1014 lines
34 KiB
Rust
Raw Normal View History

import std._str;
import std._uint;
import std._vec;
import std.map;
import std.map.hashmap;
import std.option;
import std.option.none;
import std.option.some;
import driver.session;
import front.ast;
import front.ast.mutability;
import util.common;
import util.common.append;
import util.common.span;
// Data types
type arg = rec(ast.mode mode, @t ty);
type field = rec(ast.ident ident, @t ty);
type method = rec(ast.ident ident, vec[arg] inputs, @t output);
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in front/ast.rs as well.
type t = rec(sty struct, mutability mut, option.t[str] cname);
tag sty {
ty_nil;
ty_bool;
ty_int;
ty_uint;
ty_machine(util.common.ty_mach);
ty_char;
ty_str;
ty_tag(ast.def_id);
ty_box(@t);
ty_vec(@t);
ty_tup(vec[@t]);
ty_rec(vec[field]);
ty_fn(vec[arg], @t); // TODO: effect
ty_obj(vec[method]);
ty_var(int); // ephemeral type var
ty_local(ast.def_id); // type of a local var
ty_param(ast.def_id); // fn type param
// TODO: ty_fn_arg(@t), for a possibly-aliased function argument
}
// Data structures used in type unification
type unify_handler = obj {
fn resolve_local(ast.def_id id) -> @t;
fn record_local(ast.def_id id, @t ty);
fn unify_expected_param(ast.def_id id, @t expected, @t actual)
-> unify_result;
};
tag type_err {
terr_mismatch;
terr_tuple_size(uint, uint);
terr_tuple_mutability;
terr_record_size(uint, uint);
terr_record_mutability;
terr_record_fields(ast.ident,ast.ident);
terr_arg_count;
}
tag unify_result {
ures_ok(@ty.t);
ures_err(type_err, @ty.t, @ty.t);
}
// Stringification
fn ast_ty_to_str(&@ast.ty ty) -> str {
fn ast_fn_input_to_str(&rec(ast.mode mode, @ast.ty ty) input) -> str {
auto s;
if (mode_is_alias(input.mode)) {
s = "&";
} else {
s = "";
}
ret s + ast_ty_to_str(input.ty);
}
fn ast_ty_field_to_str(&ast.ty_field f) -> str {
ret ast_ty_to_str(f.ty) + " " + f.ident;
}
auto s;
alt (ty.node) {
case (ast.ty_nil) { s = "()"; }
case (ast.ty_bool) { s = "bool"; }
case (ast.ty_int) { s = "int"; }
case (ast.ty_uint) { s = "uint"; }
case (ast.ty_machine(?tm)) { s = common.ty_mach_to_str(tm); }
case (ast.ty_char) { s = "char"; }
case (ast.ty_str) { s = "str"; }
case (ast.ty_box(?t)) { s = "@" + ast_ty_to_str(t); }
case (ast.ty_vec(?t)) { s = "vec[" + ast_ty_to_str(t) + "]"; }
case (ast.ty_tup(?elts)) {
auto f = ast_ty_to_str;
s = "tup(";
s += _str.connect(_vec.map[@ast.ty,str](f, elts), ",");
s += ")";
}
case (ast.ty_rec(?fields)) {
auto f = ast_ty_field_to_str;
s = "rec(";
s += _str.connect(_vec.map[ast.ty_field,str](f, fields), ",");
s += ")";
}
case (ast.ty_fn(?inputs, ?output)) {
auto f = ast_fn_input_to_str;
s = "fn(";
auto is = _vec.map[rec(ast.mode mode, @ast.ty ty),str](f, inputs);
s += _str.connect(is, ", ");
s += ")";
if (output.node != ast.ty_nil) {
s += " -> " + ast_ty_to_str(output);
}
}
case (ast.ty_path(?path, _)) {
s = path_to_str(path);
}
case (ast.ty_mutable(?t)) {
s = "mutable " + ast_ty_to_str(t);
}
case (_) {
fail; // FIXME: typestate bug
}
}
ret s;
}
fn name_to_str(&ast.name nm) -> str {
auto result = nm.node.ident;
if (_vec.len[@ast.ty](nm.node.types) > 0u) {
auto f = ast_ty_to_str;
result += "[";
result += _str.connect(_vec.map[@ast.ty,str](f, nm.node.types), ",");
result += "]";
}
ret result;
}
fn path_to_str(&ast.path path) -> str {
auto f = name_to_str;
ret _str.connect(_vec.map[ast.name,str](f, path), ".");
}
fn ty_to_str(&@t typ) -> str {
fn fn_input_to_str(&rec(ast.mode mode, @t ty) input) -> str {
auto s;
if (mode_is_alias(input.mode)) {
s = "&";
} else {
s = "";
}
ret s + ty_to_str(input.ty);
}
fn fn_to_str(option.t[ast.ident] ident,
vec[arg] inputs, @t output) -> str {
auto f = fn_input_to_str;
auto s = "fn";
alt (ident) {
case (some[ast.ident](?i)) {
s += " ";
s += i;
}
case (_) { }
}
s += "(";
s += _str.connect(_vec.map[arg,str](f, inputs), ", ");
s += ")";
if (output.struct != ty_nil) {
s += " -> " + ty_to_str(output);
}
ret s;
}
fn method_to_str(&method m) -> str {
ret fn_to_str(some[ast.ident](m.ident), m.inputs, m.output) + ";";
}
fn field_to_str(&field f) -> str {
ret ty_to_str(f.ty) + " " + f.ident;
}
auto s = "";
if (typ.mut == ast.mut) {
s += "mutable ";
}
alt (typ.struct) {
case (ty_nil) { s = "()"; }
case (ty_bool) { s = "bool"; }
case (ty_int) { s = "int"; }
case (ty_uint) { s = "uint"; }
case (ty_machine(?tm)) { s = common.ty_mach_to_str(tm); }
case (ty_char) { s = "char"; }
case (ty_str) { s = "str"; }
case (ty_box(?t)) { s = "@" + ty_to_str(t); }
case (ty_vec(?t)) { s = "vec[" + ty_to_str(t) + "]"; }
case (ty_tup(?elems)) {
auto f = ty_to_str;
auto strs = _vec.map[@t,str](f, elems);
s = "tup(" + _str.connect(strs, ",") + ")";
}
case (ty_rec(?elems)) {
auto f = field_to_str;
auto strs = _vec.map[field,str](f, elems);
s = "rec(" + _str.connect(strs, ",") + ")";
}
case (ty_tag(_)) {
// The user should never see this if the cname is set properly!
s = "<tag>";
}
case (ty_fn(?inputs, ?output)) {
s = fn_to_str(none[ast.ident], inputs, output);
}
case (ty_obj(?meths)) {
auto f = method_to_str;
auto m = _vec.map[method,str](f, meths);
s = "obj {\n\t" + _str.connect(m, "\n\t") + "\n}";
}
case (ty_var(?v)) {
s = "<T" + util.common.istr(v) + ">";
}
case (ty_param(?id)) {
s = "<P" + util.common.istr(id._0) + ":" + util.common.istr(id._1)
+ ">";
}
}
ret s;
}
// Type folds
type ty_fold = state obj {
fn fold_simple_ty(@t ty) -> @t;
};
fn fold_ty(ty_fold fld, @t ty) -> @t {
fn rewrap(@t orig, &sty new) -> @t {
ret @rec(struct=new, mut=orig.mut, cname=orig.cname);
}
alt (ty.struct) {
case (ty_nil) { ret fld.fold_simple_ty(ty); }
case (ty_bool) { ret fld.fold_simple_ty(ty); }
case (ty_int) { ret fld.fold_simple_ty(ty); }
case (ty_uint) { ret fld.fold_simple_ty(ty); }
case (ty_machine(_)) { ret fld.fold_simple_ty(ty); }
case (ty_char) { ret fld.fold_simple_ty(ty); }
case (ty_str) { ret fld.fold_simple_ty(ty); }
case (ty_tag(_)) { ret fld.fold_simple_ty(ty); }
case (ty_box(?subty)) {
ret rewrap(ty, ty_box(fold_ty(fld, subty)));
}
case (ty_vec(?subty)) {
ret rewrap(ty, ty_vec(fold_ty(fld, subty)));
}
case (ty_tup(?subtys)) {
let vec[@t] new_subtys = vec();
for (@t subty in subtys) {
new_subtys += vec(fold_ty(fld, subty));
}
ret rewrap(ty, ty_tup(new_subtys));
}
case (ty_rec(?fields)) {
let vec[field] new_fields = vec();
for (field fl in fields) {
auto new_ty = fold_ty(fld, fl.ty);
new_fields += vec(rec(ident=fl.ident, ty=new_ty));
}
ret rewrap(ty, ty_rec(new_fields));
}
case (ty_fn(?args, ?ret_ty)) {
let vec[arg] new_args = vec();
for (arg a in args) {
auto new_ty = fold_ty(fld, a.ty);
new_args += vec(rec(mode=a.mode, ty=new_ty));
}
ret rewrap(ty, ty_fn(new_args, fold_ty(fld, ret_ty)));
}
case (ty_obj(?methods)) {
let vec[method] new_methods = vec();
for (method m in methods) {
let vec[arg] new_args = vec();
for (arg a in m.inputs) {
new_args += vec(rec(mode=a.mode, ty=fold_ty(fld, a.ty)));
}
new_methods += vec(rec(ident=m.ident, inputs=new_args,
output=fold_ty(fld, m.output)));
}
ret rewrap(ty, ty_obj(new_methods));
}
case (ty_var(_)) { ret fld.fold_simple_ty(ty); }
case (ty_local(_)) { ret fld.fold_simple_ty(ty); }
case (ty_param(_)) { ret fld.fold_simple_ty(ty); }
}
ret ty;
}
// Type utilities
// FIXME: remove me when == works on these tags.
fn mode_is_alias(ast.mode m) -> bool {
alt (m) {
case (ast.val) { ret false; }
case (ast.alias) { ret true; }
}
fail;
}
fn type_is_nil(@t ty) -> bool {
alt (ty.struct) {
case (ty_nil) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_structural(@t ty) -> bool {
alt (ty.struct) {
case (ty_tup(_)) { ret true; }
case (ty_rec(_)) { ret true; }
case (ty_tag(_)) { ret true; }
case (ty_fn(_,_)) { ret true; }
case (ty_obj(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_boxed(@t ty) -> bool {
alt (ty.struct) {
case (ty_str) { ret true; }
case (ty_vec(_)) { ret true; }
case (ty_box(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_scalar(@t ty) -> bool {
alt (ty.struct) {
case (ty_nil) { ret true; }
case (ty_bool) { ret true; }
case (ty_int) { ret true; }
case (ty_uint) { ret true; }
case (ty_machine(_)) { ret true; }
case (ty_char) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_integral(@t ty) -> bool {
alt (ty.struct) {
case (ty_int) { ret true; }
case (ty_uint) { ret true; }
case (ty_machine(?m)) {
alt (m) {
case (common.ty_i8) { ret true; }
case (common.ty_i16) { ret true; }
case (common.ty_i32) { ret true; }
case (common.ty_i64) { ret true; }
case (common.ty_u8) { ret true; }
case (common.ty_u16) { ret true; }
case (common.ty_u32) { ret true; }
case (common.ty_u64) { ret true; }
case (_) { ret false; }
}
}
case (ty_char) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_fp(@t ty) -> bool {
alt (ty.struct) {
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_f32) { ret true; }
case (common.ty_f64) { ret true; }
case (_) { ret false; }
}
}
case (_) { ret false; }
}
fail;
}
fn type_is_signed(@t ty) -> bool {
alt (ty.struct) {
case (ty_int) { ret true; }
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_i8) { ret true; }
case (common.ty_i16) { ret true; }
case (common.ty_i32) { ret true; }
case (common.ty_i64) { ret true; }
case (_) { ret false; }
}
}
case (_) { ret false; }
}
fail;
}
fn type_param(@t ty) -> option.t[ast.def_id] {
alt (ty.struct) {
case (ty_param(?id)) { ret some[ast.def_id](id); }
case (_) { /* fall through */ }
}
ret none[ast.def_id];
}
fn plain_ty(&sty st) -> @t {
ret @rec(struct=st, mut=ast.imm, cname=none[str]);
}
fn hash_ty(&@t ty) -> uint {
ret _str.hash(ty_to_str(ty));
}
fn eq_ty(&@t a, &@t b) -> bool {
// FIXME: this is gross, but I think it's safe, and I don't think writing
// a giant function to handle all the cases is necessary when structural
// equality will someday save the day.
ret _str.eq(ty_to_str(a), ty_to_str(b));
}
fn ann_to_type(&ast.ann ann) -> @t {
alt (ann) {
case (ast.ann_none) {
// shouldn't happen, but can until the typechecker is complete
ret plain_ty(ty_var(-1)); // FIXME: broken, broken, broken
}
case (ast.ann_type(?ty)) {
ret ty;
}
}
}
fn count_ty_params(@t ty) -> uint {
state obj ty_param_counter(@mutable vec[ast.def_id] param_ids) {
fn fold_simple_ty(@t ty) -> @t {
alt (ty.struct) {
case (ty_param(?param_id)) {
for (ast.def_id other_param_id in *param_ids) {
if (param_id._0 == other_param_id._0 &&
param_id._1 == other_param_id._1) {
ret ty;
}
}
*param_ids += vec(param_id);
}
case (_) { /* fall through */ }
}
ret ty;
}
}
let vec[ast.def_id] param_ids_inner = vec();
let @mutable vec[ast.def_id] param_ids = @mutable param_ids_inner;
fold_ty(ty_param_counter(param_ids), ty);
ret _vec.len[ast.def_id](*param_ids);
}
// Type accessors for AST nodes
fn stmt_ty(@ast.stmt s) -> @t {
alt (s.node) {
case (ast.stmt_expr(?e)) {
ret expr_ty(e);
}
case (_) {
ret plain_ty(ty_nil);
}
}
}
fn block_ty(&ast.block b) -> @t {
alt (b.node.expr) {
case (some[@ast.expr](?e)) { ret expr_ty(e); }
case (none[@ast.expr]) { ret plain_ty(ty_nil); }
}
}
fn pat_ty(@ast.pat pat) -> @t {
alt (pat.node) {
case (ast.pat_wild(?ann)) { ret ann_to_type(ann); }
case (ast.pat_bind(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.pat_tag(_, _, _, ?ann)) { ret ann_to_type(ann); }
}
fail; // not reached
}
fn expr_ty(@ast.expr expr) -> @t {
alt (expr.node) {
case (ast.expr_vec(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_tup(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_rec(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_call(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_binary(_, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_unary(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_lit(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_cast(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_if(_, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_while(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_do_while(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_alt(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_block(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_assign(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_assign_op(_, _, _, ?ann))
{ ret ann_to_type(ann); }
case (ast.expr_field(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_index(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_name(_, _, ?ann)) { ret ann_to_type(ann); }
}
fail;
}
// Expression utilities
fn field_num(session.session sess, &span sp, &ast.ident id) -> uint {
let uint accum = 0u;
let uint i = 0u;
for (u8 c in id) {
if (i == 0u) {
if (c != ('_' as u8)) {
sess.span_err(sp,
"bad numeric field on tuple: "
+ "missing leading underscore");
}
} else {
if (('0' as u8) <= c && c <= ('9' as u8)) {
accum *= 10u;
accum += (c as uint) - ('0' as uint);
} else {
auto s = "";
s += c;
sess.span_err(sp,
"bad numeric field on tuple: "
+ " non-digit character: "
+ s);
}
}
i += 1u;
}
ret accum;
}
fn field_idx(session.session sess, &span sp,
&ast.ident id, vec[field] fields) -> uint {
let uint i = 0u;
for (field f in fields) {
if (_str.eq(f.ident, id)) {
ret i;
}
i += 1u;
}
sess.span_err(sp, "unknown field '" + id + "' of record");
fail;
}
fn method_idx(session.session sess, &span sp,
&ast.ident id, vec[method] meths) -> uint {
let uint i = 0u;
for (method m in meths) {
if (_str.eq(m.ident, id)) {
ret i;
}
i += 1u;
}
sess.span_err(sp, "unknown method '" + id + "' of obj");
fail;
}
fn is_lval(@ast.expr expr) -> bool {
alt (expr.node) {
case (ast.expr_field(_,_,_)) { ret true; }
case (ast.expr_index(_,_,_)) { ret true; }
case (ast.expr_name(_,_,_)) { ret true; }
case (_) { ret false; }
}
}
// Type unification
fn unify(@ty.t expected, @ty.t actual, &unify_handler handler)
-> unify_result {
// Wraps the given type in an appropriate cname.
//
// TODO: This doesn't do anything yet. We should carry the cname up from
// the expected and/or actual types when unification results in a type
// identical to one or both of the two. The precise algorithm for this is
// something we'll probably need to develop over time.
// Simple structural type comparison.
fn struct_cmp(@ty.t expected, @ty.t actual) -> unify_result {
if (expected.struct == actual.struct) {
ret ures_ok(expected);
}
ret ures_err(terr_mismatch, expected, actual);
}
fn unify_step(&hashmap[int,@ty.t] bindings, @ty.t expected, @ty.t actual,
&unify_handler handler) -> unify_result {
// TODO: rewrite this using tuple pattern matching when available, to
// avoid all this rightward drift and spikiness.
// If the RHS is a variable type, then just do the appropriate
// binding.
alt (actual.struct) {
case (ty.ty_var(?actual_id)) {
alt (bindings.find(actual_id)) {
case (some[@ty.t](?actual_ty)) {
// FIXME: change the binding here?
// FIXME: "be"
ret unify_step(bindings, expected, actual_ty,
handler);
}
case (none[@ty.t]) {
bindings.insert(actual_id, expected);
ret ures_ok(expected);
}
}
}
case (ty.ty_local(?actual_id)) {
auto actual_ty = handler.resolve_local(actual_id);
auto result = unify_step(bindings,
expected,
actual_ty,
handler);
alt (result) {
case (ures_ok(?result_ty)) {
handler.record_local(actual_id, result_ty);
}
case (_) { /* empty */ }
}
ret result;
}
case (_) { /* empty */ }
}
alt (expected.struct) {
case (ty.ty_nil) { ret struct_cmp(expected, actual); }
case (ty.ty_bool) { ret struct_cmp(expected, actual); }
case (ty.ty_int) { ret struct_cmp(expected, actual); }
case (ty.ty_uint) { ret struct_cmp(expected, actual); }
case (ty.ty_machine(_)) { ret struct_cmp(expected, actual); }
case (ty.ty_char) { ret struct_cmp(expected, actual); }
case (ty.ty_str) { ret struct_cmp(expected, actual); }
case (ty.ty_tag(?expected_id)) {
alt (actual.struct) {
case (ty.ty_tag(?actual_id)) {
if (expected_id._0 == actual_id._0 &&
expected_id._1 == actual_id._1) {
ret ures_ok(expected);
}
}
case (_) { /* fall through */ }
}
ret ures_err(terr_mismatch, expected, actual);
}
case (ty.ty_box(?expected_sub)) {
alt (actual.struct) {
case (ty.ty_box(?actual_sub)) {
auto result = unify_step(bindings,
expected_sub,
actual_sub,
handler);
alt (result) {
case (ures_ok(?result_sub)) {
ret ures_ok(plain_ty(ty.ty_box(result_sub)));
}
case (_) {
ret result;
}
}
}
// TODO: ty_var
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_vec(?expected_sub)) {
alt (actual.struct) {
case (ty.ty_vec(?actual_sub)) {
auto result = unify_step(bindings,
expected_sub,
actual_sub,
handler);
alt (result) {
case (ures_ok(?result_sub)) {
ret ures_ok(plain_ty(ty.ty_vec(result_sub)));
}
case (_) {
ret result;
}
}
}
// TODO: ty_var
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_tup(?expected_elems)) {
alt (actual.struct) {
case (ty.ty_tup(?actual_elems)) {
auto expected_len = _vec.len[@ty.t](expected_elems);
auto actual_len = _vec.len[@ty.t](actual_elems);
if (expected_len != actual_len) {
auto err = terr_tuple_size(expected_len,
actual_len);
ret ures_err(err, expected, actual);
}
// TODO: implement an iterator that can iterate over
// two arrays simultaneously.
let vec[@ty.t] result_elems = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_elem = expected_elems.(i);
auto actual_elem = actual_elems.(i);
if (expected_elem.mut != actual_elem.mut) {
auto err = terr_tuple_mutability;
ret ures_err(err, expected, actual);
}
auto result = unify_step(bindings,
expected_elem,
actual_elem,
handler);
alt (result) {
case (ures_ok(?rty)) {
append[@ty.t](result_elems,rty);
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(plain_ty(ty.ty_tup(result_elems)));
}
// TODO: ty_var
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_rec(?expected_fields)) {
alt (actual.struct) {
case (ty.ty_rec(?actual_fields)) {
auto expected_len = _vec.len[field](expected_fields);
auto actual_len = _vec.len[field](actual_fields);
if (expected_len != actual_len) {
auto err = terr_record_size(expected_len,
actual_len);
ret ures_err(err, expected, actual);
}
// TODO: implement an iterator that can iterate over
// two arrays simultaneously.
let vec[field] result_fields = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_field = expected_fields.(i);
auto actual_field = actual_fields.(i);
if (expected_field.ty.mut
!= actual_field.ty.mut) {
auto err = terr_record_mutability;
ret ures_err(err, expected, actual);
}
if (!_str.eq(expected_field.ident,
actual_field.ident)) {
auto err =
terr_record_fields(expected_field.ident,
actual_field.ident);
ret ures_err(err, expected, actual);
}
auto result = unify_step(bindings,
expected_field.ty,
actual_field.ty,
handler);
alt (result) {
case (ures_ok(?rty)) {
append[field]
(result_fields,
rec(ty=rty with expected_field));
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(plain_ty(ty.ty_rec(result_fields)));
}
// TODO: ty_var
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_fn(?expected_inputs, ?expected_output)) {
alt (actual.struct) {
case (ty.ty_fn(?actual_inputs, ?actual_output)) {
auto expected_len = _vec.len[arg](expected_inputs);
auto actual_len = _vec.len[arg](actual_inputs);
if (expected_len != actual_len) {
ret ures_err(terr_arg_count, expected, actual);
}
// TODO: as above, we should have an iter2 iterator.
let vec[arg] result_ins = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_input = expected_inputs.(i);
auto actual_input = actual_inputs.(i);
// This should be safe, I think?
auto result_mode;
if (mode_is_alias(expected_input.mode) ||
mode_is_alias(actual_input.mode)) {
result_mode = ast.alias;
} else {
result_mode = ast.val;
}
auto result = unify_step(bindings,
actual_input.ty,
expected_input.ty,
handler);
alt (result) {
case (ures_ok(?rty)) {
result_ins += vec(rec(mode=result_mode,
ty=rty));
}
case (_) {
ret result;
}
}
i += 1u;
}
// Check the output.
auto result_out;
auto result = unify_step(bindings,
expected_output,
actual_output,
handler);
alt (result) {
case (ures_ok(?rty)) {
result_out = rty;
}
case (_) {
ret result;
}
}
auto t = plain_ty(ty.ty_fn(result_ins, result_out));
ret ures_ok(t);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_var(?expected_id)) {
alt (bindings.find(expected_id)) {
case (some[@ty.t](?expected_ty)) {
// FIXME: change the binding here?
// FIXME: "be"
ret unify_step(bindings,
expected_ty,
actual,
handler);
}
case (none[@ty.t]) {
bindings.insert(expected_id, actual);
ret ures_ok(actual);
}
}
}
case (ty.ty_local(?expected_id)) {
auto expected_ty = handler.resolve_local(expected_id);
auto result = unify_step(bindings,
expected_ty,
actual,
handler);
alt (result) {
case (ures_ok(?result_ty)) {
handler.record_local(expected_id, result_ty);
}
case (_) { /* empty */ }
}
ret result;
}
case (ty.ty_param(?expected_id)) {
ret handler.unify_expected_param(expected_id,
expected,
actual);
}
}
// TODO: remove me once match-exhaustiveness checking works
fail;
}
fn hash_int(&int x) -> uint { ret x as uint; }
fn eq_int(&int a, &int b) -> bool { ret a == b; }
auto hasher = hash_int;
auto eqer = eq_int;
auto bindings = map.mk_hashmap[int,@ty.t](hasher, eqer);
ret unify_step(bindings, expected, actual, handler);
}
fn type_err_to_str(&ty.type_err err) -> str {
alt (err) {
case (terr_mismatch) {
ret "types differ";
}
case (terr_tuple_size(?e_sz, ?a_sz)) {
ret "expected a tuple with " + _uint.to_str(e_sz, 10u) +
" elements but found one with " + _uint.to_str(a_sz, 10u) +
" elements";
}
case (terr_tuple_mutability) {
ret "tuple elements differ in mutability";
}
case (terr_record_size(?e_sz, ?a_sz)) {
ret "expected a record with " + _uint.to_str(e_sz, 10u) +
" fields but found one with " + _uint.to_str(a_sz, 10u) +
" fields";
}
case (terr_record_mutability) {
ret "record elements differ in mutability";
}
case (terr_record_fields(?e_fld, ?a_fld)) {
ret "expected a record with field '" + e_fld +
"' but found one with field '" + a_fld +
"'";
}
case (terr_arg_count) {
ret "incorrect number of function parameters";
}
}
}