
auto e = eq_cache_entries;
ret Map.mk_hashmap[tup(int,uint,uint),t](h, e);
}
fn mk_ctxt(session.session s, resolve.def_map dm) -> ctxt {
ret rec(ts = mk_type_store(),
sess = s,
def_map = dm,
rcache = mk_rcache(),
short_names_cache =
Map.mk_hashmap[ty.t,str](ty.hash_ty, ty.eq_ty));
}
// Type constructors
fn mk_raw_ty(&@type_store ts, &sty st, &Option.t[str] cname) -> raw_t {
auto h = hash_type_info(st, cname);
let bool has_params = false;
let bool has_bound_params = false;
let bool has_vars = false;
let bool has_locals = false;
fn derive_flags_t(@type_store ts,
&mutable bool has_params,
&mutable bool has_bound_params,
&mutable bool has_vars,
&mutable bool has_locals,
&t tt) {
auto rt = ts.others.(tt);
has_params = has_params || rt.has_params;
has_bound_params = has_bound_params || rt.has_bound_params;
has_vars = has_vars || rt.has_vars;
has_locals = has_locals || rt.has_locals;
}
fn derive_flags_mt(@type_store ts,
&mutable bool has_params,
&mutable bool has_bound_params,
&mutable bool has_vars,
&mutable bool has_locals,
&mt m) {
derive_flags_t(ts, has_params, has_bound_params,
has_vars, has_locals, m.ty);
}
fn derive_flags_arg(@type_store ts,
&mutable bool has_params,
&mutable bool has_bound_params,
&mutable bool has_vars,
&mutable bool has_locals,
&arg a) {
derive_flags_t(ts, has_params, has_bound_params,
has_vars, has_locals, a.ty);
}
fn derive_flags_sig(@type_store ts,
&mutable bool has_params,
&mutable bool has_bound_params,
&mutable bool has_vars,
&mutable bool has_locals,
&vec[arg] args,
&t tt) {
for (arg a in args) {
derive_flags_arg(ts, has_params, has_bound_params,
has_vars, has_locals, a);
}
derive_flags_t(ts, has_params, has_bound_params,
has_vars, has_locals, tt);
}
alt (st) {
case (ty_param(_)) { has_params = true; }
case (ty_bound_param(_)) { has_bound_params = true; }
case (ty_var(_)) { has_vars = true; }
case (ty_local(_)) { has_locals = true; }
case (ty_tag(_, ?tys)) {
for (t tt in tys) {
derive_flags_t(ts, has_params, has_bound_params,
has_vars, has_locals, tt);
}
}
case (ty_box(?m)) {
derive_flags_mt(ts, has_params, has_bound_params,
has_vars, has_locals, m);
}
case (ty_vec(?m)) {
derive_flags_mt(ts, has_params, has_bound_params,
has_vars, has_locals, m);
}
case (ty_port(?tt)) {
derive_flags_t(ts, has_params, has_bound_params,
has_vars, has_locals, tt);
}
case (ty_chan(?tt)) {
derive_flags_t(ts, has_params, has_bound_params,
has_vars, has_locals, tt);
}
case (ty_tup(?mts)) {
for (mt m in mts) {
derive_flags_mt(ts, has_params, has_bound_params,
has_vars, has_locals, m);
}
}
case (ty_rec(?flds)) {
for (field f in flds) {
derive_flags_mt(ts, has_params, has_bound_params,
has_vars, has_locals, f.mt);
}
}
case (ty_fn(_, ?args, ?tt)) {
derive_flags_sig(ts, has_params, has_bound_params,
has_vars, has_locals, args, tt);
}
case (ty_native_fn(_, ?args, ?tt)) {
derive_flags_sig(ts, has_params, has_bound_params,
has_vars, has_locals, args, tt);
}
case (ty_obj(?meths)) {
for (method m in meths) {
derive_flags_sig(ts, has_params, has_bound_params,
has_vars, has_locals,
m.inputs, m.output);
}
}
case (_) { }
}
ret rec(struct=st, cname=cname, hash=h,
has_params = has_params,
has_bound_params = has_bound_params,
has_vars = has_vars,
has_locals = has_locals);
}
fn intern_raw_ty(&@type_store ts, &raw_t rt) {
auto type_num = Vec.len[raw_t](ts.others);
ts.others += vec(rt);
ts.other_structural.insert(rt, type_num);
}
fn intern(&@type_store ts, &sty st, &Option.t[str] cname) {
intern_raw_ty(ts, mk_raw_ty(ts, st, cname));
}
2011-04-21 21:30:53 -05:00
fn gen_ty_full(&ctxt cx, &sty st, &Option.t[str] cname) -> t {
auto raw_type = mk_raw_ty(cx.ts, st, cname);
2011-04-21 21:30:53 -05:00
// Is it interned?
alt (cx.ts.other_structural.find(raw_type)) {
case (some[t](?typ)) {
2011-04-21 21:30:53 -05:00
ret typ;
}
case (none[t]) {
2011-04-21 21:30:53 -05:00
// Nope. Insert it and return.
auto type_num = Vec.len[raw_t](cx.ts.others);
intern_raw_ty(cx.ts, raw_type);
// log_err "added: " + ty_to_str(tystore, raw_type);
ret type_num;
2011-04-21 21:30:53 -05:00
}
}
2011-04-20 14:22:28 -05:00
}
// These are private constructors to this module. External users should always
// use the mk_foo() functions below.
fn gen_ty(&ctxt cx, &sty st) -> t {
ret gen_ty_full(cx, st, none[str]);
}
fn mk_nil(&ctxt cx) -> t { ret idx_nil; }
fn mk_bool(&ctxt cx) -> t { ret idx_bool; }
fn mk_int(&ctxt cx) -> t { ret idx_int; }
fn mk_float(&ctxt cx) -> t { ret idx_float; }
fn mk_uint(&ctxt cx) -> t { ret idx_uint; }
fn mk_mach(&ctxt cx, &util.common.ty_mach tm) -> t {
alt (tm) {
case (ty_u8) { ret idx_u8; }
case (ty_u16) { ret idx_u16; }
case (ty_u32) { ret idx_u32; }
case (ty_u64) { ret idx_u64; }
case (ty_i8) { ret idx_i8; }
case (ty_i16) { ret idx_i16; }
case (ty_i32) { ret idx_i32; }
case (ty_i64) { ret idx_i64; }
case (ty_f32) { ret idx_f32; }
case (ty_f64) { ret idx_f64; }
}
fail;
}
fn mk_char(&ctxt cx) -> t { ret idx_char; }
fn mk_str(&ctxt cx) -> t { ret idx_str; }
fn mk_tag(&ctxt cx, &ast.def_id did, &vec[t] tys) -> t {
ret gen_ty(cx, ty_tag(did, tys));
}
fn mk_box(&ctxt cx, &mt tm) -> t {
ret gen_ty(cx, ty_box(tm));
}
fn mk_imm_box(&ctxt cx, &t ty) -> t {
ret mk_box(cx, rec(ty=ty, mut=ast.imm));
}
fn mk_vec(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_vec(tm)); }
fn mk_port(&ctxt cx, &t ty) -> t { ret gen_ty(cx, ty_port(ty)); }
fn mk_chan(&ctxt cx, &t ty) -> t { ret gen_ty(cx, ty_chan(ty)); }
fn mk_task(&ctxt cx) -> t { ret gen_ty(cx, ty_task); }
fn mk_tup(&ctxt cx, &vec[mt] tms) -> t { ret gen_ty(cx, ty_tup(tms)); }
fn mk_imm_tup(&ctxt cx, &vec[t] tys) -> t {
// TODO: map
let vec[ty.mt] mts = vec();
for (t typ in tys) {
mts += vec(rec(ty=typ, mut=ast.imm));
}
ret mk_tup(cx, mts);
}
fn mk_rec(&ctxt cx, &vec[field] fs) -> t { ret gen_ty(cx, ty_rec(fs)); }
fn mk_fn(&ctxt cx, &ast.proto proto, &vec[arg] args, &t ty) -> t {
ret gen_ty(cx, ty_fn(proto, args, ty));
}
fn mk_native_fn(&ctxt cx, &ast.native_abi abi, &vec[arg] args, &t ty) -> t {
ret gen_ty(cx, ty_native_fn(abi, args, ty));
}
fn mk_obj(&ctxt cx, &vec[method] meths) -> t {
ret gen_ty(cx, ty_obj(meths));
}
fn mk_var(&ctxt cx, int v) -> t {
ret gen_ty(cx, ty_var(v));
}
fn mk_local(&ctxt cx, ast.def_id did) -> t {
ret gen_ty(cx, ty_local(did));
}
fn mk_param(&ctxt cx, uint n) -> t {
ret gen_ty(cx, ty_param(n));
}
fn mk_bound_param(&ctxt cx, uint n) -> t {
ret gen_ty(cx, ty_bound_param(n));
}
fn mk_type(&ctxt cx) -> t { ret idx_type; }
fn mk_native(&ctxt cx) -> t { ret idx_native; }
// Returns the one-level-deep type structure of the given type.
fn struct(&ctxt cx, &t typ) -> sty { ret cx.ts.others.(typ).struct; }
// Returns the canonical name of the given type.
fn cname(&ctxt cx, &t typ) -> Option.t[str] { ret cx.ts.others.(typ).cname; }
// Stringification
fn path_to_str(&ast.path pth) -> str {
auto result = Str.connect(pth.node.idents, "::");
if (Vec.len[@ast.ty](pth.node.types) > 0u) {
auto f = pretty.pprust.ty_to_str;
result += "[";
result += Str.connect(Vec.map[@ast.ty,str](f, pth.node.types), ",");
result += "]";
}
ret result;
}
fn ty_to_str(ctxt cx, &t typ) -> str {
fn fn_input_to_str(ctxt cx, &rec(mode mode, t ty) input) -> str {
auto s;
alt (input.mode) {
case (mo_val) { s = ""; }
case (mo_alias) { s = "&"; }
case (mo_either) { s = "?"; }
}
ret s + ty_to_str(cx, input.ty);
}
fn fn_to_str(ctxt cx,
ast.proto proto,
Option.t[ast.ident] ident,
vec[arg] inputs, t output) -> str {
auto f = bind fn_input_to_str(cx, _);
auto s;
alt (proto) {
case (ast.proto_iter) {
s = "iter";
}
case (ast.proto_fn) {
s = "fn";
}
}
alt (ident) {
case (some[ast.ident](?i)) {
s += " ";
s += i;
}
case (_) { }
}
s += "(";
s += Str.connect(Vec.map[arg,str](f, inputs), ", ");
s += ")";
if (struct(cx, output) != ty_nil) {
s += " -> " + ty_to_str(cx, output);
}
ret s;
}
fn method_to_str(ctxt cx, &method m) -> str {
ret fn_to_str(cx, m.proto, some[ast.ident](m.ident),
m.inputs, m.output) + ";";
}
fn field_to_str(ctxt cx, &field f) -> str {
ret mt_to_str(cx, f.mt) + " " + f.ident;
}
fn mt_to_str(ctxt cx, &mt m) -> str {
auto mstr;
alt (m.mut) {
case (ast.mut) { mstr = "mutable "; }
case (ast.imm) { mstr = ""; }
case (ast.maybe_mut) { mstr = "mutable? "; }
}
ret mstr + ty_to_str(cx, m.ty);
}
alt (cname(cx, typ)) {
case (some[str](?cs)) {
ret cs;
}
case (_) { }
}
auto s = "";
alt (struct(cx, typ)) {
case (ty_native) { s += "native"; }
case (ty_nil) { s += "()"; }
case (ty_bool) { s += "bool"; }
case (ty_int) { s += "int"; }
case (ty_float) { s += "float"; }
case (ty_uint) { s += "uint"; }
case (ty_machine(?tm)) { s += common.ty_mach_to_str(tm); }
case (ty_char) { s += "char"; }
case (ty_str) { s += "str"; }
case (ty_box(?tm)) { s += "@" + mt_to_str(cx, tm); }
case (ty_vec(?tm)) { s += "vec[" + mt_to_str(cx, tm) + "]"; }
case (ty_port(?t)) { s += "port[" + ty_to_str(cx, t) + "]"; }
case (ty_chan(?t)) { s += "chan[" + ty_to_str(cx, t) + "]"; }
case (ty_type) { s += "type"; }
case (ty_tup(?elems)) {
auto f = bind mt_to_str(cx, _);
auto strs = Vec.map[mt,str](f, elems);
s += "tup(" + Str.connect(strs, ",") + ")";
}
case (ty_rec(?elems)) {
auto f = bind field_to_str(cx, _);
auto strs = Vec.map[field,str](f, elems);
s += "rec(" + Str.connect(strs, ",") + ")";
}
case (ty_tag(?id, ?tps)) {
// The user should never see this if the cname is set properly!
s += "<tag#" + util.common.istr(id._0) + ":" +
util.common.istr(id._1) + ">";
if (Vec.len[t](tps) > 0u) {
auto f = bind ty_to_str(cx, _);
auto strs = Vec.map[t,str](f, tps);
s += "[" + Str.connect(strs, ",") + "]";
2011-02-17 18:23:31 -06:00
}
}
case (ty_fn(?proto, ?inputs, ?output)) {
s += fn_to_str(cx, proto, none[ast.ident], inputs, output);
}
case (ty_native_fn(_, ?inputs, ?output)) {
s += fn_to_str(cx, ast.proto_fn, none[ast.ident], inputs, output);
}
case (ty_obj(?meths)) {
auto f = bind method_to_str(cx, _);
auto m = Vec.map[method,str](f, meths);
s += "obj {\n\t" + Str.connect(m, "\n\t") + "\n}";
}
case (ty_var(?v)) {
s += "<T" + util.common.istr(v) + ">";
}
2011-01-17 19:24:47 -06:00
case (ty_local(?id)) {
s += "<L" + util.common.istr(id._0) + ":" +
util.common.istr(id._1) + ">";
2011-01-17 19:24:47 -06:00
}
case (ty_param(?id)) {
s += "'" + Str.unsafe_from_bytes(vec(('a' as u8) + (id as u8)));
}
case (ty_bound_param(?id)) {
s += "''" + Str.unsafe_from_bytes(vec(('a' as u8) + (id as u8)));
}
}
ret s;
}
fn ty_to_short_str(ctxt cx, t typ) -> str {
auto f = def_to_str;
auto ecx = @rec(ds=f, tcx=cx, abbrevs=metadata.ac_no_abbrevs);
2011-04-26 15:07:51 -05:00
auto s = metadata.Encode.ty_str(ecx, typ);
if (Str.byte_len(s) >= 32u) { s = Str.substr(s, 0u, 32u); }
2011-04-26 15:07:51 -05:00
ret s;
}
// Type folds
type ty_walk = fn(t);
fn walk_ty(ctxt cx, ty_walk walker, t ty) {
alt (struct(cx, ty)) {
case (ty_nil) { /* no-op */ }
case (ty_bool) { /* no-op */ }
case (ty_int) { /* no-op */ }
case (ty_uint) { /* no-op */ }
case (ty_float) { /* no-op */ }
case (ty_machine(_)) { /* no-op */ }
case (ty_char) { /* no-op */ }
case (ty_str) { /* no-op */ }
case (ty_type) { /* no-op */ }
case (ty_native) { /* no-op */ }
case (ty_box(?tm)) { walk_ty(cx, walker, tm.ty); }
case (ty_vec(?tm)) { walk_ty(cx, walker, tm.ty); }
case (ty_port(?subty)) { walk_ty(cx, walker, subty); }
case (ty_chan(?subty)) { walk_ty(cx, walker, subty); }
case (ty_tag(?tid, ?subtys)) {
for (t subty in subtys) {
walk_ty(cx, walker, subty);
}
}
case (ty_tup(?mts)) {
for (mt tm in mts) {
walk_ty(cx, walker, tm.ty);
}
}
case (ty_rec(?fields)) {
for (field fl in fields) {
walk_ty(cx, walker, fl.mt.ty);
}
}
case (ty_fn(?proto, ?args, ?ret_ty)) {
for (arg a in args) {
walk_ty(cx, walker, a.ty);
}
walk_ty(cx, walker, ret_ty);
}
case (ty_native_fn(?abi, ?args, ?ret_ty)) {
for (arg a in args) {
walk_ty(cx, walker, a.ty);
}
walk_ty(cx, walker, ret_ty);
}
case (ty_obj(?methods)) {
let vec[method] new_methods = vec();
for (method m in methods) {
for (arg a in m.inputs) {
walk_ty(cx, walker, a.ty);
}
walk_ty(cx, walker, m.output);
}
}
case (ty_var(_)) { /* no-op */ }
case (ty_local(_)) { /* no-op */ }
case (ty_param(_)) { /* no-op */ }
case (ty_bound_param(_)) { /* no-op */ }
}
walker(ty);
}
type ty_fold = fn(t) -> t;
fn fold_ty(ctxt cx, ty_fold fld, t ty_0) -> t {
auto ty = ty_0;
alt (struct(cx, ty)) {
case (ty_nil) { /* no-op */ }
case (ty_bool) { /* no-op */ }
case (ty_int) { /* no-op */ }
case (ty_uint) { /* no-op */ }
case (ty_float) { /* no-op */ }
case (ty_machine(_)) { /* no-op */ }
case (ty_char) { /* no-op */ }
case (ty_str) { /* no-op */ }
case (ty_type) { /* no-op */ }
case (ty_native) { /* no-op */ }
case (ty_box(?tm)) {
ty = copy_cname(cx, mk_box(cx, rec(ty=fold_ty(cx, fld, tm.ty),
mut=tm.mut)), ty);
}
case (ty_vec(?tm)) {
ty = copy_cname(cx, mk_vec(cx, rec(ty=fold_ty(cx, fld, tm.ty),
mut=tm.mut)), ty);
}
case (ty_port(?subty)) {
ty = copy_cname(cx, mk_port(cx, fold_ty(cx, fld, subty)), ty);
}
case (ty_chan(?subty)) {
ty = copy_cname(cx, mk_chan(cx, fold_ty(cx, fld, subty)), ty);
}
2011-02-17 18:23:31 -06:00
case (ty_tag(?tid, ?subtys)) {
let vec[t] new_subtys = vec();
for (t subty in subtys) {
new_subtys += vec(fold_ty(cx, fld, subty));
2011-02-17 18:23:31 -06:00
}
ty = copy_cname(cx, mk_tag(cx, tid, new_subtys), ty);
2011-02-17 18:23:31 -06:00
}
case (ty_tup(?mts)) {
let vec[mt] new_mts = vec();
for (mt tm in mts) {
auto new_subty = fold_ty(cx, fld, tm.ty);
new_mts += vec(rec(ty=new_subty, mut=tm.mut));
}
ty = copy_cname(cx, mk_tup(cx, new_mts), ty);
}
case (ty_rec(?fields)) {
let vec[field] new_fields = vec();
for (field fl in fields) {
auto new_ty = fold_ty(cx, fld, fl.mt.ty);
auto new_mt = rec(ty=new_ty, mut=fl.mt.mut);
new_fields += vec(rec(ident=fl.ident, mt=new_mt));
}
ty = copy_cname(cx, mk_rec(cx, new_fields), ty);
}
case (ty_fn(?proto, ?args, ?ret_ty)) {
let vec[arg] new_args = vec();
for (arg a in args) {
auto new_ty = fold_ty(cx, fld, a.ty);
new_args += vec(rec(mode=a.mode, ty=new_ty));
}
ty = copy_cname(cx, mk_fn(cx, proto, new_args,
fold_ty(cx, fld, ret_ty)), ty);
}
case (ty_native_fn(?abi, ?args, ?ret_ty)) {
let vec[arg] new_args = vec();
for (arg a in args) {
auto new_ty = fold_ty(cx, fld, a.ty);
new_args += vec(rec(mode=a.mode, ty=new_ty));
}
ty = copy_cname(cx, mk_native_fn(cx, abi, new_args,
fold_ty(cx, fld, ret_ty)), ty);
}
case (ty_obj(?methods)) {
let vec[method] new_methods = vec();
for (method m in methods) {
let vec[arg] new_args = vec();
for (arg a in m.inputs) {
new_args += vec(rec(mode=a.mode,
ty=fold_ty(cx, fld, a.ty)));
}
new_methods += vec(rec(proto=m.proto, ident=m.ident,
inputs=new_args,
output=fold_ty(cx, fld, m.output)));
}
ty = copy_cname(cx, mk_obj(cx, new_methods), ty);
}
case (ty_var(_)) { /* no-op */ }
case (ty_local(_)) { /* no-op */ }
case (ty_param(_)) { /* no-op */ }
case (ty_bound_param(_)) { /* no-op */ }
}
ret fld(ty);
}
// Type utilities
fn rename(ctxt cx, t typ, str new_cname) -> t {
ret gen_ty_full(cx, struct(cx, typ), some[str](new_cname));
}
// Returns a type with the structural part taken from `struct_ty` and the
// canonical name from `cname_ty`.
fn copy_cname(ctxt cx, t struct_ty, t cname_ty) -> t {
ret gen_ty_full(cx, struct(cx, struct_ty), cname(cx, cname_ty));
}
fn type_is_nil(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_nil) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_bool(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_bool) { ret true; }
case (_) { ret false; }
}
}
fn type_is_structural(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
2011-02-17 18:23:31 -06:00
case (ty_tup(_)) { ret true; }
case (ty_rec(_)) { ret true; }
case (ty_tag(_,_)) { ret true; }
case (ty_fn(_,_,_)) { ret true; }
2011-02-17 18:23:31 -06:00
case (ty_obj(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_sequence(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_str) { ret true; }
case (ty_vec(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn sequence_element_type(&ctxt cx, &t ty) -> t {
alt (struct(cx, ty)) {
case (ty_str) { ret mk_mach(cx, common.ty_u8); }
case (ty_vec(?mt)) { ret mt.ty; }
}
fail;
}
fn type_is_tup_like(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
2011-02-17 18:23:31 -06:00
case (ty_box(_)) { ret true; }
case (ty_tup(_)) { ret true; }
case (ty_rec(_)) { ret true; }
case (ty_tag(_,_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn get_element_type(&ctxt cx, &t ty, uint i) -> t {
assert (type_is_tup_like(cx, ty));
alt (struct(cx, ty)) {
case (ty_tup(?mts)) {
ret mts.(i).ty;
}
case (ty_rec(?flds)) {
ret flds.(i).mt.ty;
}
}
fail;
}
fn type_is_box(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_box(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_boxed(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_str) { ret true; }
case (ty_vec(_)) { ret true; }
case (ty_box(_)) { ret true; }
2011-03-16 20:49:15 -05:00
case (ty_port(_)) { ret true; }
case (ty_chan(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_scalar(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_nil) { ret true; }
case (ty_bool) { ret true; }
case (ty_int) { ret true; }
case (ty_float) { ret true; }
case (ty_uint) { ret true; }
case (ty_machine(_)) { ret true; }
case (ty_char) { ret true; }
2011-02-01 16:56:21 -06:00
case (ty_type) { ret true; }
case (ty_native) { ret true; }
case (_) { ret false; }
}
fail;
}
2011-03-03 15:43:47 -06:00
// FIXME: should we just return true for native types in
// type_is_scalar?
fn type_is_native(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
2011-03-03 15:43:47 -06:00
case (ty_native) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_has_dynamic_size(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_tup(?mts)) {
auto i = 0u;
while (i < Vec.len[mt](mts)) {
if (type_has_dynamic_size(cx, mts.(i).ty)) { ret true; }
i += 1u;
}
}
case (ty_rec(?fields)) {
auto i = 0u;
while (i < Vec.len[field](fields)) {
if (type_has_dynamic_size(cx, fields.(i).mt.ty)) {
ret true;
}
i += 1u;
}
}
case (ty_tag(_, ?subtys)) {
auto i = 0u;
while (i < Vec.len[t](subtys)) {
if (type_has_dynamic_size(cx, subtys.(i))) { ret true; }
i += 1u;
}
}
case (ty_param(_)) { ret true; }
case (_) { /* fall through */ }
}
ret false;
}
fn type_is_integral(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_int) { ret true; }
case (ty_uint) { ret true; }
case (ty_machine(?m)) {
alt (m) {
case (common.ty_i8) { ret true; }
case (common.ty_i16) { ret true; }
case (common.ty_i32) { ret true; }
case (common.ty_i64) { ret true; }
case (common.ty_u8) { ret true; }
case (common.ty_u16) { ret true; }
case (common.ty_u32) { ret true; }
case (common.ty_u64) { ret true; }
case (_) { ret false; }
}
}
case (ty_char) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_fp(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_f32) { ret true; }
case (common.ty_f64) { ret true; }
case (_) { ret false; }
}
}
case (ty_float) {
ret true;
}
case (_) { ret false; }
}
fail;
}
fn type_is_signed(&ctxt cx, &t ty) -> bool {
alt (struct(cx, ty)) {
case (ty_int) { ret true; }
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_i8) { ret true; }
case (common.ty_i16) { ret true; }
case (common.ty_i32) { ret true; }
case (common.ty_i64) { ret true; }
case (_) { ret false; }
}
}
case (_) { ret false; }
}
fail;
}
fn type_param(&ctxt cx, &t ty) -> Option.t[uint] {
alt (struct(cx, ty)) {
case (ty_param(?id)) { ret some[uint](id); }
case (_) { /* fall through */ }
}
ret none[uint];
}
fn def_to_str(&ast.def_id did) -> str {
ret #fmt("%d:%d", did._0, did._1);
}
2011-04-20 14:22:28 -05:00
// Type hashing. This function is private to this module (and slow); external
// users should use `hash_ty()` instead.
fn hash_type_structure(&sty st) -> uint {
2011-04-20 16:34:17 -05:00
fn hash_uint(uint id, uint n) -> uint {
auto h = id;
h += h << 5u + n;
ret h;
}
2011-04-20 14:22:28 -05:00
2011-04-20 16:34:17 -05:00
fn hash_def(uint id, ast.def_id did) -> uint {
auto h = id;
h += h << 5u + (did._0 as uint);
h += h << 5u + (did._1 as uint);
ret h;
}
2011-04-20 14:22:28 -05:00
fn hash_subty(uint id, &t subty) -> uint {
2011-04-20 16:34:17 -05:00
auto h = id;
h += h << 5u + hash_ty(subty);
ret h;
}
fn hash_fn(uint id, &vec[arg] args, &t rty) -> uint {
2011-04-20 16:34:17 -05:00
auto h = id;
for (arg a in args) {
h += h << 5u + hash_ty(a.ty);
}
h += h << 5u + hash_ty(rty);
ret h;
}
alt (st) {
case (ty_nil) { ret 0u; }
case (ty_bool) { ret 1u; }
case (ty_int) { ret 2u; }
case (ty_float) { ret 3u; }
case (ty_uint) { ret 4u; }
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_i8) { ret 5u; }
case (common.ty_i16) { ret 6u; }
case (common.ty_i32) { ret 7u; }
case (common.ty_i64) { ret 8u; }
case (common.ty_u8) { ret 9u; }
case (common.ty_u16) { ret 10u; }
case (common.ty_u32) { ret 11u; }
case (common.ty_u64) { ret 12u; }
case (common.ty_f32) { ret 13u; }
case (common.ty_f64) { ret 14u; }
}
}
case (ty_char) { ret 15u; }
case (ty_str) { ret 16u; }
case (ty_tag(?did, ?tys)) {
auto h = hash_def(17u, did);
for (t typ in tys) {
2011-04-20 16:34:17 -05:00
h += h << 5u + hash_ty(typ);
}
ret h;
}
case (ty_box(?mt)) { ret hash_subty(18u, mt.ty); }
case (ty_vec(?mt)) { ret hash_subty(19u, mt.ty); }
case (ty_port(?typ)) { ret hash_subty(20u, typ); }
case (ty_chan(?typ)) { ret hash_subty(21u, typ); }
case (ty_task) { ret 22u; }
case (ty_tup(?mts)) {
auto h = 23u;
for (mt tm in mts) {
h += h << 5u + hash_ty(tm.ty);
}
ret h;
}
case (ty_rec(?fields)) {
auto h = 24u;
for (field f in fields) {
h += h << 5u + hash_ty(f.mt.ty);
}
ret h;
}
case (ty_fn(_, ?args, ?rty)) { ret hash_fn(25u, args, rty); }
case (ty_native_fn(_, ?args, ?rty)) { ret hash_fn(26u, args, rty); }
case (ty_obj(?methods)) {
auto h = 27u;
for (method m in methods) {
h += h << 5u + Str.hash(m.ident);
2011-04-20 16:34:17 -05:00
}
ret h;
}
case (ty_var(?v)) { ret hash_uint(28u, v as uint); }
case (ty_local(?did)) { ret hash_def(29u, did); }
case (ty_param(?pid)) { ret hash_uint(30u, pid); }
case (ty_bound_param(?pid)) { ret hash_uint(31u, pid); }
case (ty_type) { ret 32u; }
case (ty_native) { ret 33u; }
}
}
fn hash_type_info(&sty st, &Option.t[str] cname_opt) -> uint {
auto h = hash_type_structure(st);
alt (cname_opt) {
case (none[str]) { /* no-op */ }
case (some[str](?s)) { h += h << 5u + Str.hash(s); }
}
ret h;
}
fn hash_raw_ty(&raw_t rt) -> uint { ret rt.hash; }
fn hash_ty(&t typ) -> uint { ret typ; }
2011-04-20 14:22:28 -05:00
// Type equality. This function is private to this module (and slow); external
// users should use `eq_ty()` instead.
fn equal_type_structures(&sty a, &sty b) -> bool {
fn equal_mt(&mt a, &mt b) -> bool {
ret a.mut == b.mut && eq_ty(a.ty, b.ty);
}
fn equal_fn(&vec[arg] args_a, &t rty_a,
&vec[arg] args_b, &t rty_b) -> bool {
if (!eq_ty(rty_a, rty_b)) { ret false; }
auto len = Vec.len[arg](args_a);
if (len != Vec.len[arg](args_b)) { ret false; }
auto i = 0u;
while (i < len) {
auto arg_a = args_a.(i); auto arg_b = args_b.(i);
if (arg_a.mode != arg_b.mode) { ret false; }
if (!eq_ty(arg_a.ty, arg_b.ty)) { ret false; }
i += 1u;
}
ret true;
}
fn equal_def(&ast.def_id did_a, &ast.def_id did_b) -> bool {
ret did_a._0 == did_b._0 && did_a._1 == did_b._1;
}
alt (a) {
case (ty_nil) {
alt (b) {
case (ty_nil) { ret true; }
case (_) { ret false; }
}
}
case (ty_bool) {
alt (b) {
case (ty_bool) { ret true; }
case (_) { ret false; }
}
}
case (ty_int) {
alt (b) {
case (ty_int) { ret true; }
case (_) { ret false; }
}
}
case (ty_float) {
alt (b) {
case (ty_float) { ret true; }
case (_) { ret false; }
}
}
case (ty_uint) {
alt (b) {
case (ty_uint) { ret true; }
case (_) { ret false; }
}
}
case (ty_machine(?tm_a)) {
alt (b) {
case (ty_machine(?tm_b)) {
ret hash_type_structure(a) == hash_type_structure(b);
}
case (_) { ret false; }
}
}
case (ty_char) {
alt (b) {
case (ty_char) { ret true; }
case (_) { ret false; }
}
}
case (ty_str) {
alt (b) {
case (ty_str) { ret true; }
case (_) { ret false; }
}
}
case (ty_tag(?id_a, ?tys_a)) {
alt (b) {
case (ty_tag(?id_b, ?tys_b)) {
2011-04-21 21:30:53 -05:00
if (!equal_def(id_a, id_b)) { ret false; }
auto len = Vec.len[t](tys_a);
if (len != Vec.len[t](tys_b)) { ret false; }
auto i = 0u;
while (i < len) {
if (!eq_ty(tys_a.(i), tys_b.(i))) { ret false; }
i += 1u;
}
ret true;
}
case (_) { ret false; }
}
}
case (ty_box(?mt_a)) {
alt (b) {
case (ty_box(?mt_b)) { ret equal_mt(mt_a, mt_b); }
case (_) { ret false; }
}
}
case (ty_vec(?mt_a)) {
alt (b) {
case (ty_vec(?mt_b)) { ret equal_mt(mt_a, mt_b); }
case (_) { ret false; }
}
}
case (ty_port(?t_a)) {
alt (b) {
case (ty_port(?t_b)) { ret eq_ty(t_a, t_b); }
case (_) { ret false; }
}
}
case (ty_chan(?t_a)) {
alt (b) {
case (ty_chan(?t_b)) { ret eq_ty(t_a, t_b); }
case (_) { ret false; }
}
}
case (ty_task) {
alt (b) {
case (ty_task) { ret true; }
case (_) { ret false; }
}
}
case (ty_tup(?mts_a)) {
alt (b) {
case (ty_tup(?mts_b)) {
auto len = Vec.len[mt](mts_a);
if (len != Vec.len[mt](mts_b)) { ret false; }
auto i = 0u;
while (i < len) {
if (!equal_mt(mts_a.(i), mts_b.(i))) { ret false; }
i += 1u;
}
ret true;
}
case (_) { ret false; }
}
}
case (ty_rec(?flds_a)) {
alt (b) {
case (ty_rec(?flds_b)) {
auto len = Vec.len[field](flds_a);
if (len != Vec.len[field](flds_b)) { ret false; }
auto i = 0u;
while (i < len) {
auto fld_a = flds_a.(i); auto fld_b = flds_b.(i);
if (!Str.eq(fld_a.ident, fld_b.ident) ||
!equal_mt(fld_a.mt, fld_b.mt)) {
ret false;
}
i += 1u;
}
ret true;
}
case (_) { ret false; }
}
}
case (ty_fn(?p_a, ?args_a, ?rty_a)) {
alt (b) {
case (ty_fn(?p_b, ?args_b, ?rty_b)) {
ret p_a == p_b &&
equal_fn(args_a, rty_a, args_b, rty_b);
}
case (_) { ret false; }
}
}
case (ty_native_fn(?abi_a, ?args_a, ?rty_a)) {
alt (b) {
case (ty_native_fn(?abi_b, ?args_b, ?rty_b)) {
ret abi_a == abi_b &&
equal_fn(args_a, rty_a, args_b, rty_b);
}
case (_) { ret false; }
}
}
case (ty_obj(?methods_a)) {
alt (b) {
case (ty_obj(?methods_b)) {
auto len = Vec.len[method](methods_a);
if (len != Vec.len[method](methods_b)) { ret false; }
auto i = 0u;
while (i < len) {
auto m_a = methods_a.(i); auto m_b = methods_b.(i);
if (m_a.proto != m_b.proto ||
!Str.eq(m_a.ident, m_b.ident) ||
2011-04-21 21:30:53 -05:00
!equal_fn(m_a.inputs, m_a.output,
m_b.inputs, m_b.output)) {
ret false;
}
2011-04-21 21:30:53 -05:00
i += 1u;
}
ret true;
}
case (_) { ret false; }
}
}
case (ty_var(?v_a)) {
alt (b) {
case (ty_var(?v_b)) { ret v_a == v_b; }
case (_) { ret false; }
}
}
case (ty_local(?did_a)) {
alt (b) {
case (ty_local(?did_b)) { ret equal_def(did_a, did_b); }
case (_) { ret false; }
}
}
case (ty_param(?pid_a)) {
alt (b) {
case (ty_param(?pid_b)) { ret pid_a == pid_b; }
case (_) { ret false; }
}
}
case (ty_bound_param(?pid_a)) {
alt (b) {
case (ty_bound_param(?pid_b)) { ret pid_a == pid_b; }
case (_) { ret false; }
}
}
case (ty_type) {
alt (b) {
case (ty_type) { ret true; }
case (_) { ret false; }
}
}
case (ty_native) {
alt (b) {
case (ty_native) { ret true; }
case (_) { ret false; }
}
}
}
}
2011-04-21 21:30:53 -05:00
// An expensive type equality function. This function is private to this
// module.
//
// FIXME: Use structural comparison, but this loops forever and segfaults.
fn eq_raw_ty(&raw_t a, &raw_t b) -> bool {
2011-04-21 21:30:53 -05:00
// Check hashes (fast path).
if (a.hash != b.hash) {
ret false;
}
2011-04-21 21:30:53 -05:00
// Check canonical names.
alt (a.cname) {
2011-04-21 21:30:53 -05:00
case (none[str]) {
alt (b.cname) {
2011-04-21 21:30:53 -05:00
case (none[str]) { /* ok */ }
case (_) { ret false; }
}
}
2011-04-21 21:30:53 -05:00
case (some[str](?s_a)) {
alt (b.cname) {
2011-04-21 21:30:53 -05:00
case (some[str](?s_b)) {
if (!Str.eq(s_a, s_b)) { ret false; }
}
case (_) { ret false; }
}
}
2011-04-21 21:30:53 -05:00
}
2011-04-21 21:30:53 -05:00
// Check structures.
ret equal_type_structures(a.struct, b.struct);
2011-04-21 21:30:53 -05:00
}
2011-04-21 21:30:53 -05:00
// This is the equality function the public should use. It works as long as
// the types are interned.
fn eq_ty(&t a, &t b) -> bool { ret a == b; }
fn ann_to_type(&ast.ann ann) -> t {
alt (ann) {
case (ast.ann_none(_)) {
log_err "ann_to_type() called on node with no type";
fail;
}
case (ast.ann_type(_, ?ty, _, _)) {
ret ty;
}
}
}
fn ann_to_type_params(&ast.ann ann) -> vec[t] {
alt (ann) {
case (ast.ann_none(_)) {
log_err "ann_to_type_params() called on node with no type params";
fail;
}
case (ast.ann_type(_, _, ?tps, _)) {
alt (tps) {
case (none[vec[t]]) {
let vec[t] result = vec();
ret result;
}
case (some[vec[t]](?tps)) { ret tps; }
}
}
}
}
// Returns the type of an annotation, with type parameter substitutions
// performed if applicable.
fn ann_to_monotype(ctxt cx, ast.ann a) -> t {
// TODO: Refactor to use recursive pattern matching when we're more
// confident that it works.
alt (a) {
case (ast.ann_none(_)) {
log_err "ann_to_monotype() called on expression with no type!";
fail;
}
case (ast.ann_type(_, ?typ, ?tps_opt, _)) {
alt (tps_opt) {
case (none[vec[t]]) { ret typ; }
case (some[vec[t]](?tps)) {
ret substitute_type_params(cx, tps, typ);
}
}
}
}
}
// Turns a type into an ann_type, using defaults for other fields.
fn triv_ann(&ast.ann old, t typ) -> ast.ann {
ret ast.ann_type(ast.ann_tag(old), typ, none[vec[t]], none[@ts_ann]);
}
// Returns the number of distinct type parameters in the given type.
fn count_ty_params(ctxt cx, t ty) -> uint {
fn counter(ctxt cx, @mutable vec[uint] param_indices, t ty) {
alt (struct(cx, ty)) {
case (ty_param(?param_idx)) {
auto seen = false;
for (uint other_param_idx in *param_indices) {
if (param_idx == other_param_idx) {
seen = true;
}
}
if (!seen) {
*param_indices += vec(param_idx);
}
}
case (_) { /* fall through */ }
}
}
let vec[uint] v = vec(); // FIXME: typechecker botch
let @mutable vec[uint] param_indices = @mutable v;
auto f = bind counter(cx, param_indices, _);
walk_ty(cx, f, ty);
ret Vec.len[uint](*param_indices);
}
fn type_contains_vars(&ctxt cx, &t typ) -> bool {
ret cx.ts.others.(typ).has_vars;
}
fn type_contains_locals(&ctxt cx, &t typ) -> bool {
ret cx.ts.others.(typ).has_locals;
}
fn type_contains_params(&ctxt cx, &t typ) -> bool {
ret cx.ts.others.(typ).has_params;
}
fn type_contains_bound_params(&ctxt cx, &t typ) -> bool {
ret cx.ts.others.(typ).has_bound_params;
}
2011-01-03 20:22:39 -06:00
// Type accessors for substructures of types
fn ty_fn_args(&ctxt cx, &t fty) -> vec[arg] {
alt (struct(cx, fty)) {
case (ty.ty_fn(_, ?a, _)) { ret a; }
case (ty.ty_native_fn(_, ?a, _)) { ret a; }
}
fail;
}
fn ty_fn_proto(&ctxt cx, &t fty) -> ast.proto {
alt (struct(cx, fty)) {
case (ty.ty_fn(?p, _, _)) { ret p; }
}
fail;
2011-01-03 20:22:39 -06:00
}
fn ty_fn_abi(&ctxt cx, &t fty) -> ast.native_abi {
alt (struct(cx, fty)) {
case (ty.ty_native_fn(?a, _, _)) { ret a; }
}
fail;
}
fn ty_fn_ret(&ctxt cx, &t fty) -> t {
alt (struct(cx, fty)) {
case (ty.ty_fn(_, _, ?r)) { ret r; }
case (ty.ty_native_fn(_, _, ?r)) { ret r; }
}
fail;
2011-01-03 20:22:39 -06:00
}
fn is_fn_ty(&ctxt cx, &t fty) -> bool {
alt (struct(cx, fty)) {
case (ty.ty_fn(_, _, _)) { ret true; }
case (ty.ty_native_fn(_, _, _)) { ret true; }
case (_) { ret false; }
}
ret false;
2011-01-03 20:22:39 -06:00
}
// Type accessors for AST nodes
// Given an item, returns the associated type as well as the number of type
// parameters it has.
fn native_item_ty(&@ast.native_item it) -> ty_param_count_and_ty {
auto ty_param_count;
auto result_ty;
alt (it.node) {
case (ast.native_item_fn(_, _, _, ?tps, _, ?ann)) {
ty_param_count = Vec.len[ast.ty_param](tps);
result_ty = ann_to_type(ann);
}
}
ret tup(ty_param_count, result_ty);
}
fn item_ty(&@ast.item it) -> ty_param_count_and_ty {
auto ty_param_count;
2011-01-04 14:46:11 -06:00
auto result_ty;
alt (it.node) {
case (ast.item_const(_, _, _, _, ?ann)) {
ty_param_count = 0u;
2011-01-04 14:46:11 -06:00
result_ty = ann_to_type(ann);
}
case (ast.item_fn(_, _, ?tps, _, ?ann)) {
ty_param_count = Vec.len[ast.ty_param](tps);
2011-01-04 14:46:11 -06:00
result_ty = ann_to_type(ann);
}
case (ast.item_mod(_, _, _)) {
fail; // modules are typeless
}
case (ast.item_ty(_, _, ?tps, _, ?ann)) {
ty_param_count = Vec.len[ast.ty_param](tps);
2011-01-04 14:46:11 -06:00
result_ty = ann_to_type(ann);
}
case (ast.item_tag(_, _, ?tps, ?did, ?ann)) {
ty_param_count = Vec.len[ast.ty_param](tps);
result_ty = ann_to_type(ann);
2011-01-04 14:46:11 -06:00
}
case (ast.item_obj(_, _, ?tps, _, ?ann)) {
ty_param_count = Vec.len[ast.ty_param](tps);
2011-01-04 14:46:11 -06:00
result_ty = ann_to_type(ann);
}
}
ret tup(ty_param_count, result_ty);
2011-01-04 14:46:11 -06:00
}
fn stmt_ty(&ctxt cx, &@ast.stmt s) -> t {
alt (s.node) {
case (ast.stmt_expr(?e,_)) {
ret expr_ty(cx, e);
}
case (_) {
ret mk_nil(cx);
}
}
}
fn block_ty(&ctxt cx, &ast.block b) -> t {
alt (b.node.expr) {
case (some[@ast.expr](?e)) { ret expr_ty(cx, e); }
case (none[@ast.expr]) { ret mk_nil(cx); }
}
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
fn pat_ty(&ctxt cx, &@ast.pat pat) -> t {
alt (pat.node) {
case (ast.pat_wild(?ann)) { ret ann_to_monotype(cx, ann); }
case (ast.pat_lit(_, ?ann)) { ret ann_to_monotype(cx, ann); }
case (ast.pat_bind(_, _, ?ann)) { ret ann_to_monotype(cx, ann); }
case (ast.pat_tag(_, _, ?ann)) { ret ann_to_monotype(cx, ann); }
}
fail; // not reached
}
fn expr_ann(&@ast.expr e) -> ast.ann {
alt(e.node) {
case (ast.expr_vec(_,_,?a)) {
ret a;
}
case (ast.expr_tup(_,?a)) {
ret a;
}
case (ast.expr_rec(_,_,?a)) {
ret a;
}
case (ast.expr_call(_,_,?a)) {
ret a;
}
case (ast.expr_bind(_,_,?a)) {
ret a;
}
case (ast.expr_binary(_,_,_,?a)) {
ret a;
}
case (ast.expr_unary(_,_,?a)) {
ret a;
}
case (ast.expr_lit(_,?a)) {
ret a;
}
case (ast.expr_cast(_,_,?a)) {
ret a;
}
case (ast.expr_if(_,_,_,?a)) {
ret a;
}
case (ast.expr_while(_,_,?a)) {
ret a;
}
case (ast.expr_for(_,_,_,?a)) {
ret a;
}
case (ast.expr_for_each(_,_,_,?a)) {
ret a;
}
case (ast.expr_do_while(_,_,?a)) {
ret a;
}
case (ast.expr_alt(_,_,?a)) {
ret a;
}
case (ast.expr_block(_,?a)) {
ret a;
}
case (ast.expr_assign(_,_,?a)) {
ret a;
}
case (ast.expr_assign_op(_,_,_,?a)) {
ret a;
}
case (ast.expr_send(_,_,?a)) {
ret a;
}
case (ast.expr_recv(_,_,?a)) {
ret a;
}
case (ast.expr_field(_,_,?a)) {
ret a;
}
case (ast.expr_index(_,_,?a)) {
ret a;
}
case (ast.expr_path(_,?a)) {
ret a;
}
case (ast.expr_ext(_,_,_,_,?a)) {
ret a;
}
case (ast.expr_fail(?a)) {
ret a;
}
case (ast.expr_ret(_,?a)) {
ret a;
}
case (ast.expr_put(_,?a)) {
ret a;
}
case (ast.expr_be(_,?a)) {
ret a;
}
case (ast.expr_log(_,_,?a)) {
ret a;
}
case (ast.expr_assert(_,?a)) {
ret a;
}
case (ast.expr_check(_,?a)) {
ret a;
}
case (ast.expr_port(?a)) {
ret a;
}
case (ast.expr_chan(_,?a)) {
ret a;
}
case (ast.expr_break(?a)) {
ret a;
}
case (ast.expr_cont(?a)) {
ret a;
}
case (ast.expr_self_method(_, ?a)) {
ret a;
}
}
}
// Returns the type of an expression as a monotype.
//
// NB: This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(&T) -> T with T = int". If this isn't what you want, see
// expr_ty_params_and_ty() below.
fn expr_ty(&ctxt cx, &@ast.expr expr) -> t {
ret ann_to_monotype(cx, expr_ann(expr));
}
fn expr_ty_params_and_ty(&ctxt cx, &@ast.expr expr) -> tup(vec[t], t) {
auto a = expr_ann(expr);
ret tup(ann_to_type_params(a), ann_to_type(a));
}
fn expr_has_ty_params(&@ast.expr expr) -> bool {
// FIXME: Rewrite using complex patterns when they're trustworthy.
alt (expr_ann(expr)) {
case (ast.ann_none(_)) { fail; }
case (ast.ann_type(_, _, ?tps_opt, _)) {
ret !Option.is_none[vec[t]](tps_opt);
}
}
}
// FIXME: At the moment this works only for call, bind, and path expressions.
fn replace_expr_type(&@ast.expr expr,
&tup(vec[t], t) new_tyt) -> @ast.expr {
auto new_tps;
if (expr_has_ty_params(expr)) {
new_tps = some[vec[t]](new_tyt._0);
} else {
new_tps = none[vec[t]];
}
fn mkann_fn(t tyt, Option.t[vec[t]] tps, &ast.ann old_ann) -> ast.ann {
ret ast.ann_type(ast.ann_tag(old_ann), tyt, tps, none[@ts_ann]);
}
auto mkann = bind mkann_fn(new_tyt._1, new_tps, _);
alt (expr.node) {
case (ast.expr_call(?callee, ?args, ?a)) {
ret @fold.respan(expr.span,
ast.expr_call(callee, args, mkann(a)));
}
case (ast.expr_self_method(?ident, ?a)) {
ret @fold.respan(expr.span,
ast.expr_self_method(ident, mkann(a)));
}
case (ast.expr_bind(?callee, ?args, ?a)) {
ret @fold.respan(expr.span,
ast.expr_bind(callee, args, mkann(a)));
}
case (ast.expr_field(?e, ?i, ?a)) {
ret @fold.respan(expr.span,
ast.expr_field(e, i, mkann(a)));
}
case (ast.expr_path(?p, ?a)) {
ret @fold.respan(expr.span,
ast.expr_path(p, mkann(a)));
}
case (_) {
log_err "unhandled expr type in replace_expr_type(): " +
2011-05-05 17:53:38 -05:00
util.common.expr_to_str(expr);
fail;
}
}
}
// Expression utilities
fn field_num(&session.session sess, &span sp,
&ast.ident id) -> uint {
let uint accum = 0u;
let uint i = 0u;
for (u8 c in id) {
if (i == 0u) {
if (c != ('_' as u8)) {
sess.span_err(sp,
"bad numeric field on tuple: "
+ "missing leading underscore");
}
} else {
if (('0' as u8) <= c && c <= ('9' as u8)) {
accum *= 10u;
accum += (c as uint) - ('0' as uint);
} else {
auto s = "";
s += Str.unsafe_from_byte(c);
sess.span_err(sp,
"bad numeric field on tuple: "
+ " non-digit character: "
+ s);
}
}
i += 1u;
}
ret accum;
}
fn field_idx(&session.session sess, &span sp,
&ast.ident id, &vec[field] fields) -> uint {
let uint i = 0u;
for (field f in fields) {
if (Str.eq(f.ident, id)) {
ret i;
}
i += 1u;
}
sess.span_err(sp, "unknown field '" + id + "' of record");
fail;
}
fn method_idx(&session.session sess, &span sp,
&ast.ident id, &vec[method] meths) -> uint {
let uint i = 0u;
for (method m in meths) {
if (Str.eq(m.ident, id)) {
ret i;
}
i += 1u;
}
sess.span_err(sp, "unknown method '" + id + "' of obj");
fail;
}
fn sort_methods(&vec[method] meths) -> vec[method] {
fn method_lteq(&method a, &method b) -> bool {
ret Str.lteq(a.ident, b.ident);
}
ret std.Sort.merge_sort[method](bind method_lteq(_,_), meths);
}
fn is_lval(&@ast.expr expr) -> bool {
alt (expr.node) {
case (ast.expr_field(_,_,_)) { ret true; }
case (ast.expr_index(_,_,_)) { ret true; }
case (ast.expr_path(_,_)) { ret true; }
case (ast.expr_unary(ast.deref,_,_)) { ret true; }
case (_) { ret false; }
}
}
// Type unification via Robinson's algorithm (Robinson 1965). Implemented as
// described in Hoder and Voronkov:
//
// http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf
mod Unify {
tag result {
ures_ok(t);
ures_err(type_err, t, t);
}
2011-04-21 14:10:53 -05:00
type ctxt = rec(UFind.ufind sets,
hashmap[int,uint] var_ids,
mutable vec[mutable vec[t]] types,
unify_handler handler,
ty_ctxt tcx);
// Wraps the given type in an appropriate cname.
//
// TODO: This doesn't do anything yet. We should carry the cname up from
// the expected and/or actual types when unification results in a type
// identical to one or both of the two. The precise algorithm for this is
// something we'll probably need to develop over time.
// Simple structural type comparison.
fn struct_cmp(@ctxt cx, t expected, t actual) -> result {
if (struct(cx.tcx, expected) == struct(cx.tcx, actual)) {
ret ures_ok(expected);
}
ret ures_err(terr_mismatch, expected, actual);
}
// Unifies two mutability flags.
fn unify_mut(ast.mutability expected, ast.mutability actual)
-> Option.t[ast.mutability] {
if (expected == actual) {
ret some[ast.mutability](expected);
}
if (expected == ast.maybe_mut) {
ret some[ast.mutability](actual);
}
if (actual == ast.maybe_mut) {
ret some[ast.mutability](expected);
}
ret none[ast.mutability];
}
tag fn_common_res {
fn_common_res_err(result);
fn_common_res_ok(vec[arg], t);
}
2010-12-31 11:48:54 -06:00
fn unify_fn_common(&@ctxt cx,
&t expected,
&t actual,
&vec[arg] expected_inputs, &t expected_output,
&vec[arg] actual_inputs, &t actual_output)
-> fn_common_res {
auto expected_len = Vec.len[arg](expected_inputs);
auto actual_len = Vec.len[arg](actual_inputs);
if (expected_len != actual_len) {
ret fn_common_res_err(ures_err(terr_arg_count,
expected, actual));
}
2010-12-31 11:48:54 -06:00
// TODO: as above, we should have an iter2 iterator.
let vec[arg] result_ins = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_input = expected_inputs.(i);
auto actual_input = actual_inputs.(i);
// Unify the result modes. "mo_either" unifies with both modes.
auto result_mode;
if (expected_input.mode == mo_either) {
result_mode = actual_input.mode;
} else if (actual_input.mode == mo_either) {
result_mode = expected_input.mode;
} else if (expected_input.mode != actual_input.mode) {
ret fn_common_res_err(ures_err(terr_arg_count,
expected, actual));
} else {
result_mode = expected_input.mode;
}
2010-12-31 11:48:54 -06:00
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx, actual_input.ty, expected_input.ty);
2010-12-31 11:48:54 -06:00
alt (result) {
case (ures_ok(?rty)) {
2011-04-21 14:10:53 -05:00
result_ins += vec(rec(mode=result_mode, ty=rty));
}
case (_) {
ret fn_common_res_err(result);
}
}
2010-12-31 11:48:54 -06:00
i += 1u;
2010-12-31 11:48:54 -06:00
}
// Check the output.
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx, expected_output, actual_output);
alt (result) {
case (ures_ok(?rty)) {
ret fn_common_res_ok(result_ins, rty);
}
case (_) {
ret fn_common_res_err(result);
}
2010-12-31 11:48:54 -06:00
}
}
2010-12-31 11:48:54 -06:00
fn unify_fn(&@ctxt cx,
&ast.proto e_proto,
&ast.proto a_proto,
&t expected,
&t actual,
&vec[arg] expected_inputs, &t expected_output,
&vec[arg] actual_inputs, &t actual_output)
-> result {
2010-12-31 11:48:54 -06:00
if (e_proto != a_proto) {
ret ures_err(terr_mismatch, expected, actual);
}
2011-04-21 14:10:53 -05:00
auto t = unify_fn_common(cx, expected, actual,
expected_inputs, expected_output,
actual_inputs, actual_output);
alt (t) {
case (fn_common_res_err(?r)) {
ret r;
}
case (fn_common_res_ok(?result_ins, ?result_out)) {
auto t2 = mk_fn(cx.tcx, e_proto, result_ins, result_out);
ret ures_ok(t2);
}
}
}
fn unify_native_fn(&@ctxt cx,
&ast.native_abi e_abi,
&ast.native_abi a_abi,
&t expected,
&t actual,
&vec[arg] expected_inputs, &t expected_output,
&vec[arg] actual_inputs, &t actual_output)
-> result {
if (e_abi != a_abi) {
ret ures_err(terr_mismatch, expected, actual);
}
2011-04-21 14:10:53 -05:00
auto t = unify_fn_common(cx, expected, actual,
expected_inputs, expected_output,
actual_inputs, actual_output);
alt (t) {
case (fn_common_res_err(?r)) {
ret r;
}
case (fn_common_res_ok(?result_ins, ?result_out)) {
auto t2 = mk_native_fn(cx.tcx, e_abi, result_ins,
result_out);
ret ures_ok(t2);
}
}
2010-12-31 11:48:54 -06:00
}
fn unify_obj(&@ctxt cx,
&t expected,
&t actual,
&vec[method] expected_meths,
&vec[method] actual_meths) -> result {
2010-12-31 12:26:29 -06:00
let vec[method] result_meths = vec();
let uint i = 0u;
let uint expected_len = Vec.len[method](expected_meths);
let uint actual_len = Vec.len[method](actual_meths);
2010-12-31 12:26:29 -06:00
if (expected_len != actual_len) {
ret ures_err(terr_meth_count, expected, actual);
}
while (i < expected_len) {
auto e_meth = expected_meths.(i);
auto a_meth = actual_meths.(i);
if (! Str.eq(e_meth.ident, a_meth.ident)) {
2010-12-31 12:26:29 -06:00
ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident),
expected, actual);
}
2011-04-21 14:10:53 -05:00
auto r = unify_fn(cx,
e_meth.proto, a_meth.proto,
2011-04-21 14:10:53 -05:00
expected, actual,
2010-12-31 12:26:29 -06:00
e_meth.inputs, e_meth.output,
a_meth.inputs, a_meth.output);
2011-03-06 12:56:38 -06:00
alt (r) {
case (ures_ok(?tfn)) {
alt (struct(cx.tcx, tfn)) {
2011-03-06 12:56:38 -06:00
case (ty_fn(?proto, ?ins, ?out)) {
result_meths += vec(rec(inputs = ins,
output = out
with e_meth));
}
}
}
case (_) {
ret r;
}
2010-12-31 12:26:29 -06:00
}
i += 1u;
}
auto t = mk_obj(cx.tcx, result_meths);
2010-12-31 12:26:29 -06:00
ret ures_ok(t);
}
fn get_or_create_set(&@ctxt cx, int id) -> uint {
auto set_num;
2011-04-21 14:10:53 -05:00
alt (cx.var_ids.find(id)) {
case (none[uint]) {
2011-04-21 14:10:53 -05:00
set_num = UFind.make_set(cx.sets);
cx.var_ids.insert(id, set_num);
}
case (some[uint](?n)) { set_num = n; }
}
ret set_num;
}
fn unify_step(&@ctxt cx, &t expected, &t actual) -> result {
// TODO: rewrite this using tuple pattern matching when available, to
// avoid all this rightward drift and spikiness.
// TODO: occurs check, to make sure we don't loop forever when
// unifying e.g. 'a and option['a]
// Fast path.
if (eq_ty(expected, actual)) { ret ures_ok(expected); }
alt (struct(cx.tcx, actual)) {
// If the RHS is a variable type, then just do the appropriate
// binding.
case (ty.ty_var(?actual_id)) {
2011-04-21 14:10:53 -05:00
auto actual_n = get_or_create_set(cx, actual_id);
alt (struct(cx.tcx, expected)) {
case (ty.ty_var(?expected_id)) {
2011-04-21 14:10:53 -05:00
auto expected_n = get_or_create_set(cx, expected_id);
UFind.union(cx.sets, expected_n, actual_n);
}
case (_) {
// Just bind the type variable to the expected type.
auto vlen = Vec.len[vec[t]](cx.types);
if (actual_n < vlen) {
2011-04-21 14:10:53 -05:00
cx.types.(actual_n) += vec(expected);
} else {
assert (actual_n == vlen);
2011-04-21 14:10:53 -05:00
cx.types += vec(mutable vec(expected));
}
}
}
ret ures_ok(actual);
}
case (ty.ty_local(?actual_id)) {
auto result_ty;
2011-04-21 14:10:53 -05:00
alt (cx.handler.resolve_local(actual_id)) {
case (none[t]) { result_ty = expected; }
case (some[t](?actual_ty)) {
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx, expected, actual_ty);
alt (result) {
case (ures_ok(?rty)) { result_ty = rty; }
case (_) { ret result; }
}
}
}
2011-04-21 14:10:53 -05:00
cx.handler.record_local(actual_id, result_ty);
ret ures_ok(result_ty);
}
case (ty.ty_bound_param(?actual_id)) {
alt (struct(cx.tcx, expected)) {
case (ty.ty_local(_)) {
log_err "TODO: bound param unifying with local";
fail;
}
case (_) {
2011-04-21 14:10:53 -05:00
ret cx.handler.record_param(actual_id, expected);
}
}
}
case (_) { /* empty */ }
}
alt (struct(cx.tcx, expected)) {
case (ty.ty_nil) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_bool) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_int) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_uint) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_machine(_)) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_float) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_char) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_str) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_type) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_native) { ret struct_cmp(cx, expected, actual); }
case (ty.ty_param(_)) { ret struct_cmp(cx, expected, actual); }
2011-02-17 18:23:31 -06:00
case (ty.ty_tag(?expected_id, ?expected_tps)) {
alt (struct(cx.tcx, actual)) {
2011-02-17 18:23:31 -06:00
case (ty.ty_tag(?actual_id, ?actual_tps)) {
if (expected_id._0 != actual_id._0 ||
expected_id._1 != actual_id._1) {
ret ures_err(terr_mismatch, expected, actual);
}
2011-02-17 18:23:31 -06:00
// TODO: factor this cruft out, see the TODO in the
// ty.ty_tup case
let vec[t] result_tps = vec();
2011-02-17 18:23:31 -06:00
auto i = 0u;
auto expected_len = Vec.len[t](expected_tps);
2011-02-17 18:23:31 -06:00
while (i < expected_len) {
auto expected_tp = expected_tps.(i);
auto actual_tp = actual_tps.(i);
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
2011-02-17 18:23:31 -06:00
expected_tp,
2011-04-21 14:10:53 -05:00
actual_tp);
2011-02-17 18:23:31 -06:00
alt (result) {
case (ures_ok(?rty)) {
Vec.push[t](result_tps, rty);
2011-02-17 18:23:31 -06:00
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(mk_tag(cx.tcx, expected_id, result_tps));
}
case (_) { /* fall through */ }
}
ret ures_err(terr_mismatch, expected, actual);
}
case (ty.ty_box(?expected_mt)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_box(?actual_mt)) {
auto mut;
alt (unify_mut(expected_mt.mut, actual_mt.mut)) {
case (none[ast.mutability]) {
ret ures_err(terr_box_mutability, expected,
actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
expected_mt.ty,
2011-04-21 14:10:53 -05:00
actual_mt.ty);
alt (result) {
case (ures_ok(?result_sub)) {
auto mt = rec(ty=result_sub, mut=mut);
ret ures_ok(mk_box(cx.tcx, mt));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_vec(?expected_mt)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_vec(?actual_mt)) {
auto mut;
alt (unify_mut(expected_mt.mut, actual_mt.mut)) {
case (none[ast.mutability]) {
ret ures_err(terr_vec_mutability, expected,
actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
expected_mt.ty,
2011-04-21 14:10:53 -05:00
actual_mt.ty);
alt (result) {
case (ures_ok(?result_sub)) {
auto mt = rec(ty=result_sub, mut=mut);
ret ures_ok(mk_vec(cx.tcx, mt));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_port(?expected_sub)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_port(?actual_sub)) {
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
expected_sub,
2011-04-21 14:10:53 -05:00
actual_sub);
alt (result) {
case (ures_ok(?result_sub)) {
ret ures_ok(mk_port(cx.tcx, result_sub));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_chan(?expected_sub)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_chan(?actual_sub)) {
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
expected_sub,
2011-04-21 14:10:53 -05:00
actual_sub);
alt (result) {
case (ures_ok(?result_sub)) {
ret ures_ok(mk_chan(cx.tcx, result_sub));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_tup(?expected_elems)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_tup(?actual_elems)) {
auto expected_len = Vec.len[ty.mt](expected_elems);
auto actual_len = Vec.len[ty.mt](actual_elems);
if (expected_len != actual_len) {
auto err = terr_tuple_size(expected_len,
actual_len);
ret ures_err(err, expected, actual);
}
// TODO: implement an iterator that can iterate over
// two arrays simultaneously.
let vec[ty.mt] result_elems = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_elem = expected_elems.(i);
auto actual_elem = actual_elems.(i);
auto mut;
alt (unify_mut(expected_elem.mut,
actual_elem.mut)) {
case (none[ast.mutability]) {
auto err = terr_tuple_mutability;
ret ures_err(err, expected, actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
expected_elem.ty,
2011-04-21 14:10:53 -05:00
actual_elem.ty);
alt (result) {
case (ures_ok(?rty)) {
auto mt = rec(ty=rty, mut=mut);
result_elems += vec(mt);
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(mk_tup(cx.tcx, result_elems));
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_rec(?expected_fields)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_rec(?actual_fields)) {
auto expected_len = Vec.len[field](expected_fields);
auto actual_len = Vec.len[field](actual_fields);
if (expected_len != actual_len) {
auto err = terr_record_size(expected_len,
actual_len);
ret ures_err(err, expected, actual);
}
// TODO: implement an iterator that can iterate over
// two arrays simultaneously.
let vec[field] result_fields = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_field = expected_fields.(i);
auto actual_field = actual_fields.(i);
auto mut;
alt (unify_mut(expected_field.mt.mut,
actual_field.mt.mut)) {
case (none[ast.mutability]) {
ret ures_err(terr_record_mutability,
expected, actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
if (!Str.eq(expected_field.ident,
actual_field.ident)) {
auto err =
terr_record_fields(expected_field.ident,
actual_field.ident);
ret ures_err(err, expected, actual);
}
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx,
expected_field.mt.ty,
2011-04-21 14:10:53 -05:00
actual_field.mt.ty);
alt (result) {
case (ures_ok(?rty)) {
auto mt = rec(ty=rty, mut=mut);
Vec.push[field]
(result_fields,
rec(mt=mt with expected_field));
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(mk_rec(cx.tcx, result_fields));
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_fn(?ep, ?expected_inputs, ?expected_output)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_fn(?ap, ?actual_inputs, ?actual_output)) {
2011-04-21 14:10:53 -05:00
ret unify_fn(cx, ep, ap,
expected, actual,
expected_inputs, expected_output,
actual_inputs, actual_output);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_native_fn(?e_abi, ?expected_inputs,
?expected_output)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_native_fn(?a_abi, ?actual_inputs,
?actual_output)) {
2011-04-21 14:10:53 -05:00
ret unify_native_fn(cx, e_abi, a_abi,
expected, actual,
expected_inputs, expected_output,
actual_inputs, actual_output);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
2010-12-31 12:26:29 -06:00
case (ty.ty_obj(?expected_meths)) {
alt (struct(cx.tcx, actual)) {
case (ty.ty_obj(?actual_meths)) {
2011-04-21 14:10:53 -05:00
ret unify_obj(cx, expected, actual,
expected_meths, actual_meths);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
2010-12-31 12:26:29 -06:00
}
}
case (ty.ty_var(?expected_id)) {
// Add a binding.
2011-04-21 14:10:53 -05:00
auto expected_n = get_or_create_set(cx, expected_id);
auto vlen = Vec.len[vec[t]](cx.types);
if (expected_n < vlen) {
2011-04-21 14:10:53 -05:00
cx.types.(expected_n) += vec(actual);
} else {
assert (expected_n == vlen);
2011-04-21 14:10:53 -05:00
cx.types += vec(mutable vec(actual));
}
ret ures_ok(expected);
}
case (ty.ty_local(?expected_id)) {
auto result_ty;
2011-04-21 14:10:53 -05:00
alt (cx.handler.resolve_local(expected_id)) {
case (none[t]) { result_ty = actual; }
case (some[t](?expected_ty)) {
2011-04-21 14:10:53 -05:00
auto result = unify_step(cx, expected_ty, actual);
alt (result) {
case (ures_ok(?rty)) { result_ty = rty; }
case (_) { ret result; }
}
}
}
2011-04-21 14:10:53 -05:00
cx.handler.record_local(expected_id, result_ty);
ret ures_ok(result_ty);
}
case (ty.ty_bound_param(?expected_id)) {
2011-04-21 14:10:53 -05:00
ret cx.handler.record_param(expected_id, actual);
}
}
// TODO: remove me once match-exhaustiveness checking works
fail;
}
// Performs type binding substitution.
fn substitute(&@ctxt cx, &vec[t] set_types, &t typ) -> t {
if (!type_contains_vars(cx.tcx, typ)) {
ret typ;
}
fn substituter(@ctxt cx, vec[t] types, t typ) -> t {
alt (struct(cx.tcx, typ)) {
case (ty_var(?id)) {
2011-04-21 14:10:53 -05:00
alt (cx.var_ids.find(id)) {
case (some[uint](?n)) {
2011-04-21 14:10:53 -05:00
auto root = UFind.find(cx.sets, n);
ret types.(root);
}
case (none[uint]) { ret typ; }
}
}
case (_) { ret typ; }
}
}
2011-04-21 14:10:53 -05:00
auto f = bind substituter(cx, set_types, _);
ret fold_ty(cx.tcx, f, typ);
}
fn unify_sets(&@ctxt cx) -> vec[t] {
let vec[t] throwaway = vec();
let vec[mutable vec[t]] set_types = vec(mutable throwaway);
Vec.pop[vec[t]](set_types); // FIXME: botch
2011-04-21 14:10:53 -05:00
for (UFind.node node in cx.sets.nodes) {
let vec[t] v = vec();
set_types += vec(mutable v);
}
auto i = 0u;
while (i < Vec.len[vec[t]](set_types)) {
2011-04-21 14:10:53 -05:00
auto root = UFind.find(cx.sets, i);
set_types.(root) += cx.types.(i);
i += 1u;
}
let vec[t] result = vec();
for (vec[t] types in set_types) {
if (Vec.len[t](types) > 1u) {
log_err "unification of > 1 types in a type set is " +
"unimplemented";
fail;
}
result += vec(types.(0));
}
ret result;
}
fn unify(&t expected,
&t actual,
&unify_handler handler,
&ty_ctxt tcx) -> result {
let vec[t] throwaway = vec();
let vec[mutable vec[t]] types = vec(mutable throwaway);
Vec.pop[vec[t]](types); // FIXME: botch
2011-04-21 14:10:53 -05:00
auto cx = @rec(sets=UFind.make(),
var_ids=common.new_int_hash[uint](),
mutable types=types,
handler=handler,
tcx=tcx);
2011-02-07 16:16:40 -06:00
2011-04-21 14:10:53 -05:00
auto ures = unify_step(cx, expected, actual);
alt (ures) {
case (ures_ok(?typ)) {
// Fast path: if there are no local variables, don't perform
// substitutions.
if (Vec.len(cx.sets.nodes) == 0u) {
ret ures_ok(typ);
}
2011-04-21 14:10:53 -05:00
auto set_types = unify_sets(cx);
auto t2 = substitute(cx, set_types, typ);
ret ures_ok(t2);
}
case (_) { ret ures; }
}
fail; // not reached
}
}
fn type_err_to_str(&ty.type_err err) -> str {
alt (err) {
case (terr_mismatch) {
ret "types differ";
}
case (terr_box_mutability) {
ret "boxed values differ in mutability";
}
case (terr_vec_mutability) {
ret "vectors differ in mutability";
}
case (terr_tuple_size(?e_sz, ?a_sz)) {
ret "expected a tuple with " + UInt.to_str(e_sz, 10u) +
" elements but found one with " + UInt.to_str(a_sz, 10u) +
" elements";
}
case (terr_tuple_mutability) {
ret "tuple elements differ in mutability";
}
case (terr_record_size(?e_sz, ?a_sz)) {
ret "expected a record with " + UInt.to_str(e_sz, 10u) +
" fields but found one with " + UInt.to_str(a_sz, 10u) +
" fields";
}
case (terr_record_mutability) {
ret "record elements differ in mutability";
}
case (terr_record_fields(?e_fld, ?a_fld)) {
ret "expected a record with field '" + e_fld +
"' but found one with field '" + a_fld +
"'";
}
case (terr_arg_count) {
ret "incorrect number of function parameters";
}
2010-12-31 12:26:29 -06:00
case (terr_meth_count) {
ret "incorrect number of object methods";
}
case (terr_obj_meths(?e_meth, ?a_meth)) {
ret "expected an obj with method '" + e_meth +
"' but found one with method '" + a_meth +
"'";
}
}
}
// Performs bound type parameter replacement using the supplied mapping from
// parameter IDs to types.
fn substitute_type_params(&ctxt cx, &vec[t] bindings, &t typ) -> t {
if (!type_contains_bound_params(cx, typ)) {
ret typ;
}
fn replacer(ctxt cx, vec[t] bindings, t typ) -> t {
alt (struct(cx, typ)) {
case (ty_bound_param(?param_index)) {
ret bindings.(param_index);
}
case (_) { ret typ; }
}
}
auto f = bind replacer(cx, bindings, _);
ret fold_ty(cx, f, typ);
}
// Converts type parameters in a type to bound type parameters.
fn bind_params_in_type(&ctxt cx, &t typ) -> t {
if (!type_contains_params(cx, typ)) {
ret typ;
}
fn binder(ctxt cx, t typ) -> t {
alt (struct(cx, typ)) {
case (ty_bound_param(?index)) {
log_err "bind_params_in_type() called on type that already " +
"has bound params in it";
fail;
}
case (ty_param(?index)) { ret mk_bound_param(cx, index); }
case (_) { ret typ; }
}
}
auto f = bind binder(cx, _);
ret fold_ty(cx, f, typ);
}
fn def_has_ty_params(&ast.def def) -> bool {
alt (def) {
case (ast.def_fn(_)) { ret true; }
case (ast.def_obj(_)) { ret true; }
case (ast.def_obj_field(_)) { ret false; }
case (ast.def_mod(_)) { ret false; }
case (ast.def_const(_)) { ret false; }
case (ast.def_arg(_)) { ret false; }
case (ast.def_local(_)) { ret false; }
case (ast.def_variant(_, _)) { ret true; }
case (ast.def_ty(_)) { ret false; }
case (ast.def_ty_arg(_)) { ret false; }
case (ast.def_binding(_)) { ret false; }
case (ast.def_use(_)) { ret false; }
case (ast.def_native_ty(_)) { ret false; }
case (ast.def_native_fn(_)) { ret true; }
}
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
fn lookup_item_type(session.session sess,
ctxt cx,
&type_cache cache,
ast.def_id did) -> ty_param_count_and_ty {
if (did._0 == sess.get_targ_crate_num()) {
// The item is in this crate. The caller should have added it to the
// type cache already; we simply return it.
ret cache.get(did);
}
alt (cache.find(did)) {
case (some[ty_param_count_and_ty](?tpt)) { ret tpt; }
case (none[ty_param_count_and_ty]) {
auto tyt = creader.get_type(sess, cx, did);
cache.insert(did, tyt);
ret tyt;
}
}
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End: