Show files produced by `--emit foo` in json artifact notifications
Right now it is possible to ask `rustc` to save some intermediate representation into one or more files with `--emit=foo`, but figuring out what exactly was produced is difficult. This pull request adds information about `llvm_ir` and `asm` intermediate files into notifications produced by `--json=artifacts`.
Related discussion: https://internals.rust-lang.org/t/easier-access-to-files-generated-by-emit-foo/20477
Motivation - `cargo-show-asm` parses those intermediate files and presents them in a user friendly way, but right now I have to apply some dirty hacks. Hacks make behavior confusing: https://github.com/hintron/computer-enhance/issues/35
This pull request introduces a new behavior: now `rustc` will emit a new artifact notification for every artifact type user asked to `--emit`, for example for `--emit asm` those will include all the `.s` files.
Most users won't notice this behavior, to be affected by it all of the following must hold:
- user must use `rustc` binary directly (when `cargo` invokes `rustc` - it consumes artifact notifications and doesn't emit anything)
- user must specify both `--emit xxx` and `--json artifacts`
- user must refuse to handle unknown artifact types
- user must disable incremental compilation (or deal with it better than cargo does, or use a workaround like `save-temps`) in order not to hit #88829 / #89149
This replaces the drop_in_place reference with null in vtables. On
librustc_driver.so, this drops about ~17k dynamic relocations from the
output, since many vtables can now be placed in read-only memory, rather
than having a relocated pointer included.
This makes a tradeoff by adding a null check at vtable call sites.
That's hard to avoid without changing the vtable format (e.g., to use a
pc-relative relocation instead of an absolute address, and avoid the
dynamic relocation that way). But it seems likely that the check is
cheap at runtime.
rustc_codegen_llvm: add support for writing summary bitcode
Typical uses of ThinLTO don't have any use for this as a standalone file, but distributed ThinLTO uses this to make the linker phase more efficient. With clang you'd do something like `clang -flto=thin -fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o (full of bitcode) and foo.indexing.o (just the summary or index part of the bitcode). That's then usable by a two-stage linking process that's more friendly to distributed build systems like bazel, which is why I'm working on this area.
I talked some to `@teresajohnson` about naming in this area, as things seem to be a little confused between various blog posts and build systems. "bitcode index" and "bitcode summary" tend to be a little too ambiguous, and she tends to use "thin link bitcode" and "minimized bitcode" (which matches the descriptions in LLVM). Since the clang option is thin-link-bitcode, I went with that to try and not add a new spelling in the world.
Per `@dtolnay,` you can work around the lack of this by using `lld --thinlto-index-only` to do the indexing on regular .o files of bitcode, but that is a bit wasteful on actions when we already have all the information in rustc and could just write out the matching minimized bitcode. I didn't test that at all in our infrastructure, because by the time I learned that I already had this patch largely written.
Typical uses of ThinLTO don't have any use for this as a standalone
file, but distributed ThinLTO uses this to make the linker phase more
efficient. With clang you'd do something like `clang -flto=thin
-fthin-link-bitcode=foo.indexing.o -c foo.c` and then get both foo.o
(full of bitcode) and foo.indexing.o (just the summary or index part of
the bitcode). That's then usable by a two-stage linking process that's
more friendly to distributed build systems like bazel, which is why I'm
working on this area.
I talked some to @teresajohnson about naming in this area, as things
seem to be a little confused between various blog posts and build
systems. "bitcode index" and "bitcode summary" tend to be a little too
ambiguous, and she tends to use "thin link bitcode" and "minimized
bitcode" (which matches the descriptions in LLVM). Since the clang
option is thin-link-bitcode, I went with that to try and not add a new
spelling in the world.
Per @dtolnay, you can work around the lack of this by using `lld
--thinlto-index-only` to do the indexing on regular .o files of
bitcode, but that is a bit wasteful on actions when we already have all
the information in rustc and could just write out the matching minimized
bitcode. I didn't test that at all in our infrastructure, because by the
time I learned that I already had this patch largely written.
On dev-desktop the advantage of cg_clif over cg_llvm on simple-raytracer
is 15% when parallel rustc is disabled. With -Zthreads=16 the advantage
goes from 5% to 22% with this change.