This commit introduces the syntax for negative implementations of traits
as shown below:
`impl !Trait for Type {}`
cc #13231
Part of RFC rust-lang/rfcs#127
r? @nikomatsakis
Use autoderef for call notation. This is consistent in that we now autoderef all postfix operators (`.`, `[]`, and `()`). It also means you can call closures without writing `(*f)()`. Note that this is rebased atop the rollup, so only the final commit is relevant.
r? @pcwalton
closes#20486closes#20474closes#20441
[breaking-change]
The `Index[Mut]` traits now have one less input parameter, as the return type of the indexing operation is an associated type. This breaks all existing implementations.
---
binop traits (`Add`, `Sub`, etc) now have an associated type for their return type. Also, the RHS input parameter now defaults to `Self` (except for the `Shl` and `Shr` traits). For example, the `Add` trait now looks like this:
``` rust
trait Add<Rhs=Self> {
type Output;
fn add(self, Rhs) -> Self::Output;
}
```
The `Neg` and `Not` traits now also have an associated type for their return type.
This breaks all existing implementations of these traits.
---
Affected traits:
- `Iterator { type Item }`
- `IteratorExt` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `DoubleEndedIterator` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `DoubleEndedIteratorExt` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `RandomAccessIterator` no input/output types
- `ExactSizeIterator` no input/output types, uses `<Self as Iterator>::Item` in its methods
This breaks all the implementations of these traits.
`UnboxedClosureTyper`. This requires adding a `tcx` field to
`ParameterEnvironment` but generally simplifies everything since we
only need to pass along an `UnboxedClosureTyper` or `Typer`.
which should always result in an error.
NB. Some of the hunks in this commit rely on a later commit which adds
`tcx` into `param_env` and modifies `ParameterEnvironment` to
implement `Typer`.
This corresponds to the JMM memory model's non-volatile reads and writes to shared variables. It provides fairly weak guarantees, but prevents UB (specifically, you will never see a value that was not written _at some point_ to the provided location). It is not part of the C++ memory model and is only legal to provide to LLVM for loads and stores (not fences, atomicrmw, etc.).
Valid uses of this ordering are things like racy counters where you don't care about the operation actually being atomic, just want to avoid UB. It cannot be used for synchronization without additional memory barriers since unordered loads and stores may be reordered freely by the optimizer (this is the main way it differs from relaxed).
Because it is new to Rust and it provides so few guarantees, for now only the intrinsic is provided--this patch doesn't add it to any of the higher-level atomic wrappers.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
These changes fix various problems encountered getting japaric's `at-iter` branch to work. This branch converts the `Iterator` trait to use an associated type.
This pass performs a second pass of stabilization through the `std::sync`
module, avoiding modules/types that are being handled in other PRs (e.g.
mutexes, rwlocks, condvars, and channels).
The following items are now stable
* `sync::atomic`
* `sync::atomic::ATOMIC_BOOL_INIT` (was `INIT_ATOMIC_BOOL`)
* `sync::atomic::ATOMIC_INT_INIT` (was `INIT_ATOMIC_INT`)
* `sync::atomic::ATOMIC_UINT_INIT` (was `INIT_ATOMIC_UINT`)
* `sync::Once`
* `sync::ONCE_INIT`
* `sync::Once::call_once` (was `doit`)
* C == `pthread_once(..)`
* Boost == `call_once(..)`
* Windows == `InitOnceExecuteOnce`
* `sync::Barrier`
* `sync::Barrier::new`
* `sync::Barrier::wait` (now returns a `bool`)
* `sync::Semaphore::new`
* `sync::Semaphore::acquire`
* `sync::Semaphore::release`
The following items remain unstable
* `sync::SemaphoreGuard`
* `sync::Semaphore::access` - it's unclear how this relates to the poisoning
story of mutexes.
* `sync::TaskPool` - the semantics of a failing task and whether a thread is
re-attached to a thread pool are somewhat unclear, and the
utility of this type in `sync` is question with respect to
the jobs of other primitives. This type will likely become
stable or move out of the standard library over time.
* `sync::Future` - futures as-is have yet to be deeply re-evaluated with the
recent core changes to Rust's synchronization story, and will
likely become stable in the future but are unstable until
that time comes.
[breaking-change]
The the last argument of the `ItemDecorator::expand` method has changed to `Box<FnMut>`. Syntax extensions will break.
[breaking-change]
---
This PR removes pretty much all the remaining uses of boxed closures from the libraries. There are still boxed closures under the `test` directory, but I think those should be removed or replaced with unboxed closures at the same time we remove boxed closures from the language.
In a few places I had to do some contortions (see the first commit for an example) to work around issue #19596. I have marked those workarounds with FIXMEs. In the future when `&mut F where F: FnMut` implements the `FnMut` trait, we should be able to remove those workarounds. I've take care to avoid placing the workaround functions in the public API.
Since `let f = || {}` always gets type checked as a boxed closure, I have explictly annotated those closures (with e.g. `|&:| {}`) to force the compiler to type check them as unboxed closures.
Instead of removing the type aliases (like `GetCrateDataCb`), I could have replaced them with newtypes. But this seemed like overcomplicating things for little to no gain.
I think we should be able to remove the boxed closures from the languge after this PR lands. (I'm being optimistic here)
r? @alexcrichton or @aturon
cc @nikomatsakis
This pull request adds the `rust-gdb` shell script which starts GDB with Rust pretty printers enabled. The PR also makes `rustc` add a special `.debug_gdb_scripts` ELF section on Linux which tells GDB that the produced binary should use the Rust pretty printers.
Note that at the moment this script will only work and be installed on Linux. On Mac OS X there's `rust-lldb` which works much better there. On Windows I had too many problems making this stable. I'll give it another try soonish.
You can use this script just like you would use GDB from the command line. It will use the pretty printers from the Rust "installation" found first in PATH. E.g. if you have `~/rust/x86_64-linux-gnu/stage1/bin` in your path, it will use the pretty printer scripts in `~/rust/x86_64-linux-gnu/stage1/lib/rustlib/etc`.