import std.Str; import std.UInt; import std.Vec; import std.Box; import std.UFind; import std.Map; import std.Map.hashmap; import std.Option; import std.Option.none; import std.Option.some; import driver.session; import front.ast; import front.ast.mutability; import front.creader; import middle.metadata; import util.common; import util.common.ty_u8; import util.common.ty_u16; import util.common.ty_u32; import util.common.ty_u64; import util.common.ty_i8; import util.common.ty_i16; import util.common.ty_i32; import util.common.ty_i64; import util.common.ty_f32; import util.common.ty_f64; import util.common.new_def_hash; import util.common.span; import util.typestate_ann.ts_ann; // Data types tag mode { mo_val; mo_alias; mo_either; } type arg = rec(mode mode, t ty); type field = rec(ast.ident ident, mt mt); type method = rec(ast.proto proto, ast.ident ident, vec[arg] inputs, t output); type mt = rec(t ty, ast.mutability mut); // Contains information needed to resolve types and (in the future) look up // the types of AST nodes. type creader_cache = hashmap[tup(int,uint,uint),ty.t]; type ctxt = rec(@type_store ts, session.session sess, resolve.def_map def_map, creader_cache rcache, hashmap[t,str] short_names_cache); type ty_ctxt = ctxt; // Needed for disambiguation from Unify.ctxt. // Convert from method type to function type. Pretty easy; we just drop // 'ident'. fn method_ty_to_fn_ty(ctxt cx, method m) -> t { ret mk_fn(cx, m.proto, m.inputs, m.output); } // Never construct these manually. These are interned. // // TODO: It'd be really nice to be able to hide this definition from the // outside world, to enforce the above invariants. type raw_t = rec(sty struct, Option.t[str] cname, uint hash, bool has_params, bool has_bound_params, bool has_vars, bool has_locals); type t = uint; // NB: If you change this, you'll probably want to change the corresponding // AST structure in front/ast.rs as well. tag sty { ty_nil; ty_bool; ty_int; ty_float; ty_uint; ty_machine(util.common.ty_mach); ty_char; ty_str; ty_tag(ast.def_id, vec[t]); ty_box(mt); ty_vec(mt); ty_port(t); ty_chan(t); ty_task; ty_tup(vec[mt]); ty_rec(vec[field]); ty_fn(ast.proto, vec[arg], t); ty_native_fn(ast.native_abi, vec[arg], t); ty_obj(vec[method]); ty_var(int); // ephemeral type var ty_local(ast.def_id); // type of a local var ty_param(uint); // fn/tag type param ty_bound_param(uint); // bound param, only paths ty_type; ty_native; // TODO: ty_fn_arg(t), for a possibly-aliased function argument } // Data structures used in type unification type unify_handler = obj { fn resolve_local(ast.def_id id) -> Option.t[t]; fn record_local(ast.def_id id, t ty); // TODO: -> Unify.result fn record_param(uint index, t binding) -> Unify.result; }; tag type_err { terr_mismatch; terr_box_mutability; terr_vec_mutability; terr_tuple_size(uint, uint); terr_tuple_mutability; terr_record_size(uint, uint); terr_record_mutability; terr_record_fields(ast.ident,ast.ident); terr_meth_count; terr_obj_meths(ast.ident,ast.ident); terr_arg_count; } type ty_param_count_and_ty = tup(uint, t); type type_cache = hashmap[ast.def_id,ty_param_count_and_ty]; const uint idx_nil = 0u; const uint idx_bool = 1u; const uint idx_int = 2u; const uint idx_float = 3u; const uint idx_uint = 4u; const uint idx_i8 = 5u; const uint idx_i16 = 6u; const uint idx_i32 = 7u; const uint idx_i64 = 8u; const uint idx_u8 = 9u; const uint idx_u16 = 10u; const uint idx_u32 = 11u; const uint idx_u64 = 12u; const uint idx_f32 = 13u; const uint idx_f64 = 14u; const uint idx_char = 15u; const uint idx_str = 16u; const uint idx_task = 17u; const uint idx_native = 18u; const uint idx_type = 19u; const uint idx_first_others = 20u; type type_store = rec(mutable vec[raw_t] others, hashmap[raw_t,uint] other_structural); fn mk_type_store() -> @type_store { let vec[raw_t] others = vec(); let hashmap[raw_t,uint] ost = Map.mk_hashmap[raw_t,uint](hash_raw_ty, eq_raw_ty); auto ts = @rec(mutable others=others, other_structural=ost); intern(ts, ty_nil, none[str]); intern(ts, ty_bool, none[str]); intern(ts, ty_int, none[str]); intern(ts, ty_float, none[str]); intern(ts, ty_uint, none[str]); intern(ts, ty_machine(ty_i8), none[str]); intern(ts, ty_machine(ty_i16), none[str]); intern(ts, ty_machine(ty_i32), none[str]); intern(ts, ty_machine(ty_i64), none[str]); intern(ts, ty_machine(ty_u8), none[str]); intern(ts, ty_machine(ty_u16), none[str]); intern(ts, ty_machine(ty_u32), none[str]); intern(ts, ty_machine(ty_u64), none[str]); intern(ts, ty_machine(ty_f32), none[str]); intern(ts, ty_machine(ty_f64), none[str]); intern(ts, ty_char, none[str]); intern(ts, ty_str, none[str]); intern(ts, ty_task, none[str]); intern(ts, ty_native, none[str]); intern(ts, ty_type, none[str]); assert Vec.len(ts.others) == idx_first_others; ret ts; } fn mk_rcache() -> creader_cache { fn hash_cache_entry(&tup(int,uint,uint) k) -> uint { ret (k._0 as uint) + k._1 + k._2; } fn eq_cache_entries(&tup(int,uint,uint) a, &tup(int,uint,uint) b) -> bool { ret a._0 == b._0 && a._1 == b._1 && a._2 == b._2; } auto h = hash_cache_entry; auto e = eq_cache_entries; ret Map.mk_hashmap[tup(int,uint,uint),t](h, e); } fn mk_ctxt(session.session s, resolve.def_map dm) -> ctxt { ret rec(ts = mk_type_store(), sess = s, def_map = dm, rcache = mk_rcache(), short_names_cache = Map.mk_hashmap[ty.t,str](ty.hash_ty, ty.eq_ty)); } // Type constructors fn mk_raw_ty(&@type_store ts, &sty st, &Option.t[str] cname) -> raw_t { auto h = hash_type_info(st, cname); let bool has_params = false; let bool has_bound_params = false; let bool has_vars = false; let bool has_locals = false; fn derive_flags_t(@type_store ts, &mutable bool has_params, &mutable bool has_bound_params, &mutable bool has_vars, &mutable bool has_locals, &t tt) { auto rt = ts.others.(tt); has_params = has_params || rt.has_params; has_bound_params = has_bound_params || rt.has_bound_params; has_vars = has_vars || rt.has_vars; has_locals = has_locals || rt.has_locals; } fn derive_flags_mt(@type_store ts, &mutable bool has_params, &mutable bool has_bound_params, &mutable bool has_vars, &mutable bool has_locals, &mt m) { derive_flags_t(ts, has_params, has_bound_params, has_vars, has_locals, m.ty); } fn derive_flags_arg(@type_store ts, &mutable bool has_params, &mutable bool has_bound_params, &mutable bool has_vars, &mutable bool has_locals, &arg a) { derive_flags_t(ts, has_params, has_bound_params, has_vars, has_locals, a.ty); } fn derive_flags_sig(@type_store ts, &mutable bool has_params, &mutable bool has_bound_params, &mutable bool has_vars, &mutable bool has_locals, &vec[arg] args, &t tt) { for (arg a in args) { derive_flags_arg(ts, has_params, has_bound_params, has_vars, has_locals, a); } derive_flags_t(ts, has_params, has_bound_params, has_vars, has_locals, tt); } alt (st) { case (ty_param(_)) { has_params = true; } case (ty_bound_param(_)) { has_bound_params = true; } case (ty_var(_)) { has_vars = true; } case (ty_local(_)) { has_locals = true; } case (ty_tag(_, ?tys)) { for (t tt in tys) { derive_flags_t(ts, has_params, has_bound_params, has_vars, has_locals, tt); } } case (ty_box(?m)) { derive_flags_mt(ts, has_params, has_bound_params, has_vars, has_locals, m); } case (ty_vec(?m)) { derive_flags_mt(ts, has_params, has_bound_params, has_vars, has_locals, m); } case (ty_port(?tt)) { derive_flags_t(ts, has_params, has_bound_params, has_vars, has_locals, tt); } case (ty_chan(?tt)) { derive_flags_t(ts, has_params, has_bound_params, has_vars, has_locals, tt); } case (ty_tup(?mts)) { for (mt m in mts) { derive_flags_mt(ts, has_params, has_bound_params, has_vars, has_locals, m); } } case (ty_rec(?flds)) { for (field f in flds) { derive_flags_mt(ts, has_params, has_bound_params, has_vars, has_locals, f.mt); } } case (ty_fn(_, ?args, ?tt)) { derive_flags_sig(ts, has_params, has_bound_params, has_vars, has_locals, args, tt); } case (ty_native_fn(_, ?args, ?tt)) { derive_flags_sig(ts, has_params, has_bound_params, has_vars, has_locals, args, tt); } case (ty_obj(?meths)) { for (method m in meths) { derive_flags_sig(ts, has_params, has_bound_params, has_vars, has_locals, m.inputs, m.output); } } case (_) { } } ret rec(struct=st, cname=cname, hash=h, has_params = has_params, has_bound_params = has_bound_params, has_vars = has_vars, has_locals = has_locals); } fn intern_raw_ty(&@type_store ts, &raw_t rt) { auto type_num = Vec.len[raw_t](ts.others); ts.others += vec(rt); ts.other_structural.insert(rt, type_num); } fn intern(&@type_store ts, &sty st, &Option.t[str] cname) { intern_raw_ty(ts, mk_raw_ty(ts, st, cname)); } fn gen_ty_full(&ctxt cx, &sty st, &Option.t[str] cname) -> t { auto raw_type = mk_raw_ty(cx.ts, st, cname); // Is it interned? alt (cx.ts.other_structural.find(raw_type)) { case (some[t](?typ)) { ret typ; } case (none[t]) { // Nope. Insert it and return. auto type_num = Vec.len[raw_t](cx.ts.others); intern_raw_ty(cx.ts, raw_type); // log_err "added: " + ty_to_str(tystore, raw_type); ret type_num; } } } // These are private constructors to this module. External users should always // use the mk_foo() functions below. fn gen_ty(&ctxt cx, &sty st) -> t { ret gen_ty_full(cx, st, none[str]); } fn mk_nil(&ctxt cx) -> t { ret idx_nil; } fn mk_bool(&ctxt cx) -> t { ret idx_bool; } fn mk_int(&ctxt cx) -> t { ret idx_int; } fn mk_float(&ctxt cx) -> t { ret idx_float; } fn mk_uint(&ctxt cx) -> t { ret idx_uint; } fn mk_mach(&ctxt cx, &util.common.ty_mach tm) -> t { alt (tm) { case (ty_u8) { ret idx_u8; } case (ty_u16) { ret idx_u16; } case (ty_u32) { ret idx_u32; } case (ty_u64) { ret idx_u64; } case (ty_i8) { ret idx_i8; } case (ty_i16) { ret idx_i16; } case (ty_i32) { ret idx_i32; } case (ty_i64) { ret idx_i64; } case (ty_f32) { ret idx_f32; } case (ty_f64) { ret idx_f64; } } fail; } fn mk_char(&ctxt cx) -> t { ret idx_char; } fn mk_str(&ctxt cx) -> t { ret idx_str; } fn mk_tag(&ctxt cx, &ast.def_id did, &vec[t] tys) -> t { ret gen_ty(cx, ty_tag(did, tys)); } fn mk_box(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_box(tm)); } fn mk_imm_box(&ctxt cx, &t ty) -> t { ret mk_box(cx, rec(ty=ty, mut=ast.imm)); } fn mk_vec(&ctxt cx, &mt tm) -> t { ret gen_ty(cx, ty_vec(tm)); } fn mk_port(&ctxt cx, &t ty) -> t { ret gen_ty(cx, ty_port(ty)); } fn mk_chan(&ctxt cx, &t ty) -> t { ret gen_ty(cx, ty_chan(ty)); } fn mk_task(&ctxt cx) -> t { ret gen_ty(cx, ty_task); } fn mk_tup(&ctxt cx, &vec[mt] tms) -> t { ret gen_ty(cx, ty_tup(tms)); } fn mk_imm_tup(&ctxt cx, &vec[t] tys) -> t { // TODO: map let vec[ty.mt] mts = vec(); for (t typ in tys) { mts += vec(rec(ty=typ, mut=ast.imm)); } ret mk_tup(cx, mts); } fn mk_rec(&ctxt cx, &vec[field] fs) -> t { ret gen_ty(cx, ty_rec(fs)); } fn mk_fn(&ctxt cx, &ast.proto proto, &vec[arg] args, &t ty) -> t { ret gen_ty(cx, ty_fn(proto, args, ty)); } fn mk_native_fn(&ctxt cx, &ast.native_abi abi, &vec[arg] args, &t ty) -> t { ret gen_ty(cx, ty_native_fn(abi, args, ty)); } fn mk_obj(&ctxt cx, &vec[method] meths) -> t { ret gen_ty(cx, ty_obj(meths)); } fn mk_var(&ctxt cx, int v) -> t { ret gen_ty(cx, ty_var(v)); } fn mk_local(&ctxt cx, ast.def_id did) -> t { ret gen_ty(cx, ty_local(did)); } fn mk_param(&ctxt cx, uint n) -> t { ret gen_ty(cx, ty_param(n)); } fn mk_bound_param(&ctxt cx, uint n) -> t { ret gen_ty(cx, ty_bound_param(n)); } fn mk_type(&ctxt cx) -> t { ret idx_type; } fn mk_native(&ctxt cx) -> t { ret idx_native; } // Returns the one-level-deep type structure of the given type. fn struct(&ctxt cx, &t typ) -> sty { ret cx.ts.others.(typ).struct; } // Returns the canonical name of the given type. fn cname(&ctxt cx, &t typ) -> Option.t[str] { ret cx.ts.others.(typ).cname; } // Stringification fn path_to_str(&ast.path pth) -> str { auto result = Str.connect(pth.node.idents, "::"); if (Vec.len[@ast.ty](pth.node.types) > 0u) { auto f = pretty.pprust.ty_to_str; result += "["; result += Str.connect(Vec.map[@ast.ty,str](f, pth.node.types), ","); result += "]"; } ret result; } fn ty_to_str(ctxt cx, &t typ) -> str { fn fn_input_to_str(ctxt cx, &rec(mode mode, t ty) input) -> str { auto s; alt (input.mode) { case (mo_val) { s = ""; } case (mo_alias) { s = "&"; } case (mo_either) { s = "?"; } } ret s + ty_to_str(cx, input.ty); } fn fn_to_str(ctxt cx, ast.proto proto, Option.t[ast.ident] ident, vec[arg] inputs, t output) -> str { auto f = bind fn_input_to_str(cx, _); auto s; alt (proto) { case (ast.proto_iter) { s = "iter"; } case (ast.proto_fn) { s = "fn"; } } alt (ident) { case (some[ast.ident](?i)) { s += " "; s += i; } case (_) { } } s += "("; s += Str.connect(Vec.map[arg,str](f, inputs), ", "); s += ")"; if (struct(cx, output) != ty_nil) { s += " -> " + ty_to_str(cx, output); } ret s; } fn method_to_str(ctxt cx, &method m) -> str { ret fn_to_str(cx, m.proto, some[ast.ident](m.ident), m.inputs, m.output) + ";"; } fn field_to_str(ctxt cx, &field f) -> str { ret mt_to_str(cx, f.mt) + " " + f.ident; } fn mt_to_str(ctxt cx, &mt m) -> str { auto mstr; alt (m.mut) { case (ast.mut) { mstr = "mutable "; } case (ast.imm) { mstr = ""; } case (ast.maybe_mut) { mstr = "mutable? "; } } ret mstr + ty_to_str(cx, m.ty); } alt (cname(cx, typ)) { case (some[str](?cs)) { ret cs; } case (_) { } } auto s = ""; alt (struct(cx, typ)) { case (ty_native) { s += "native"; } case (ty_nil) { s += "()"; } case (ty_bool) { s += "bool"; } case (ty_int) { s += "int"; } case (ty_float) { s += "float"; } case (ty_uint) { s += "uint"; } case (ty_machine(?tm)) { s += common.ty_mach_to_str(tm); } case (ty_char) { s += "char"; } case (ty_str) { s += "str"; } case (ty_box(?tm)) { s += "@" + mt_to_str(cx, tm); } case (ty_vec(?tm)) { s += "vec[" + mt_to_str(cx, tm) + "]"; } case (ty_port(?t)) { s += "port[" + ty_to_str(cx, t) + "]"; } case (ty_chan(?t)) { s += "chan[" + ty_to_str(cx, t) + "]"; } case (ty_type) { s += "type"; } case (ty_tup(?elems)) { auto f = bind mt_to_str(cx, _); auto strs = Vec.map[mt,str](f, elems); s += "tup(" + Str.connect(strs, ",") + ")"; } case (ty_rec(?elems)) { auto f = bind field_to_str(cx, _); auto strs = Vec.map[field,str](f, elems); s += "rec(" + Str.connect(strs, ",") + ")"; } case (ty_tag(?id, ?tps)) { // The user should never see this if the cname is set properly! s += ""; if (Vec.len[t](tps) > 0u) { auto f = bind ty_to_str(cx, _); auto strs = Vec.map[t,str](f, tps); s += "[" + Str.connect(strs, ",") + "]"; } } case (ty_fn(?proto, ?inputs, ?output)) { s += fn_to_str(cx, proto, none[ast.ident], inputs, output); } case (ty_native_fn(_, ?inputs, ?output)) { s += fn_to_str(cx, ast.proto_fn, none[ast.ident], inputs, output); } case (ty_obj(?meths)) { auto f = bind method_to_str(cx, _); auto m = Vec.map[method,str](f, meths); s += "obj {\n\t" + Str.connect(m, "\n\t") + "\n}"; } case (ty_var(?v)) { s += ""; } case (ty_local(?id)) { s += ""; } case (ty_param(?id)) { s += "'" + Str.unsafe_from_bytes(vec(('a' as u8) + (id as u8))); } case (ty_bound_param(?id)) { s += "''" + Str.unsafe_from_bytes(vec(('a' as u8) + (id as u8))); } } ret s; } fn ty_to_short_str(ctxt cx, t typ) -> str { auto f = def_to_str; auto ecx = @rec(ds=f, tcx=cx, abbrevs=metadata.ac_no_abbrevs); auto s = metadata.Encode.ty_str(ecx, typ); if (Str.byte_len(s) >= 32u) { s = Str.substr(s, 0u, 32u); } ret s; } // Type folds type ty_walk = fn(t); fn walk_ty(ctxt cx, ty_walk walker, t ty) { alt (struct(cx, ty)) { case (ty_nil) { /* no-op */ } case (ty_bool) { /* no-op */ } case (ty_int) { /* no-op */ } case (ty_uint) { /* no-op */ } case (ty_float) { /* no-op */ } case (ty_machine(_)) { /* no-op */ } case (ty_char) { /* no-op */ } case (ty_str) { /* no-op */ } case (ty_type) { /* no-op */ } case (ty_native) { /* no-op */ } case (ty_box(?tm)) { walk_ty(cx, walker, tm.ty); } case (ty_vec(?tm)) { walk_ty(cx, walker, tm.ty); } case (ty_port(?subty)) { walk_ty(cx, walker, subty); } case (ty_chan(?subty)) { walk_ty(cx, walker, subty); } case (ty_tag(?tid, ?subtys)) { for (t subty in subtys) { walk_ty(cx, walker, subty); } } case (ty_tup(?mts)) { for (mt tm in mts) { walk_ty(cx, walker, tm.ty); } } case (ty_rec(?fields)) { for (field fl in fields) { walk_ty(cx, walker, fl.mt.ty); } } case (ty_fn(?proto, ?args, ?ret_ty)) { for (arg a in args) { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, ret_ty); } case (ty_native_fn(?abi, ?args, ?ret_ty)) { for (arg a in args) { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, ret_ty); } case (ty_obj(?methods)) { let vec[method] new_methods = vec(); for (method m in methods) { for (arg a in m.inputs) { walk_ty(cx, walker, a.ty); } walk_ty(cx, walker, m.output); } } case (ty_var(_)) { /* no-op */ } case (ty_local(_)) { /* no-op */ } case (ty_param(_)) { /* no-op */ } case (ty_bound_param(_)) { /* no-op */ } } walker(ty); } type ty_fold = fn(t) -> t; fn fold_ty(ctxt cx, ty_fold fld, t ty_0) -> t { auto ty = ty_0; alt (struct(cx, ty)) { case (ty_nil) { /* no-op */ } case (ty_bool) { /* no-op */ } case (ty_int) { /* no-op */ } case (ty_uint) { /* no-op */ } case (ty_float) { /* no-op */ } case (ty_machine(_)) { /* no-op */ } case (ty_char) { /* no-op */ } case (ty_str) { /* no-op */ } case (ty_type) { /* no-op */ } case (ty_native) { /* no-op */ } case (ty_box(?tm)) { ty = copy_cname(cx, mk_box(cx, rec(ty=fold_ty(cx, fld, tm.ty), mut=tm.mut)), ty); } case (ty_vec(?tm)) { ty = copy_cname(cx, mk_vec(cx, rec(ty=fold_ty(cx, fld, tm.ty), mut=tm.mut)), ty); } case (ty_port(?subty)) { ty = copy_cname(cx, mk_port(cx, fold_ty(cx, fld, subty)), ty); } case (ty_chan(?subty)) { ty = copy_cname(cx, mk_chan(cx, fold_ty(cx, fld, subty)), ty); } case (ty_tag(?tid, ?subtys)) { let vec[t] new_subtys = vec(); for (t subty in subtys) { new_subtys += vec(fold_ty(cx, fld, subty)); } ty = copy_cname(cx, mk_tag(cx, tid, new_subtys), ty); } case (ty_tup(?mts)) { let vec[mt] new_mts = vec(); for (mt tm in mts) { auto new_subty = fold_ty(cx, fld, tm.ty); new_mts += vec(rec(ty=new_subty, mut=tm.mut)); } ty = copy_cname(cx, mk_tup(cx, new_mts), ty); } case (ty_rec(?fields)) { let vec[field] new_fields = vec(); for (field fl in fields) { auto new_ty = fold_ty(cx, fld, fl.mt.ty); auto new_mt = rec(ty=new_ty, mut=fl.mt.mut); new_fields += vec(rec(ident=fl.ident, mt=new_mt)); } ty = copy_cname(cx, mk_rec(cx, new_fields), ty); } case (ty_fn(?proto, ?args, ?ret_ty)) { let vec[arg] new_args = vec(); for (arg a in args) { auto new_ty = fold_ty(cx, fld, a.ty); new_args += vec(rec(mode=a.mode, ty=new_ty)); } ty = copy_cname(cx, mk_fn(cx, proto, new_args, fold_ty(cx, fld, ret_ty)), ty); } case (ty_native_fn(?abi, ?args, ?ret_ty)) { let vec[arg] new_args = vec(); for (arg a in args) { auto new_ty = fold_ty(cx, fld, a.ty); new_args += vec(rec(mode=a.mode, ty=new_ty)); } ty = copy_cname(cx, mk_native_fn(cx, abi, new_args, fold_ty(cx, fld, ret_ty)), ty); } case (ty_obj(?methods)) { let vec[method] new_methods = vec(); for (method m in methods) { let vec[arg] new_args = vec(); for (arg a in m.inputs) { new_args += vec(rec(mode=a.mode, ty=fold_ty(cx, fld, a.ty))); } new_methods += vec(rec(proto=m.proto, ident=m.ident, inputs=new_args, output=fold_ty(cx, fld, m.output))); } ty = copy_cname(cx, mk_obj(cx, new_methods), ty); } case (ty_var(_)) { /* no-op */ } case (ty_local(_)) { /* no-op */ } case (ty_param(_)) { /* no-op */ } case (ty_bound_param(_)) { /* no-op */ } } ret fld(ty); } // Type utilities fn rename(ctxt cx, t typ, str new_cname) -> t { ret gen_ty_full(cx, struct(cx, typ), some[str](new_cname)); } // Returns a type with the structural part taken from `struct_ty` and the // canonical name from `cname_ty`. fn copy_cname(ctxt cx, t struct_ty, t cname_ty) -> t { ret gen_ty_full(cx, struct(cx, struct_ty), cname(cx, cname_ty)); } fn type_is_nil(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_nil) { ret true; } case (_) { ret false; } } fail; } fn type_is_bool(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_bool) { ret true; } case (_) { ret false; } } } fn type_is_structural(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_tup(_)) { ret true; } case (ty_rec(_)) { ret true; } case (ty_tag(_,_)) { ret true; } case (ty_fn(_,_,_)) { ret true; } case (ty_obj(_)) { ret true; } case (_) { ret false; } } fail; } fn type_is_sequence(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_str) { ret true; } case (ty_vec(_)) { ret true; } case (_) { ret false; } } fail; } fn sequence_element_type(&ctxt cx, &t ty) -> t { alt (struct(cx, ty)) { case (ty_str) { ret mk_mach(cx, common.ty_u8); } case (ty_vec(?mt)) { ret mt.ty; } } fail; } fn type_is_tup_like(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_box(_)) { ret true; } case (ty_tup(_)) { ret true; } case (ty_rec(_)) { ret true; } case (ty_tag(_,_)) { ret true; } case (_) { ret false; } } fail; } fn get_element_type(&ctxt cx, &t ty, uint i) -> t { assert (type_is_tup_like(cx, ty)); alt (struct(cx, ty)) { case (ty_tup(?mts)) { ret mts.(i).ty; } case (ty_rec(?flds)) { ret flds.(i).mt.ty; } } fail; } fn type_is_box(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_box(_)) { ret true; } case (_) { ret false; } } fail; } fn type_is_boxed(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_str) { ret true; } case (ty_vec(_)) { ret true; } case (ty_box(_)) { ret true; } case (ty_port(_)) { ret true; } case (ty_chan(_)) { ret true; } case (_) { ret false; } } fail; } fn type_is_scalar(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_nil) { ret true; } case (ty_bool) { ret true; } case (ty_int) { ret true; } case (ty_float) { ret true; } case (ty_uint) { ret true; } case (ty_machine(_)) { ret true; } case (ty_char) { ret true; } case (ty_type) { ret true; } case (ty_native) { ret true; } case (_) { ret false; } } fail; } // FIXME: should we just return true for native types in // type_is_scalar? fn type_is_native(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_native) { ret true; } case (_) { ret false; } } fail; } fn type_has_dynamic_size(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_tup(?mts)) { auto i = 0u; while (i < Vec.len[mt](mts)) { if (type_has_dynamic_size(cx, mts.(i).ty)) { ret true; } i += 1u; } } case (ty_rec(?fields)) { auto i = 0u; while (i < Vec.len[field](fields)) { if (type_has_dynamic_size(cx, fields.(i).mt.ty)) { ret true; } i += 1u; } } case (ty_tag(_, ?subtys)) { auto i = 0u; while (i < Vec.len[t](subtys)) { if (type_has_dynamic_size(cx, subtys.(i))) { ret true; } i += 1u; } } case (ty_param(_)) { ret true; } case (_) { /* fall through */ } } ret false; } fn type_is_integral(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_int) { ret true; } case (ty_uint) { ret true; } case (ty_machine(?m)) { alt (m) { case (common.ty_i8) { ret true; } case (common.ty_i16) { ret true; } case (common.ty_i32) { ret true; } case (common.ty_i64) { ret true; } case (common.ty_u8) { ret true; } case (common.ty_u16) { ret true; } case (common.ty_u32) { ret true; } case (common.ty_u64) { ret true; } case (_) { ret false; } } } case (ty_char) { ret true; } case (_) { ret false; } } fail; } fn type_is_fp(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_machine(?tm)) { alt (tm) { case (common.ty_f32) { ret true; } case (common.ty_f64) { ret true; } case (_) { ret false; } } } case (ty_float) { ret true; } case (_) { ret false; } } fail; } fn type_is_signed(&ctxt cx, &t ty) -> bool { alt (struct(cx, ty)) { case (ty_int) { ret true; } case (ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { ret true; } case (common.ty_i16) { ret true; } case (common.ty_i32) { ret true; } case (common.ty_i64) { ret true; } case (_) { ret false; } } } case (_) { ret false; } } fail; } fn type_param(&ctxt cx, &t ty) -> Option.t[uint] { alt (struct(cx, ty)) { case (ty_param(?id)) { ret some[uint](id); } case (_) { /* fall through */ } } ret none[uint]; } fn def_to_str(&ast.def_id did) -> str { ret #fmt("%d:%d", did._0, did._1); } // Type hashing. This function is private to this module (and slow); external // users should use `hash_ty()` instead. fn hash_type_structure(&sty st) -> uint { fn hash_uint(uint id, uint n) -> uint { auto h = id; h += h << 5u + n; ret h; } fn hash_def(uint id, ast.def_id did) -> uint { auto h = id; h += h << 5u + (did._0 as uint); h += h << 5u + (did._1 as uint); ret h; } fn hash_subty(uint id, &t subty) -> uint { auto h = id; h += h << 5u + hash_ty(subty); ret h; } fn hash_fn(uint id, &vec[arg] args, &t rty) -> uint { auto h = id; for (arg a in args) { h += h << 5u + hash_ty(a.ty); } h += h << 5u + hash_ty(rty); ret h; } alt (st) { case (ty_nil) { ret 0u; } case (ty_bool) { ret 1u; } case (ty_int) { ret 2u; } case (ty_float) { ret 3u; } case (ty_uint) { ret 4u; } case (ty_machine(?tm)) { alt (tm) { case (common.ty_i8) { ret 5u; } case (common.ty_i16) { ret 6u; } case (common.ty_i32) { ret 7u; } case (common.ty_i64) { ret 8u; } case (common.ty_u8) { ret 9u; } case (common.ty_u16) { ret 10u; } case (common.ty_u32) { ret 11u; } case (common.ty_u64) { ret 12u; } case (common.ty_f32) { ret 13u; } case (common.ty_f64) { ret 14u; } } } case (ty_char) { ret 15u; } case (ty_str) { ret 16u; } case (ty_tag(?did, ?tys)) { auto h = hash_def(17u, did); for (t typ in tys) { h += h << 5u + hash_ty(typ); } ret h; } case (ty_box(?mt)) { ret hash_subty(18u, mt.ty); } case (ty_vec(?mt)) { ret hash_subty(19u, mt.ty); } case (ty_port(?typ)) { ret hash_subty(20u, typ); } case (ty_chan(?typ)) { ret hash_subty(21u, typ); } case (ty_task) { ret 22u; } case (ty_tup(?mts)) { auto h = 23u; for (mt tm in mts) { h += h << 5u + hash_ty(tm.ty); } ret h; } case (ty_rec(?fields)) { auto h = 24u; for (field f in fields) { h += h << 5u + hash_ty(f.mt.ty); } ret h; } case (ty_fn(_, ?args, ?rty)) { ret hash_fn(25u, args, rty); } case (ty_native_fn(_, ?args, ?rty)) { ret hash_fn(26u, args, rty); } case (ty_obj(?methods)) { auto h = 27u; for (method m in methods) { h += h << 5u + Str.hash(m.ident); } ret h; } case (ty_var(?v)) { ret hash_uint(28u, v as uint); } case (ty_local(?did)) { ret hash_def(29u, did); } case (ty_param(?pid)) { ret hash_uint(30u, pid); } case (ty_bound_param(?pid)) { ret hash_uint(31u, pid); } case (ty_type) { ret 32u; } case (ty_native) { ret 33u; } } } fn hash_type_info(&sty st, &Option.t[str] cname_opt) -> uint { auto h = hash_type_structure(st); alt (cname_opt) { case (none[str]) { /* no-op */ } case (some[str](?s)) { h += h << 5u + Str.hash(s); } } ret h; } fn hash_raw_ty(&raw_t rt) -> uint { ret rt.hash; } fn hash_ty(&t typ) -> uint { ret typ; } // Type equality. This function is private to this module (and slow); external // users should use `eq_ty()` instead. fn equal_type_structures(&sty a, &sty b) -> bool { fn equal_mt(&mt a, &mt b) -> bool { ret a.mut == b.mut && eq_ty(a.ty, b.ty); } fn equal_fn(&vec[arg] args_a, &t rty_a, &vec[arg] args_b, &t rty_b) -> bool { if (!eq_ty(rty_a, rty_b)) { ret false; } auto len = Vec.len[arg](args_a); if (len != Vec.len[arg](args_b)) { ret false; } auto i = 0u; while (i < len) { auto arg_a = args_a.(i); auto arg_b = args_b.(i); if (arg_a.mode != arg_b.mode) { ret false; } if (!eq_ty(arg_a.ty, arg_b.ty)) { ret false; } i += 1u; } ret true; } fn equal_def(&ast.def_id did_a, &ast.def_id did_b) -> bool { ret did_a._0 == did_b._0 && did_a._1 == did_b._1; } alt (a) { case (ty_nil) { alt (b) { case (ty_nil) { ret true; } case (_) { ret false; } } } case (ty_bool) { alt (b) { case (ty_bool) { ret true; } case (_) { ret false; } } } case (ty_int) { alt (b) { case (ty_int) { ret true; } case (_) { ret false; } } } case (ty_float) { alt (b) { case (ty_float) { ret true; } case (_) { ret false; } } } case (ty_uint) { alt (b) { case (ty_uint) { ret true; } case (_) { ret false; } } } case (ty_machine(?tm_a)) { alt (b) { case (ty_machine(?tm_b)) { ret hash_type_structure(a) == hash_type_structure(b); } case (_) { ret false; } } } case (ty_char) { alt (b) { case (ty_char) { ret true; } case (_) { ret false; } } } case (ty_str) { alt (b) { case (ty_str) { ret true; } case (_) { ret false; } } } case (ty_tag(?id_a, ?tys_a)) { alt (b) { case (ty_tag(?id_b, ?tys_b)) { if (!equal_def(id_a, id_b)) { ret false; } auto len = Vec.len[t](tys_a); if (len != Vec.len[t](tys_b)) { ret false; } auto i = 0u; while (i < len) { if (!eq_ty(tys_a.(i), tys_b.(i))) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_box(?mt_a)) { alt (b) { case (ty_box(?mt_b)) { ret equal_mt(mt_a, mt_b); } case (_) { ret false; } } } case (ty_vec(?mt_a)) { alt (b) { case (ty_vec(?mt_b)) { ret equal_mt(mt_a, mt_b); } case (_) { ret false; } } } case (ty_port(?t_a)) { alt (b) { case (ty_port(?t_b)) { ret eq_ty(t_a, t_b); } case (_) { ret false; } } } case (ty_chan(?t_a)) { alt (b) { case (ty_chan(?t_b)) { ret eq_ty(t_a, t_b); } case (_) { ret false; } } } case (ty_task) { alt (b) { case (ty_task) { ret true; } case (_) { ret false; } } } case (ty_tup(?mts_a)) { alt (b) { case (ty_tup(?mts_b)) { auto len = Vec.len[mt](mts_a); if (len != Vec.len[mt](mts_b)) { ret false; } auto i = 0u; while (i < len) { if (!equal_mt(mts_a.(i), mts_b.(i))) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_rec(?flds_a)) { alt (b) { case (ty_rec(?flds_b)) { auto len = Vec.len[field](flds_a); if (len != Vec.len[field](flds_b)) { ret false; } auto i = 0u; while (i < len) { auto fld_a = flds_a.(i); auto fld_b = flds_b.(i); if (!Str.eq(fld_a.ident, fld_b.ident) || !equal_mt(fld_a.mt, fld_b.mt)) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_fn(?p_a, ?args_a, ?rty_a)) { alt (b) { case (ty_fn(?p_b, ?args_b, ?rty_b)) { ret p_a == p_b && equal_fn(args_a, rty_a, args_b, rty_b); } case (_) { ret false; } } } case (ty_native_fn(?abi_a, ?args_a, ?rty_a)) { alt (b) { case (ty_native_fn(?abi_b, ?args_b, ?rty_b)) { ret abi_a == abi_b && equal_fn(args_a, rty_a, args_b, rty_b); } case (_) { ret false; } } } case (ty_obj(?methods_a)) { alt (b) { case (ty_obj(?methods_b)) { auto len = Vec.len[method](methods_a); if (len != Vec.len[method](methods_b)) { ret false; } auto i = 0u; while (i < len) { auto m_a = methods_a.(i); auto m_b = methods_b.(i); if (m_a.proto != m_b.proto || !Str.eq(m_a.ident, m_b.ident) || !equal_fn(m_a.inputs, m_a.output, m_b.inputs, m_b.output)) { ret false; } i += 1u; } ret true; } case (_) { ret false; } } } case (ty_var(?v_a)) { alt (b) { case (ty_var(?v_b)) { ret v_a == v_b; } case (_) { ret false; } } } case (ty_local(?did_a)) { alt (b) { case (ty_local(?did_b)) { ret equal_def(did_a, did_b); } case (_) { ret false; } } } case (ty_param(?pid_a)) { alt (b) { case (ty_param(?pid_b)) { ret pid_a == pid_b; } case (_) { ret false; } } } case (ty_bound_param(?pid_a)) { alt (b) { case (ty_bound_param(?pid_b)) { ret pid_a == pid_b; } case (_) { ret false; } } } case (ty_type) { alt (b) { case (ty_type) { ret true; } case (_) { ret false; } } } case (ty_native) { alt (b) { case (ty_native) { ret true; } case (_) { ret false; } } } } } // An expensive type equality function. This function is private to this // module. // // FIXME: Use structural comparison, but this loops forever and segfaults. fn eq_raw_ty(&raw_t a, &raw_t b) -> bool { // Check hashes (fast path). if (a.hash != b.hash) { ret false; } // Check canonical names. alt (a.cname) { case (none[str]) { alt (b.cname) { case (none[str]) { /* ok */ } case (_) { ret false; } } } case (some[str](?s_a)) { alt (b.cname) { case (some[str](?s_b)) { if (!Str.eq(s_a, s_b)) { ret false; } } case (_) { ret false; } } } } // Check structures. ret equal_type_structures(a.struct, b.struct); } // This is the equality function the public should use. It works as long as // the types are interned. fn eq_ty(&t a, &t b) -> bool { ret a == b; } fn ann_to_type(&ast.ann ann) -> t { alt (ann) { case (ast.ann_none(_)) { log_err "ann_to_type() called on node with no type"; fail; } case (ast.ann_type(_, ?ty, _, _)) { ret ty; } } } fn ann_to_type_params(&ast.ann ann) -> vec[t] { alt (ann) { case (ast.ann_none(_)) { log_err "ann_to_type_params() called on node with no type params"; fail; } case (ast.ann_type(_, _, ?tps, _)) { alt (tps) { case (none[vec[t]]) { let vec[t] result = vec(); ret result; } case (some[vec[t]](?tps)) { ret tps; } } } } } // Returns the type of an annotation, with type parameter substitutions // performed if applicable. fn ann_to_monotype(ctxt cx, ast.ann a) -> t { // TODO: Refactor to use recursive pattern matching when we're more // confident that it works. alt (a) { case (ast.ann_none(_)) { log_err "ann_to_monotype() called on expression with no type!"; fail; } case (ast.ann_type(_, ?typ, ?tps_opt, _)) { alt (tps_opt) { case (none[vec[t]]) { ret typ; } case (some[vec[t]](?tps)) { ret substitute_type_params(cx, tps, typ); } } } } } // Turns a type into an ann_type, using defaults for other fields. fn triv_ann(&ast.ann old, t typ) -> ast.ann { ret ast.ann_type(ast.ann_tag(old), typ, none[vec[t]], none[@ts_ann]); } // Returns the number of distinct type parameters in the given type. fn count_ty_params(ctxt cx, t ty) -> uint { fn counter(ctxt cx, @mutable vec[uint] param_indices, t ty) { alt (struct(cx, ty)) { case (ty_param(?param_idx)) { auto seen = false; for (uint other_param_idx in *param_indices) { if (param_idx == other_param_idx) { seen = true; } } if (!seen) { *param_indices += vec(param_idx); } } case (_) { /* fall through */ } } } let vec[uint] v = vec(); // FIXME: typechecker botch let @mutable vec[uint] param_indices = @mutable v; auto f = bind counter(cx, param_indices, _); walk_ty(cx, f, ty); ret Vec.len[uint](*param_indices); } fn type_contains_vars(&ctxt cx, &t typ) -> bool { ret cx.ts.others.(typ).has_vars; } fn type_contains_locals(&ctxt cx, &t typ) -> bool { ret cx.ts.others.(typ).has_locals; } fn type_contains_params(&ctxt cx, &t typ) -> bool { ret cx.ts.others.(typ).has_params; } fn type_contains_bound_params(&ctxt cx, &t typ) -> bool { ret cx.ts.others.(typ).has_bound_params; } // Type accessors for substructures of types fn ty_fn_args(&ctxt cx, &t fty) -> vec[arg] { alt (struct(cx, fty)) { case (ty.ty_fn(_, ?a, _)) { ret a; } case (ty.ty_native_fn(_, ?a, _)) { ret a; } } fail; } fn ty_fn_proto(&ctxt cx, &t fty) -> ast.proto { alt (struct(cx, fty)) { case (ty.ty_fn(?p, _, _)) { ret p; } } fail; } fn ty_fn_abi(&ctxt cx, &t fty) -> ast.native_abi { alt (struct(cx, fty)) { case (ty.ty_native_fn(?a, _, _)) { ret a; } } fail; } fn ty_fn_ret(&ctxt cx, &t fty) -> t { alt (struct(cx, fty)) { case (ty.ty_fn(_, _, ?r)) { ret r; } case (ty.ty_native_fn(_, _, ?r)) { ret r; } } fail; } fn is_fn_ty(&ctxt cx, &t fty) -> bool { alt (struct(cx, fty)) { case (ty.ty_fn(_, _, _)) { ret true; } case (ty.ty_native_fn(_, _, _)) { ret true; } case (_) { ret false; } } ret false; } // Type accessors for AST nodes // Given an item, returns the associated type as well as the number of type // parameters it has. fn native_item_ty(&@ast.native_item it) -> ty_param_count_and_ty { auto ty_param_count; auto result_ty; alt (it.node) { case (ast.native_item_fn(_, _, _, ?tps, _, ?ann)) { ty_param_count = Vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } } ret tup(ty_param_count, result_ty); } fn item_ty(&@ast.item it) -> ty_param_count_and_ty { auto ty_param_count; auto result_ty; alt (it.node) { case (ast.item_const(_, _, _, _, ?ann)) { ty_param_count = 0u; result_ty = ann_to_type(ann); } case (ast.item_fn(_, _, ?tps, _, ?ann)) { ty_param_count = Vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } case (ast.item_mod(_, _, _)) { fail; // modules are typeless } case (ast.item_ty(_, _, ?tps, _, ?ann)) { ty_param_count = Vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } case (ast.item_tag(_, _, ?tps, ?did, ?ann)) { ty_param_count = Vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } case (ast.item_obj(_, _, ?tps, _, ?ann)) { ty_param_count = Vec.len[ast.ty_param](tps); result_ty = ann_to_type(ann); } } ret tup(ty_param_count, result_ty); } fn stmt_ty(&ctxt cx, &@ast.stmt s) -> t { alt (s.node) { case (ast.stmt_expr(?e,_)) { ret expr_ty(cx, e); } case (_) { ret mk_nil(cx); } } } fn block_ty(&ctxt cx, &ast.block b) -> t { alt (b.node.expr) { case (some[@ast.expr](?e)) { ret expr_ty(cx, e); } case (none[@ast.expr]) { ret mk_nil(cx); } } } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. fn pat_ty(&ctxt cx, &@ast.pat pat) -> t { alt (pat.node) { case (ast.pat_wild(?ann)) { ret ann_to_monotype(cx, ann); } case (ast.pat_lit(_, ?ann)) { ret ann_to_monotype(cx, ann); } case (ast.pat_bind(_, _, ?ann)) { ret ann_to_monotype(cx, ann); } case (ast.pat_tag(_, _, ?ann)) { ret ann_to_monotype(cx, ann); } } fail; // not reached } fn expr_ann(&@ast.expr e) -> ast.ann { alt(e.node) { case (ast.expr_vec(_,_,?a)) { ret a; } case (ast.expr_tup(_,?a)) { ret a; } case (ast.expr_rec(_,_,?a)) { ret a; } case (ast.expr_call(_,_,?a)) { ret a; } case (ast.expr_bind(_,_,?a)) { ret a; } case (ast.expr_binary(_,_,_,?a)) { ret a; } case (ast.expr_unary(_,_,?a)) { ret a; } case (ast.expr_lit(_,?a)) { ret a; } case (ast.expr_cast(_,_,?a)) { ret a; } case (ast.expr_if(_,_,_,?a)) { ret a; } case (ast.expr_while(_,_,?a)) { ret a; } case (ast.expr_for(_,_,_,?a)) { ret a; } case (ast.expr_for_each(_,_,_,?a)) { ret a; } case (ast.expr_do_while(_,_,?a)) { ret a; } case (ast.expr_alt(_,_,?a)) { ret a; } case (ast.expr_block(_,?a)) { ret a; } case (ast.expr_assign(_,_,?a)) { ret a; } case (ast.expr_assign_op(_,_,_,?a)) { ret a; } case (ast.expr_send(_,_,?a)) { ret a; } case (ast.expr_recv(_,_,?a)) { ret a; } case (ast.expr_field(_,_,?a)) { ret a; } case (ast.expr_index(_,_,?a)) { ret a; } case (ast.expr_path(_,?a)) { ret a; } case (ast.expr_ext(_,_,_,_,?a)) { ret a; } case (ast.expr_fail(?a)) { ret a; } case (ast.expr_ret(_,?a)) { ret a; } case (ast.expr_put(_,?a)) { ret a; } case (ast.expr_be(_,?a)) { ret a; } case (ast.expr_log(_,_,?a)) { ret a; } case (ast.expr_assert(_,?a)) { ret a; } case (ast.expr_check(_,?a)) { ret a; } case (ast.expr_port(?a)) { ret a; } case (ast.expr_chan(_,?a)) { ret a; } case (ast.expr_break(?a)) { ret a; } case (ast.expr_cont(?a)) { ret a; } case (ast.expr_self_method(_, ?a)) { ret a; } } } // Returns the type of an expression as a monotype. // // NB: This type doesn't provide type parameter substitutions; e.g. if you // ask for the type of "id" in "id(3)", it will return "fn(&int) -> int" // instead of "fn(&T) -> T with T = int". If this isn't what you want, see // expr_ty_params_and_ty() below. fn expr_ty(&ctxt cx, &@ast.expr expr) -> t { ret ann_to_monotype(cx, expr_ann(expr)); } fn expr_ty_params_and_ty(&ctxt cx, &@ast.expr expr) -> tup(vec[t], t) { auto a = expr_ann(expr); ret tup(ann_to_type_params(a), ann_to_type(a)); } fn expr_has_ty_params(&@ast.expr expr) -> bool { // FIXME: Rewrite using complex patterns when they're trustworthy. alt (expr_ann(expr)) { case (ast.ann_none(_)) { fail; } case (ast.ann_type(_, _, ?tps_opt, _)) { ret !Option.is_none[vec[t]](tps_opt); } } } // FIXME: At the moment this works only for call, bind, and path expressions. fn replace_expr_type(&@ast.expr expr, &tup(vec[t], t) new_tyt) -> @ast.expr { auto new_tps; if (expr_has_ty_params(expr)) { new_tps = some[vec[t]](new_tyt._0); } else { new_tps = none[vec[t]]; } fn mkann_fn(t tyt, Option.t[vec[t]] tps, &ast.ann old_ann) -> ast.ann { ret ast.ann_type(ast.ann_tag(old_ann), tyt, tps, none[@ts_ann]); } auto mkann = bind mkann_fn(new_tyt._1, new_tps, _); alt (expr.node) { case (ast.expr_call(?callee, ?args, ?a)) { ret @fold.respan(expr.span, ast.expr_call(callee, args, mkann(a))); } case (ast.expr_self_method(?ident, ?a)) { ret @fold.respan(expr.span, ast.expr_self_method(ident, mkann(a))); } case (ast.expr_bind(?callee, ?args, ?a)) { ret @fold.respan(expr.span, ast.expr_bind(callee, args, mkann(a))); } case (ast.expr_field(?e, ?i, ?a)) { ret @fold.respan(expr.span, ast.expr_field(e, i, mkann(a))); } case (ast.expr_path(?p, ?a)) { ret @fold.respan(expr.span, ast.expr_path(p, mkann(a))); } case (_) { log_err "unhandled expr type in replace_expr_type(): " + util.common.expr_to_str(expr); fail; } } } // Expression utilities fn field_num(&session.session sess, &span sp, &ast.ident id) -> uint { let uint accum = 0u; let uint i = 0u; for (u8 c in id) { if (i == 0u) { if (c != ('_' as u8)) { sess.span_err(sp, "bad numeric field on tuple: " + "missing leading underscore"); } } else { if (('0' as u8) <= c && c <= ('9' as u8)) { accum *= 10u; accum += (c as uint) - ('0' as uint); } else { auto s = ""; s += Str.unsafe_from_byte(c); sess.span_err(sp, "bad numeric field on tuple: " + " non-digit character: " + s); } } i += 1u; } ret accum; } fn field_idx(&session.session sess, &span sp, &ast.ident id, &vec[field] fields) -> uint { let uint i = 0u; for (field f in fields) { if (Str.eq(f.ident, id)) { ret i; } i += 1u; } sess.span_err(sp, "unknown field '" + id + "' of record"); fail; } fn method_idx(&session.session sess, &span sp, &ast.ident id, &vec[method] meths) -> uint { let uint i = 0u; for (method m in meths) { if (Str.eq(m.ident, id)) { ret i; } i += 1u; } sess.span_err(sp, "unknown method '" + id + "' of obj"); fail; } fn sort_methods(&vec[method] meths) -> vec[method] { fn method_lteq(&method a, &method b) -> bool { ret Str.lteq(a.ident, b.ident); } ret std.Sort.merge_sort[method](bind method_lteq(_,_), meths); } fn is_lval(&@ast.expr expr) -> bool { alt (expr.node) { case (ast.expr_field(_,_,_)) { ret true; } case (ast.expr_index(_,_,_)) { ret true; } case (ast.expr_path(_,_)) { ret true; } case (ast.expr_unary(ast.deref,_,_)) { ret true; } case (_) { ret false; } } } // Type unification via Robinson's algorithm (Robinson 1965). Implemented as // described in Hoder and Voronkov: // // http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf mod Unify { tag result { ures_ok(t); ures_err(type_err, t, t); } type ctxt = rec(UFind.ufind sets, hashmap[int,uint] var_ids, mutable vec[mutable vec[t]] types, unify_handler handler, ty_ctxt tcx); // Wraps the given type in an appropriate cname. // // TODO: This doesn't do anything yet. We should carry the cname up from // the expected and/or actual types when unification results in a type // identical to one or both of the two. The precise algorithm for this is // something we'll probably need to develop over time. // Simple structural type comparison. fn struct_cmp(@ctxt cx, t expected, t actual) -> result { if (struct(cx.tcx, expected) == struct(cx.tcx, actual)) { ret ures_ok(expected); } ret ures_err(terr_mismatch, expected, actual); } // Unifies two mutability flags. fn unify_mut(ast.mutability expected, ast.mutability actual) -> Option.t[ast.mutability] { if (expected == actual) { ret some[ast.mutability](expected); } if (expected == ast.maybe_mut) { ret some[ast.mutability](actual); } if (actual == ast.maybe_mut) { ret some[ast.mutability](expected); } ret none[ast.mutability]; } tag fn_common_res { fn_common_res_err(result); fn_common_res_ok(vec[arg], t); } fn unify_fn_common(&@ctxt cx, &t expected, &t actual, &vec[arg] expected_inputs, &t expected_output, &vec[arg] actual_inputs, &t actual_output) -> fn_common_res { auto expected_len = Vec.len[arg](expected_inputs); auto actual_len = Vec.len[arg](actual_inputs); if (expected_len != actual_len) { ret fn_common_res_err(ures_err(terr_arg_count, expected, actual)); } // TODO: as above, we should have an iter2 iterator. let vec[arg] result_ins = vec(); auto i = 0u; while (i < expected_len) { auto expected_input = expected_inputs.(i); auto actual_input = actual_inputs.(i); // Unify the result modes. "mo_either" unifies with both modes. auto result_mode; if (expected_input.mode == mo_either) { result_mode = actual_input.mode; } else if (actual_input.mode == mo_either) { result_mode = expected_input.mode; } else if (expected_input.mode != actual_input.mode) { ret fn_common_res_err(ures_err(terr_arg_count, expected, actual)); } else { result_mode = expected_input.mode; } auto result = unify_step(cx, actual_input.ty, expected_input.ty); alt (result) { case (ures_ok(?rty)) { result_ins += vec(rec(mode=result_mode, ty=rty)); } case (_) { ret fn_common_res_err(result); } } i += 1u; } // Check the output. auto result = unify_step(cx, expected_output, actual_output); alt (result) { case (ures_ok(?rty)) { ret fn_common_res_ok(result_ins, rty); } case (_) { ret fn_common_res_err(result); } } } fn unify_fn(&@ctxt cx, &ast.proto e_proto, &ast.proto a_proto, &t expected, &t actual, &vec[arg] expected_inputs, &t expected_output, &vec[arg] actual_inputs, &t actual_output) -> result { if (e_proto != a_proto) { ret ures_err(terr_mismatch, expected, actual); } auto t = unify_fn_common(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); alt (t) { case (fn_common_res_err(?r)) { ret r; } case (fn_common_res_ok(?result_ins, ?result_out)) { auto t2 = mk_fn(cx.tcx, e_proto, result_ins, result_out); ret ures_ok(t2); } } } fn unify_native_fn(&@ctxt cx, &ast.native_abi e_abi, &ast.native_abi a_abi, &t expected, &t actual, &vec[arg] expected_inputs, &t expected_output, &vec[arg] actual_inputs, &t actual_output) -> result { if (e_abi != a_abi) { ret ures_err(terr_mismatch, expected, actual); } auto t = unify_fn_common(cx, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); alt (t) { case (fn_common_res_err(?r)) { ret r; } case (fn_common_res_ok(?result_ins, ?result_out)) { auto t2 = mk_native_fn(cx.tcx, e_abi, result_ins, result_out); ret ures_ok(t2); } } } fn unify_obj(&@ctxt cx, &t expected, &t actual, &vec[method] expected_meths, &vec[method] actual_meths) -> result { let vec[method] result_meths = vec(); let uint i = 0u; let uint expected_len = Vec.len[method](expected_meths); let uint actual_len = Vec.len[method](actual_meths); if (expected_len != actual_len) { ret ures_err(terr_meth_count, expected, actual); } while (i < expected_len) { auto e_meth = expected_meths.(i); auto a_meth = actual_meths.(i); if (! Str.eq(e_meth.ident, a_meth.ident)) { ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident), expected, actual); } auto r = unify_fn(cx, e_meth.proto, a_meth.proto, expected, actual, e_meth.inputs, e_meth.output, a_meth.inputs, a_meth.output); alt (r) { case (ures_ok(?tfn)) { alt (struct(cx.tcx, tfn)) { case (ty_fn(?proto, ?ins, ?out)) { result_meths += vec(rec(inputs = ins, output = out with e_meth)); } } } case (_) { ret r; } } i += 1u; } auto t = mk_obj(cx.tcx, result_meths); ret ures_ok(t); } fn get_or_create_set(&@ctxt cx, int id) -> uint { auto set_num; alt (cx.var_ids.find(id)) { case (none[uint]) { set_num = UFind.make_set(cx.sets); cx.var_ids.insert(id, set_num); } case (some[uint](?n)) { set_num = n; } } ret set_num; } fn unify_step(&@ctxt cx, &t expected, &t actual) -> result { // TODO: rewrite this using tuple pattern matching when available, to // avoid all this rightward drift and spikiness. // TODO: occurs check, to make sure we don't loop forever when // unifying e.g. 'a and option['a] // Fast path. if (eq_ty(expected, actual)) { ret ures_ok(expected); } alt (struct(cx.tcx, actual)) { // If the RHS is a variable type, then just do the appropriate // binding. case (ty.ty_var(?actual_id)) { auto actual_n = get_or_create_set(cx, actual_id); alt (struct(cx.tcx, expected)) { case (ty.ty_var(?expected_id)) { auto expected_n = get_or_create_set(cx, expected_id); UFind.union(cx.sets, expected_n, actual_n); } case (_) { // Just bind the type variable to the expected type. auto vlen = Vec.len[vec[t]](cx.types); if (actual_n < vlen) { cx.types.(actual_n) += vec(expected); } else { assert (actual_n == vlen); cx.types += vec(mutable vec(expected)); } } } ret ures_ok(actual); } case (ty.ty_local(?actual_id)) { auto result_ty; alt (cx.handler.resolve_local(actual_id)) { case (none[t]) { result_ty = expected; } case (some[t](?actual_ty)) { auto result = unify_step(cx, expected, actual_ty); alt (result) { case (ures_ok(?rty)) { result_ty = rty; } case (_) { ret result; } } } } cx.handler.record_local(actual_id, result_ty); ret ures_ok(result_ty); } case (ty.ty_bound_param(?actual_id)) { alt (struct(cx.tcx, expected)) { case (ty.ty_local(_)) { log_err "TODO: bound param unifying with local"; fail; } case (_) { ret cx.handler.record_param(actual_id, expected); } } } case (_) { /* empty */ } } alt (struct(cx.tcx, expected)) { case (ty.ty_nil) { ret struct_cmp(cx, expected, actual); } case (ty.ty_bool) { ret struct_cmp(cx, expected, actual); } case (ty.ty_int) { ret struct_cmp(cx, expected, actual); } case (ty.ty_uint) { ret struct_cmp(cx, expected, actual); } case (ty.ty_machine(_)) { ret struct_cmp(cx, expected, actual); } case (ty.ty_float) { ret struct_cmp(cx, expected, actual); } case (ty.ty_char) { ret struct_cmp(cx, expected, actual); } case (ty.ty_str) { ret struct_cmp(cx, expected, actual); } case (ty.ty_type) { ret struct_cmp(cx, expected, actual); } case (ty.ty_native) { ret struct_cmp(cx, expected, actual); } case (ty.ty_param(_)) { ret struct_cmp(cx, expected, actual); } case (ty.ty_tag(?expected_id, ?expected_tps)) { alt (struct(cx.tcx, actual)) { case (ty.ty_tag(?actual_id, ?actual_tps)) { if (expected_id._0 != actual_id._0 || expected_id._1 != actual_id._1) { ret ures_err(terr_mismatch, expected, actual); } // TODO: factor this cruft out, see the TODO in the // ty.ty_tup case let vec[t] result_tps = vec(); auto i = 0u; auto expected_len = Vec.len[t](expected_tps); while (i < expected_len) { auto expected_tp = expected_tps.(i); auto actual_tp = actual_tps.(i); auto result = unify_step(cx, expected_tp, actual_tp); alt (result) { case (ures_ok(?rty)) { Vec.push[t](result_tps, rty); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_tag(cx.tcx, expected_id, result_tps)); } case (_) { /* fall through */ } } ret ures_err(terr_mismatch, expected, actual); } case (ty.ty_box(?expected_mt)) { alt (struct(cx.tcx, actual)) { case (ty.ty_box(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none[ast.mutability]) { ret ures_err(terr_box_mutability, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } auto result = unify_step(cx, expected_mt.ty, actual_mt.ty); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_box(cx.tcx, mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_vec(?expected_mt)) { alt (struct(cx.tcx, actual)) { case (ty.ty_vec(?actual_mt)) { auto mut; alt (unify_mut(expected_mt.mut, actual_mt.mut)) { case (none[ast.mutability]) { ret ures_err(terr_vec_mutability, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } auto result = unify_step(cx, expected_mt.ty, actual_mt.ty); alt (result) { case (ures_ok(?result_sub)) { auto mt = rec(ty=result_sub, mut=mut); ret ures_ok(mk_vec(cx.tcx, mt)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_port(?expected_sub)) { alt (struct(cx.tcx, actual)) { case (ty.ty_port(?actual_sub)) { auto result = unify_step(cx, expected_sub, actual_sub); alt (result) { case (ures_ok(?result_sub)) { ret ures_ok(mk_port(cx.tcx, result_sub)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_chan(?expected_sub)) { alt (struct(cx.tcx, actual)) { case (ty.ty_chan(?actual_sub)) { auto result = unify_step(cx, expected_sub, actual_sub); alt (result) { case (ures_ok(?result_sub)) { ret ures_ok(mk_chan(cx.tcx, result_sub)); } case (_) { ret result; } } } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_tup(?expected_elems)) { alt (struct(cx.tcx, actual)) { case (ty.ty_tup(?actual_elems)) { auto expected_len = Vec.len[ty.mt](expected_elems); auto actual_len = Vec.len[ty.mt](actual_elems); if (expected_len != actual_len) { auto err = terr_tuple_size(expected_len, actual_len); ret ures_err(err, expected, actual); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let vec[ty.mt] result_elems = vec(); auto i = 0u; while (i < expected_len) { auto expected_elem = expected_elems.(i); auto actual_elem = actual_elems.(i); auto mut; alt (unify_mut(expected_elem.mut, actual_elem.mut)) { case (none[ast.mutability]) { auto err = terr_tuple_mutability; ret ures_err(err, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } auto result = unify_step(cx, expected_elem.ty, actual_elem.ty); alt (result) { case (ures_ok(?rty)) { auto mt = rec(ty=rty, mut=mut); result_elems += vec(mt); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_tup(cx.tcx, result_elems)); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_rec(?expected_fields)) { alt (struct(cx.tcx, actual)) { case (ty.ty_rec(?actual_fields)) { auto expected_len = Vec.len[field](expected_fields); auto actual_len = Vec.len[field](actual_fields); if (expected_len != actual_len) { auto err = terr_record_size(expected_len, actual_len); ret ures_err(err, expected, actual); } // TODO: implement an iterator that can iterate over // two arrays simultaneously. let vec[field] result_fields = vec(); auto i = 0u; while (i < expected_len) { auto expected_field = expected_fields.(i); auto actual_field = actual_fields.(i); auto mut; alt (unify_mut(expected_field.mt.mut, actual_field.mt.mut)) { case (none[ast.mutability]) { ret ures_err(terr_record_mutability, expected, actual); } case (some[ast.mutability](?m)) { mut = m; } } if (!Str.eq(expected_field.ident, actual_field.ident)) { auto err = terr_record_fields(expected_field.ident, actual_field.ident); ret ures_err(err, expected, actual); } auto result = unify_step(cx, expected_field.mt.ty, actual_field.mt.ty); alt (result) { case (ures_ok(?rty)) { auto mt = rec(ty=rty, mut=mut); Vec.push[field] (result_fields, rec(mt=mt with expected_field)); } case (_) { ret result; } } i += 1u; } ret ures_ok(mk_rec(cx.tcx, result_fields)); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_fn(?ep, ?expected_inputs, ?expected_output)) { alt (struct(cx.tcx, actual)) { case (ty.ty_fn(?ap, ?actual_inputs, ?actual_output)) { ret unify_fn(cx, ep, ap, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_native_fn(?e_abi, ?expected_inputs, ?expected_output)) { alt (struct(cx.tcx, actual)) { case (ty.ty_native_fn(?a_abi, ?actual_inputs, ?actual_output)) { ret unify_native_fn(cx, e_abi, a_abi, expected, actual, expected_inputs, expected_output, actual_inputs, actual_output); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_obj(?expected_meths)) { alt (struct(cx.tcx, actual)) { case (ty.ty_obj(?actual_meths)) { ret unify_obj(cx, expected, actual, expected_meths, actual_meths); } case (_) { ret ures_err(terr_mismatch, expected, actual); } } } case (ty.ty_var(?expected_id)) { // Add a binding. auto expected_n = get_or_create_set(cx, expected_id); auto vlen = Vec.len[vec[t]](cx.types); if (expected_n < vlen) { cx.types.(expected_n) += vec(actual); } else { assert (expected_n == vlen); cx.types += vec(mutable vec(actual)); } ret ures_ok(expected); } case (ty.ty_local(?expected_id)) { auto result_ty; alt (cx.handler.resolve_local(expected_id)) { case (none[t]) { result_ty = actual; } case (some[t](?expected_ty)) { auto result = unify_step(cx, expected_ty, actual); alt (result) { case (ures_ok(?rty)) { result_ty = rty; } case (_) { ret result; } } } } cx.handler.record_local(expected_id, result_ty); ret ures_ok(result_ty); } case (ty.ty_bound_param(?expected_id)) { ret cx.handler.record_param(expected_id, actual); } } // TODO: remove me once match-exhaustiveness checking works fail; } // Performs type binding substitution. fn substitute(&@ctxt cx, &vec[t] set_types, &t typ) -> t { if (!type_contains_vars(cx.tcx, typ)) { ret typ; } fn substituter(@ctxt cx, vec[t] types, t typ) -> t { alt (struct(cx.tcx, typ)) { case (ty_var(?id)) { alt (cx.var_ids.find(id)) { case (some[uint](?n)) { auto root = UFind.find(cx.sets, n); ret types.(root); } case (none[uint]) { ret typ; } } } case (_) { ret typ; } } } auto f = bind substituter(cx, set_types, _); ret fold_ty(cx.tcx, f, typ); } fn unify_sets(&@ctxt cx) -> vec[t] { let vec[t] throwaway = vec(); let vec[mutable vec[t]] set_types = vec(mutable throwaway); Vec.pop[vec[t]](set_types); // FIXME: botch for (UFind.node node in cx.sets.nodes) { let vec[t] v = vec(); set_types += vec(mutable v); } auto i = 0u; while (i < Vec.len[vec[t]](set_types)) { auto root = UFind.find(cx.sets, i); set_types.(root) += cx.types.(i); i += 1u; } let vec[t] result = vec(); for (vec[t] types in set_types) { if (Vec.len[t](types) > 1u) { log_err "unification of > 1 types in a type set is " + "unimplemented"; fail; } result += vec(types.(0)); } ret result; } fn unify(&t expected, &t actual, &unify_handler handler, &ty_ctxt tcx) -> result { let vec[t] throwaway = vec(); let vec[mutable vec[t]] types = vec(mutable throwaway); Vec.pop[vec[t]](types); // FIXME: botch auto cx = @rec(sets=UFind.make(), var_ids=common.new_int_hash[uint](), mutable types=types, handler=handler, tcx=tcx); auto ures = unify_step(cx, expected, actual); alt (ures) { case (ures_ok(?typ)) { // Fast path: if there are no local variables, don't perform // substitutions. if (Vec.len(cx.sets.nodes) == 0u) { ret ures_ok(typ); } auto set_types = unify_sets(cx); auto t2 = substitute(cx, set_types, typ); ret ures_ok(t2); } case (_) { ret ures; } } fail; // not reached } } fn type_err_to_str(&ty.type_err err) -> str { alt (err) { case (terr_mismatch) { ret "types differ"; } case (terr_box_mutability) { ret "boxed values differ in mutability"; } case (terr_vec_mutability) { ret "vectors differ in mutability"; } case (terr_tuple_size(?e_sz, ?a_sz)) { ret "expected a tuple with " + UInt.to_str(e_sz, 10u) + " elements but found one with " + UInt.to_str(a_sz, 10u) + " elements"; } case (terr_tuple_mutability) { ret "tuple elements differ in mutability"; } case (terr_record_size(?e_sz, ?a_sz)) { ret "expected a record with " + UInt.to_str(e_sz, 10u) + " fields but found one with " + UInt.to_str(a_sz, 10u) + " fields"; } case (terr_record_mutability) { ret "record elements differ in mutability"; } case (terr_record_fields(?e_fld, ?a_fld)) { ret "expected a record with field '" + e_fld + "' but found one with field '" + a_fld + "'"; } case (terr_arg_count) { ret "incorrect number of function parameters"; } case (terr_meth_count) { ret "incorrect number of object methods"; } case (terr_obj_meths(?e_meth, ?a_meth)) { ret "expected an obj with method '" + e_meth + "' but found one with method '" + a_meth + "'"; } } } // Performs bound type parameter replacement using the supplied mapping from // parameter IDs to types. fn substitute_type_params(&ctxt cx, &vec[t] bindings, &t typ) -> t { if (!type_contains_bound_params(cx, typ)) { ret typ; } fn replacer(ctxt cx, vec[t] bindings, t typ) -> t { alt (struct(cx, typ)) { case (ty_bound_param(?param_index)) { ret bindings.(param_index); } case (_) { ret typ; } } } auto f = bind replacer(cx, bindings, _); ret fold_ty(cx, f, typ); } // Converts type parameters in a type to bound type parameters. fn bind_params_in_type(&ctxt cx, &t typ) -> t { if (!type_contains_params(cx, typ)) { ret typ; } fn binder(ctxt cx, t typ) -> t { alt (struct(cx, typ)) { case (ty_bound_param(?index)) { log_err "bind_params_in_type() called on type that already " + "has bound params in it"; fail; } case (ty_param(?index)) { ret mk_bound_param(cx, index); } case (_) { ret typ; } } } auto f = bind binder(cx, _); ret fold_ty(cx, f, typ); } fn def_has_ty_params(&ast.def def) -> bool { alt (def) { case (ast.def_fn(_)) { ret true; } case (ast.def_obj(_)) { ret true; } case (ast.def_obj_field(_)) { ret false; } case (ast.def_mod(_)) { ret false; } case (ast.def_const(_)) { ret false; } case (ast.def_arg(_)) { ret false; } case (ast.def_local(_)) { ret false; } case (ast.def_variant(_, _)) { ret true; } case (ast.def_ty(_)) { ret false; } case (ast.def_ty_arg(_)) { ret false; } case (ast.def_binding(_)) { ret false; } case (ast.def_use(_)) { ret false; } case (ast.def_native_ty(_)) { ret false; } case (ast.def_native_fn(_)) { ret true; } } } // If the given item is in an external crate, looks up its type and adds it to // the type cache. Returns the type parameters and type. fn lookup_item_type(session.session sess, ctxt cx, &type_cache cache, ast.def_id did) -> ty_param_count_and_ty { if (did._0 == sess.get_targ_crate_num()) { // The item is in this crate. The caller should have added it to the // type cache already; we simply return it. ret cache.get(did); } alt (cache.find(did)) { case (some[ty_param_count_and_ty](?tpt)) { ret tpt; } case (none[ty_param_count_and_ty]) { auto tyt = creader.get_type(sess, cx, did); cache.insert(did, tyt); ret tyt; } } } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: