rollup merge of #20315: alexcrichton/std-sync

Conflicts:
	src/libstd/rt/exclusive.rs
	src/libstd/sync/barrier.rs
	src/libstd/sys/unix/pipe.rs
	src/test/bench/shootout-binarytrees.rs
	src/test/bench/shootout-fannkuch-redux.rs
This commit is contained in:
Alex Crichton 2015-01-02 09:19:00 -08:00
commit 009ec5d2b0
45 changed files with 167 additions and 792 deletions

View File

@ -206,6 +206,7 @@ getting the result later.
The basic example below illustrates this.
```{rust,ignore}
# #![allow(deprecated)]
use std::sync::Future;
# fn main() {
@ -233,6 +234,7 @@ Here is another example showing how futures allow you to background
computations. The workload will be distributed on the available cores.
```{rust,ignore}
# #![allow(deprecated)]
# use std::num::Float;
# use std::sync::Future;
fn partial_sum(start: uint) -> f64 {

View File

@ -5339,6 +5339,7 @@ example, if you wish to compute some value in the background, `Future` is
a useful thing to use:
```{rust}
# #![allow(deprecated)]
use std::sync::Future;
let mut delayed_value = Future::spawn(move || {

View File

@ -1480,9 +1480,9 @@ data are being stored, or single-address and mutability properties are required.
```
use std::sync::atomic;
// Note that INIT_ATOMIC_UINT is a *const*, but it may be used to initialize a
// Note that ATOMIC_UINT_INIT is a *const*, but it may be used to initialize a
// static. This static can be modified, so it is not placed in read-only memory.
static COUNTER: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
static COUNTER: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
// This table is a candidate to be placed in read-only memory.
static TABLE: &'static [uint] = &[1, 2, 3, /* ... */];

View File

@ -2265,7 +2265,7 @@ mod tests {
}
}
const NUM_ELEMENTS: uint = 2;
static DROP_COUNTER: AtomicUint = atomic::INIT_ATOMIC_UINT;
static DROP_COUNTER: AtomicUint = atomic::ATOMIC_UINT_INIT;
let v = Vec::from_elem(NUM_ELEMENTS, Nothing);

View File

@ -89,17 +89,27 @@ pub enum Ordering {
/// An `AtomicBool` initialized to `false`.
#[unstable = "may be renamed, pending conventions for static initalizers"]
pub const INIT_ATOMIC_BOOL: AtomicBool =
pub const ATOMIC_BOOL_INIT: AtomicBool =
AtomicBool { v: UnsafeCell { value: 0 } };
/// An `AtomicInt` initialized to `0`.
#[unstable = "may be renamed, pending conventions for static initalizers"]
pub const INIT_ATOMIC_INT: AtomicInt =
pub const ATOMIC_INT_INIT: AtomicInt =
AtomicInt { v: UnsafeCell { value: 0 } };
/// An `AtomicUint` initialized to `0`.
#[unstable = "may be renamed, pending conventions for static initalizers"]
pub const INIT_ATOMIC_UINT: AtomicUint =
pub const ATOMIC_UINT_INIT: AtomicUint =
AtomicUint { v: UnsafeCell { value: 0, } };
/// Deprecated
#[deprecated = "renamed to ATOMIC_BOOL_INIT"]
pub const INIT_ATOMIC_BOOL: AtomicBool = ATOMIC_BOOL_INIT;
/// Deprecated
#[deprecated = "renamed to ATOMIC_INT_INIT"]
pub const INIT_ATOMIC_INT: AtomicInt = ATOMIC_INT_INIT;
/// Deprecated
#[deprecated = "renamed to ATOMIC_UINT_INIT"]
pub const INIT_ATOMIC_UINT: AtomicUint = ATOMIC_UINT_INIT;
// NB: Needs to be -1 (0b11111111...) to make fetch_nand work correctly
const UINT_TRUE: uint = -1;

View File

@ -155,6 +155,8 @@
// FIXME: Can't be shared between threads. Dynamic borrows
// FIXME: Relationship to Atomic types and RWLock
#![stable]
use clone::Clone;
use cmp::PartialEq;
use default::Default;

View File

@ -70,9 +70,9 @@ fn int_xor() {
assert_eq!(x.load(SeqCst), 0xf731 ^ 0x137f);
}
static S_BOOL : AtomicBool = INIT_ATOMIC_BOOL;
static S_INT : AtomicInt = INIT_ATOMIC_INT;
static S_UINT : AtomicUint = INIT_ATOMIC_UINT;
static S_BOOL : AtomicBool = ATOMIC_BOOL_INIT;
static S_INT : AtomicInt = ATOMIC_INT_INIT;
static S_UINT : AtomicUint = ATOMIC_UINT_INIT;
#[test]
fn static_init() {

View File

@ -352,7 +352,7 @@ pub struct LogLocation {
#[doc(hidden)]
pub fn mod_enabled(level: u32, module: &str) -> bool {
static INIT: Once = ONCE_INIT;
INIT.doit(init);
INIT.call_once(init);
// It's possible for many threads are in this function, only one of them
// will perform the global initialization, but all of them will need to check

View File

@ -73,7 +73,7 @@ pub fn maybe_print_constraints_for<'a, 'tcx>(region_vars: &RegionVarBindings<'a,
let output_path = {
let output_template = match requested_output {
Some(ref s) if s.as_slice() == "help" => {
static PRINTED_YET : atomic::AtomicBool = atomic::INIT_ATOMIC_BOOL;
static PRINTED_YET : atomic::AtomicBool = atomic::ATOMIC_BOOL_INIT;
if !PRINTED_YET.load(atomic::SeqCst) {
print_help_message();
PRINTED_YET.store(true, atomic::SeqCst);

View File

@ -1011,7 +1011,7 @@ unsafe fn configure_llvm(sess: &Session) {
}
}
INIT.doit(|| {
INIT.call_once(|| {
llvm::LLVMInitializePasses();
// Only initialize the platforms supported by Rust here, because

View File

@ -3097,7 +3097,7 @@ pub fn trans_crate<'tcx>(analysis: ty::CrateAnalysis<'tcx>)
use std::sync::{Once, ONCE_INIT};
static INIT: Once = ONCE_INIT;
static mut POISONED: bool = false;
INIT.doit(|| {
INIT.call_once(|| {
if llvm::LLVMStartMultithreaded() != 1 {
// use an extra bool to make sure that all future usage of LLVM
// cannot proceed despite the Once not running more than once.

View File

@ -22,7 +22,6 @@ use result::Result::{Ok, Err};
use slice::{SliceExt};
use slice;
use vec::Vec;
use kinds::{Send,Sync};
/// Wraps a Reader and buffers input from it
///
@ -52,11 +51,6 @@ pub struct BufferedReader<R> {
cap: uint,
}
unsafe impl<R: Send> Send for BufferedReader<R> {}
unsafe impl<R: Send+Sync> Sync for BufferedReader<R> {}
impl<R: Reader> BufferedReader<R> {
/// Creates a new `BufferedReader` with the specified buffer capacity
pub fn with_capacity(cap: uint, inner: R) -> BufferedReader<R> {

View File

@ -218,7 +218,7 @@ pub fn stdin() -> StdinReader {
static ONCE: Once = ONCE_INIT;
unsafe {
ONCE.doit(|| {
ONCE.call_once(|| {
// The default buffer capacity is 64k, but apparently windows doesn't like
// 64k reads on stdin. See #13304 for details, but the idea is that on
// windows we use a slightly smaller buffer that's been seen to be

View File

@ -90,7 +90,7 @@ impl TempDir {
return TempDir::new_in(&abs_tmpdir, suffix);
}
static CNT: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
static CNT: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
let mut attempts = 0u;
loop {

View File

@ -17,17 +17,17 @@ use prelude::v1::*;
use libc;
use os;
use std::io::net::ip::*;
use sync::atomic::{AtomicUint, INIT_ATOMIC_UINT, Relaxed};
use sync::atomic::{AtomicUint, ATOMIC_UINT_INIT, Relaxed};
/// Get a port number, starting at 9600, for use in tests
pub fn next_test_port() -> u16 {
static NEXT_OFFSET: AtomicUint = INIT_ATOMIC_UINT;
static NEXT_OFFSET: AtomicUint = ATOMIC_UINT_INIT;
base_port() + NEXT_OFFSET.fetch_add(1, Relaxed) as u16
}
/// Get a temporary path which could be the location of a unix socket
pub fn next_test_unix() -> Path {
static COUNT: AtomicUint = INIT_ATOMIC_UINT;
static COUNT: AtomicUint = ATOMIC_UINT_INIT;
// base port and pid are an attempt to be unique between multiple
// test-runners of different configurations running on one
// buildbot, the count is to be unique within this executable.

View File

@ -55,7 +55,7 @@ use slice::{AsSlice, SliceExt};
use slice::CloneSliceExt;
use str::{Str, StrExt};
use string::{String, ToString};
use sync::atomic::{AtomicInt, INIT_ATOMIC_INT, SeqCst};
use sync::atomic::{AtomicInt, ATOMIC_INT_INIT, SeqCst};
use vec::Vec;
#[cfg(unix)] use c_str::ToCStr;
@ -596,7 +596,7 @@ pub fn last_os_error() -> String {
error_string(errno() as uint)
}
static EXIT_STATUS: AtomicInt = INIT_ATOMIC_INT;
static EXIT_STATUS: AtomicInt = ATOMIC_INT_INIT;
/// Sets the process exit code
///

View File

@ -84,10 +84,10 @@ mod imp {
#[cfg(all(target_os = "linux",
any(target_arch = "x86_64", target_arch = "x86", target_arch = "arm")))]
fn is_getrandom_available() -> bool {
use sync::atomic::{AtomicBool, INIT_ATOMIC_BOOL, Relaxed};
use sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Relaxed};
static GETRANDOM_CHECKED: AtomicBool = INIT_ATOMIC_BOOL;
static GETRANDOM_AVAILABLE: AtomicBool = INIT_ATOMIC_BOOL;
static GETRANDOM_CHECKED: AtomicBool = ATOMIC_BOOL_INIT;
static GETRANDOM_AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT;
if !GETRANDOM_CHECKED.load(Relaxed) {
let mut buf: [u8; 0] = [];

View File

@ -22,7 +22,7 @@ pub use sys::backtrace::write;
// For now logging is turned off by default, and this function checks to see
// whether the magical environment variable is present to see if it's turned on.
pub fn log_enabled() -> bool {
static ENABLED: atomic::AtomicInt = atomic::INIT_ATOMIC_INT;
static ENABLED: atomic::AtomicInt = atomic::ATOMIC_INT_INIT;
match ENABLED.load(atomic::SeqCst) {
1 => return false,
2 => return true,

View File

@ -1,119 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use cell::UnsafeCell;
use rt::mutex;
/// An OS mutex over some data.
///
/// This is not a safe primitive to use, it is unaware of the libgreen
/// scheduler, as well as being easily susceptible to misuse due to the usage of
/// the inner NativeMutex.
///
/// > **Note**: This type is not recommended for general use. The mutex provided
/// > as part of `libsync` should almost always be favored.
pub struct Exclusive<T> {
lock: mutex::NativeMutex,
data: UnsafeCell<T>,
}
unsafe impl<T:Send> Send for Exclusive<T> { }
unsafe impl<T:Send> Sync for Exclusive<T> { }
/// An RAII guard returned via `lock`
pub struct ExclusiveGuard<'a, T:'a> {
// FIXME #12808: strange name to try to avoid interfering with
// field accesses of the contained type via Deref
_data: &'a mut T,
_guard: mutex::LockGuard<'a>,
}
impl<T: Send> Exclusive<T> {
/// Creates a new `Exclusive` which will protect the data provided.
pub fn new(user_data: T) -> Exclusive<T> {
Exclusive {
lock: unsafe { mutex::NativeMutex::new() },
data: UnsafeCell::new(user_data),
}
}
/// Acquires this lock, returning a guard which the data is accessed through
/// and from which that lock will be unlocked.
///
/// This method is unsafe due to many of the same reasons that the
/// NativeMutex itself is unsafe.
pub unsafe fn lock<'a>(&'a self) -> ExclusiveGuard<'a, T> {
let guard = self.lock.lock();
let data = &mut *self.data.get();
ExclusiveGuard {
_data: data,
_guard: guard,
}
}
}
impl<'a, T: Send> ExclusiveGuard<'a, T> {
// The unsafety here should be ok because our loan guarantees that the lock
// itself is not moving
pub fn signal(&self) {
unsafe { self._guard.signal() }
}
pub fn wait(&self) {
unsafe { self._guard.wait() }
}
}
impl<'a, T: Send> Deref<T> for ExclusiveGuard<'a, T> {
fn deref(&self) -> &T { &*self._data }
}
impl<'a, T: Send> DerefMut<T> for ExclusiveGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T { &mut *self._data }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use sync::Arc;
use super::Exclusive;
use task;
#[test]
fn exclusive_new_arc() {
unsafe {
let mut futures = Vec::new();
let num_tasks = 10;
let count = 10;
let total = Arc::new(Exclusive::new(box 0));
for _ in range(0u, num_tasks) {
let total = total.clone();
let (tx, rx) = channel();
futures.push(rx);
task::spawn(move || {
for _ in range(0u, count) {
**total.lock() += 1;
}
tx.send(());
});
};
for f in futures.iter_mut() { f.recv() }
assert_eq!(**total.lock(), num_tasks * count);
}
}
}

View File

@ -1,554 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Language-level runtime services that should reasonably expected
//! to be available 'everywhere'. Unwinding, local storage, and logging.
//! Even a 'freestanding' Rust would likely want to implement this.
pub use self::BlockedTask::*;
use self::TaskState::*;
use any::Any;
use boxed::Box;
use sync::Arc;
use sync::atomic::{AtomicUint, SeqCst};
use iter::{IteratorExt, Take};
use kinds::marker;
use mem;
use ops::FnMut;
use core::prelude::{Clone, Drop, Err, Iterator, None, Ok, Option, Send, Some};
use core::prelude::{drop};
use str::SendStr;
use thunk::Thunk;
use rt;
use rt::mutex::NativeMutex;
use rt::local::Local;
use rt::thread::{mod, Thread};
use sys_common::stack;
use rt::unwind;
use rt::unwind::Unwinder;
/// State associated with Rust threads
///
/// This structure is currently undergoing major changes, and is
/// likely to be move/be merged with a `Thread` structure.
pub struct Task {
pub unwinder: Unwinder,
pub death: Death,
pub name: Option<SendStr>,
state: TaskState,
lock: NativeMutex, // native synchronization
awoken: bool, // used to prevent spurious wakeups
// This field holds the known bounds of the stack in (lo, hi) form. Not all
// native threads necessarily know their precise bounds, hence this is
// optional.
stack_bounds: (uint, uint),
stack_guard: uint
}
// Once a thread has entered the `Armed` state it must be destroyed via `drop`,
// and no other method. This state is used to track this transition.
#[deriving(PartialEq)]
enum TaskState {
New,
Armed,
Destroyed,
}
pub struct TaskOpts {
/// Invoke this procedure with the result of the thread when it finishes.
pub on_exit: Option<Thunk<Result>>,
/// A name for the thread-to-be, for identification in panic messages
pub name: Option<SendStr>,
/// The size of the stack for the spawned thread
pub stack_size: Option<uint>,
}
/// Indicates the manner in which a thread exited.
///
/// A thread that completes without panicking is considered to exit successfully.
///
/// If you wish for this result's delivery to block until all
/// children threads complete, recommend using a result future.
pub type Result = ::core::result::Result<(), Box<Any + Send>>;
/// A handle to a blocked thread. Usually this means having the Box<Task>
/// pointer by ownership, but if the thread is killable, a killer can steal it
/// at any time.
pub enum BlockedTask {
Owned(Box<Task>),
Shared(Arc<AtomicUint>),
}
/// Per-thread state related to thread death, killing, panic, etc.
pub struct Death {
pub on_exit: Option<Thunk<Result>>,
}
pub struct BlockedTasks {
inner: Arc<AtomicUint>,
}
impl Task {
/// Creates a new uninitialized thread.
pub fn new(stack_bounds: Option<(uint, uint)>, stack_guard: Option<uint>) -> Task {
Task {
unwinder: Unwinder::new(),
death: Death::new(),
state: New,
name: None,
lock: unsafe { NativeMutex::new() },
awoken: false,
// these *should* get overwritten
stack_bounds: stack_bounds.unwrap_or((0, 0)),
stack_guard: stack_guard.unwrap_or(0)
}
}
pub fn spawn<F>(opts: TaskOpts, f: F)
where F : FnOnce(), F : Send
{
Task::spawn_thunk(opts, Thunk::new(f))
}
fn spawn_thunk(opts: TaskOpts, f: Thunk) {
let TaskOpts { name, stack_size, on_exit } = opts;
let mut task = box Task::new(None, None);
task.name = name;
task.death.on_exit = on_exit;
let stack = stack_size.unwrap_or(rt::min_stack());
// Spawning a new OS thread guarantees that __morestack will never get
// triggered, but we must manually set up the actual stack bounds once
// this function starts executing. This raises the lower limit by a bit
// because by the time that this function is executing we've already
// consumed at least a little bit of stack (we don't know the exact byte
// address at which our stack started).
Thread::spawn_stack(stack, move|| {
let something_around_the_top_of_the_stack = 1;
let addr = &something_around_the_top_of_the_stack as *const int;
let my_stack = addr as uint;
unsafe {
stack::record_os_managed_stack_bounds(my_stack - stack + 1024,
my_stack);
}
task.stack_guard = thread::current_guard_page();
task.stack_bounds = (my_stack - stack + 1024, my_stack);
let mut f = Some(f);
drop(task.run(|| { f.take().unwrap().invoke(()) }).destroy());
})
}
/// Consumes ownership of a thread, runs some code, and returns the thread back.
///
/// This function can be used as an emulated "try/catch" to interoperate
/// with the rust runtime at the outermost boundary. It is not possible to
/// use this function in a nested fashion (a try/catch inside of another
/// try/catch). Invoking this function is quite cheap.
///
/// If the closure `f` succeeds, then the returned thread can be used again
/// for another invocation of `run`. If the closure `f` panics then `self`
/// will be internally destroyed along with all of the other associated
/// resources of this thread. The `on_exit` callback is invoked with the
/// cause of panic (not returned here). This can be discovered by querying
/// `is_destroyed()`.
///
/// Note that it is possible to view partial execution of the closure `f`
/// because it is not guaranteed to run to completion, but this function is
/// guaranteed to return if it panicks. Care should be taken to ensure that
/// stack references made by `f` are handled appropriately.
///
/// It is invalid to call this function with a thread that has been previously
/// destroyed via a failed call to `run`.
pub fn run<F>(mut self: Box<Task>, f: F) -> Box<Task> where F: FnOnce() {
assert!(!self.is_destroyed(), "cannot re-use a destroyed thread");
// First, make sure that no one else is in TLS. This does not allow
// recursive invocations of run(). If there's no one else, then
// relinquish ownership of ourselves back into TLS.
if Local::exists(None::<Task>) {
panic!("cannot run a thread recursively inside another");
}
self.state = Armed;
Local::put(self);
// There are two primary reasons that general try/catch is unsafe. The
// first is that we do not support nested try/catch. The above check for
// an existing thread in TLS is sufficient for this invariant to be
// upheld. The second is that unwinding while unwinding is not defined.
// We take care of that by having an 'unwinding' flag in the thread
// itself. For these reasons, this unsafety should be ok.
let result = unsafe { unwind::try(f) };
// After running the closure given return the thread back out if it ran
// successfully, or clean up the thread if it panicked.
let task: Box<Task> = Local::take();
match result {
Ok(()) => task,
Err(cause) => { task.cleanup(Err(cause)) }
}
}
/// Destroy all associated resources of this thread.
///
/// This function will perform any necessary clean up to prepare the thread
/// for destruction. It is required that this is called before a `Task`
/// falls out of scope.
///
/// The returned thread cannot be used for running any more code, but it may
/// be used to extract the runtime as necessary.
pub fn destroy(self: Box<Task>) -> Box<Task> {
if self.is_destroyed() {
self
} else {
self.cleanup(Ok(()))
}
}
/// Cleans up a thread, processing the result of the thread as appropriate.
///
/// This function consumes ownership of the thread, deallocating it once it's
/// done being processed. It is assumed that TLD and the local heap have
/// already been destroyed and/or annihilated.
fn cleanup(mut self: Box<Task>, result: Result) -> Box<Task> {
// After taking care of the data above, we need to transmit the result
// of this thread.
let what_to_do = self.death.on_exit.take();
Local::put(self);
// FIXME: this is running in a seriously constrained context. If this
// allocates TLD then it will likely abort the runtime. Similarly,
// if this panics, this will also likely abort the runtime.
//
// This closure is currently limited to a channel send via the
// standard library's thread interface, but this needs
// reconsideration to whether it's a reasonable thing to let a
// thread to do or not.
match what_to_do {
Some(f) => { f.invoke(result) }
None => { drop(result) }
}
// Now that we're done, we remove the thread from TLS and flag it for
// destruction.
let mut task: Box<Task> = Local::take();
task.state = Destroyed;
return task;
}
/// Queries whether this can be destroyed or not.
pub fn is_destroyed(&self) -> bool { self.state == Destroyed }
/// Deschedules the current thread, invoking `f` `amt` times. It is not
/// recommended to use this function directly, but rather communication
/// primitives in `std::comm` should be used.
//
// This function gets a little interesting. There are a few safety and
// ownership violations going on here, but this is all done in the name of
// shared state. Additionally, all of the violations are protected with a
// mutex, so in theory there are no races.
//
// The first thing we need to do is to get a pointer to the thread's internal
// mutex. This address will not be changing (because the thread is allocated
// on the heap). We must have this handle separately because the thread will
// have its ownership transferred to the given closure. We're guaranteed,
// however, that this memory will remain valid because *this* is the current
// thread's execution thread.
//
// The next weird part is where ownership of the thread actually goes. We
// relinquish it to the `f` blocking function, but upon returning this
// function needs to replace the thread back in TLS. There is no communication
// from the wakeup thread back to this thread about the thread pointer, and
// there's really no need to. In order to get around this, we cast the thread
// to a `uint` which is then used at the end of this function to cast back
// to a `Box<Task>` object. Naturally, this looks like it violates
// ownership semantics in that there may be two `Box<Task>` objects.
//
// The fun part is that the wakeup half of this implementation knows to
// "forget" the thread on the other end. This means that the awakening half of
// things silently relinquishes ownership back to this thread, but not in a
// way that the compiler can understand. The thread's memory is always valid
// for both threads because these operations are all done inside of a mutex.
//
// You'll also find that if blocking fails (the `f` function hands the
// BlockedTask back to us), we will `mem::forget` the handles. The
// reasoning for this is the same logic as above in that the thread silently
// transfers ownership via the `uint`, not through normal compiler
// semantics.
//
// On a mildly unrelated note, it should also be pointed out that OS
// condition variables are susceptible to spurious wakeups, which we need to
// be ready for. In order to accommodate for this fact, we have an extra
// `awoken` field which indicates whether we were actually woken up via some
// invocation of `reawaken`. This flag is only ever accessed inside the
// lock, so there's no need to make it atomic.
pub fn deschedule<F>(mut self: Box<Task>, times: uint, mut f: F) where
F: FnMut(BlockedTask) -> ::core::result::Result<(), BlockedTask>,
{
unsafe {
let me = &mut *self as *mut Task;
let task = BlockedTask::block(self);
if times == 1 {
let guard = (*me).lock.lock();
(*me).awoken = false;
match f(task) {
Ok(()) => {
while !(*me).awoken {
guard.wait();
}
}
Err(task) => { mem::forget(task.wake()); }
}
} else {
let iter = task.make_selectable(times);
let guard = (*me).lock.lock();
(*me).awoken = false;
// Apply the given closure to all of the "selectable threads",
// bailing on the first one that produces an error. Note that
// care must be taken such that when an error is occurred, we
// may not own the thread, so we may still have to wait for the
// thread to become available. In other words, if thread.wake()
// returns `None`, then someone else has ownership and we must
// wait for their signal.
match iter.map(f).filter_map(|a| a.err()).next() {
None => {}
Some(task) => {
match task.wake() {
Some(task) => {
mem::forget(task);
(*me).awoken = true;
}
None => {}
}
}
}
while !(*me).awoken {
guard.wait();
}
}
// put the thread back in TLS, and everything is as it once was.
Local::put(mem::transmute(me));
}
}
/// Wakes up a previously blocked thread. This function can only be
/// called on threads that were previously blocked in `deschedule`.
//
// See the comments on `deschedule` for why the thread is forgotten here, and
// why it's valid to do so.
pub fn reawaken(mut self: Box<Task>) {
unsafe {
let me = &mut *self as *mut Task;
mem::forget(self);
let guard = (*me).lock.lock();
(*me).awoken = true;
guard.signal();
}
}
/// Yields control of this thread to another thread. This function will
/// eventually return, but possibly not immediately. This is used as an
/// opportunity to allow other threads a chance to run.
pub fn yield_now() {
Thread::yield_now();
}
/// Returns the stack bounds for this thread in (lo, hi) format. The stack
/// bounds may not be known for all threads, so the return value may be
/// `None`.
pub fn stack_bounds(&self) -> (uint, uint) {
self.stack_bounds
}
/// Returns the stack guard for this thread, if known.
pub fn stack_guard(&self) -> Option<uint> {
if self.stack_guard != 0 {
Some(self.stack_guard)
} else {
None
}
}
/// Consume this thread, flagging it as a candidate for destruction.
///
/// This function is required to be invoked to destroy a thread. A thread
/// destroyed through a normal drop will abort.
pub fn drop(mut self) {
self.state = Destroyed;
}
}
impl Drop for Task {
fn drop(&mut self) {
rtdebug!("called drop for a thread: {}", self as *mut Task as uint);
rtassert!(self.state != Armed);
}
}
impl TaskOpts {
pub fn new() -> TaskOpts {
TaskOpts { on_exit: None, name: None, stack_size: None }
}
}
impl Iterator<BlockedTask> for BlockedTasks {
fn next(&mut self) -> Option<BlockedTask> {
Some(Shared(self.inner.clone()))
}
}
impl BlockedTask {
/// Returns Some if the thread was successfully woken; None if already killed.
pub fn wake(self) -> Option<Box<Task>> {
match self {
Owned(task) => Some(task),
Shared(arc) => {
match arc.swap(0, SeqCst) {
0 => None,
n => Some(unsafe { mem::transmute(n) }),
}
}
}
}
/// Reawakens this thread if ownership is acquired. If finer-grained control
/// is desired, use `wake` instead.
pub fn reawaken(self) {
self.wake().map(|t| t.reawaken());
}
// This assertion has two flavours because the wake involves an atomic op.
// In the faster version, destructors will panic dramatically instead.
#[cfg(not(test))] pub fn trash(self) { }
#[cfg(test)] pub fn trash(self) { assert!(self.wake().is_none()); }
/// Create a blocked thread, unless the thread was already killed.
pub fn block(task: Box<Task>) -> BlockedTask {
Owned(task)
}
/// Converts one blocked thread handle to a list of many handles to the same.
pub fn make_selectable(self, num_handles: uint) -> Take<BlockedTasks> {
let arc = match self {
Owned(task) => {
let flag = unsafe { AtomicUint::new(mem::transmute(task)) };
Arc::new(flag)
}
Shared(arc) => arc.clone(),
};
BlockedTasks{ inner: arc }.take(num_handles)
}
/// Convert to an unsafe uint value. Useful for storing in a pipe's state
/// flag.
#[inline]
pub unsafe fn cast_to_uint(self) -> uint {
match self {
Owned(task) => {
let blocked_task_ptr: uint = mem::transmute(task);
rtassert!(blocked_task_ptr & 0x1 == 0);
blocked_task_ptr
}
Shared(arc) => {
let blocked_task_ptr: uint = mem::transmute(box arc);
rtassert!(blocked_task_ptr & 0x1 == 0);
blocked_task_ptr | 0x1
}
}
}
/// Convert from an unsafe uint value. Useful for retrieving a pipe's state
/// flag.
#[inline]
pub unsafe fn cast_from_uint(blocked_task_ptr: uint) -> BlockedTask {
if blocked_task_ptr & 0x1 == 0 {
Owned(mem::transmute(blocked_task_ptr))
} else {
let ptr: Box<Arc<AtomicUint>> =
mem::transmute(blocked_task_ptr & !1);
Shared(*ptr)
}
}
}
impl Death {
pub fn new() -> Death {
Death { on_exit: None }
}
}
#[cfg(test)]
mod test {
use super::*;
use prelude::v1::*;
use task;
use rt::unwind;
#[test]
fn unwind() {
let result = task::try(move|| ());
rtdebug!("trying first assert");
assert!(result.is_ok());
let result = task::try(move|| -> () panic!());
rtdebug!("trying second assert");
assert!(result.is_err());
}
#[test]
fn rng() {
use rand::{StdRng, Rng};
let mut r = StdRng::new().ok().unwrap();
let _ = r.next_u32();
}
#[test]
fn comm_stream() {
let (tx, rx) = channel();
tx.send(10i);
assert!(rx.recv() == 10);
}
#[test]
fn comm_shared_chan() {
let (tx, rx) = channel();
tx.send(10i);
assert!(rx.recv() == 10);
}
#[test]
#[should_fail]
fn test_begin_unwind() {
use rt::unwind::begin_unwind;
begin_unwind("cause", &(file!(), line!()))
}
#[test]
fn drop_new_task_ok() {
drop(Task::new(None, None));
}
// Thread blocking tests
#[test]
fn block_and_wake() {
let task = box Task::new(None, None);
let task = BlockedTask::block(task).wake().unwrap();
task.drop();
}
}

View File

@ -84,15 +84,15 @@ pub type Callback = fn(msg: &(Any + Send), file: &'static str, line: uint);
// For more information, see below.
const MAX_CALLBACKS: uint = 16;
static CALLBACKS: [atomic::AtomicUint; MAX_CALLBACKS] =
[atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT,
atomic::INIT_ATOMIC_UINT, atomic::INIT_ATOMIC_UINT];
static CALLBACK_CNT: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
[atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT,
atomic::ATOMIC_UINT_INIT, atomic::ATOMIC_UINT_INIT];
static CALLBACK_CNT: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
thread_local! { static PANICKING: Cell<bool> = Cell::new(false) }
@ -533,7 +533,7 @@ fn begin_unwind_inner(msg: Box<Any + Send>, file_line: &(&'static str, uint)) ->
// Make sure the default failure handler is registered before we look at the
// callbacks.
static INIT: Once = ONCE_INIT;
INIT.doit(|| unsafe { register(failure::on_fail); });
INIT.call_once(|| unsafe { register(failure::on_fail); });
// First, invoke call the user-defined callbacks triggered on thread panic.
//

View File

@ -46,7 +46,7 @@ pub fn limit_thread_creation_due_to_osx_and_valgrind() -> bool {
}
pub fn min_stack() -> uint {
static MIN: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
static MIN: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
match MIN.load(atomic::SeqCst) {
0 => {}
n => return n - 1,

View File

@ -86,15 +86,15 @@
//! Keep a global count of live tasks:
//!
//! ```
//! use std::sync::atomic::{AtomicUint, SeqCst, INIT_ATOMIC_UINT};
//! use std::sync::atomic::{AtomicUint, SeqCst, ATOMIC_UINT_INIT};
//!
//! static GLOBAL_TASK_COUNT: AtomicUint = INIT_ATOMIC_UINT;
//! static GLOBAL_TASK_COUNT: AtomicUint = ATOMIC_UINT_INIT;
//!
//! let old_task_count = GLOBAL_TASK_COUNT.fetch_add(1, SeqCst);
//! println!("live tasks: {}", old_task_count + 1);
//! ```
#![allow(deprecated)]
#![stable]
use alloc::boxed::Box;
use core::mem;
@ -102,6 +102,7 @@ use core::prelude::{Send, Drop, None, Option, Some};
pub use core::atomic::{AtomicBool, AtomicInt, AtomicUint, AtomicPtr};
pub use core::atomic::{INIT_ATOMIC_BOOL, INIT_ATOMIC_INT, INIT_ATOMIC_UINT};
pub use core::atomic::{ATOMIC_BOOL_INIT, ATOMIC_INT_INIT, ATOMIC_UINT_INIT};
pub use core::atomic::fence;
pub use core::atomic::Ordering::{mod, Relaxed, Release, Acquire, AcqRel, SeqCst};
@ -116,6 +117,7 @@ pub struct AtomicOption<T> {
p: AtomicUint,
}
#[allow(deprecated)]
impl<T: Send> AtomicOption<T> {
/// Create a new `AtomicOption`
pub fn new(p: Box<T>) -> AtomicOption<T> {

View File

@ -8,7 +8,6 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use kinds::{Send, Sync};
use sync::{Mutex, Condvar};
/// A barrier enables multiple tasks to synchronize the beginning
@ -30,29 +29,32 @@ use sync::{Mutex, Condvar};
/// }).detach();
/// }
/// ```
#[stable]
pub struct Barrier {
lock: Mutex<BarrierState>,
cvar: Condvar,
num_threads: uint,
}
unsafe impl Send for Barrier {}
unsafe impl Sync for Barrier {}
// The inner state of a double barrier
struct BarrierState {
count: uint,
generation_id: uint,
}
unsafe impl Send for BarrierState {}
unsafe impl Sync for BarrierState {}
/// A result returned from wait.
///
/// Currently this opaque structure only has one method, `.is_leader()`. Only
/// one thread will receive a result that will return `true` from this function.
#[allow(missing_copy_implementations)]
pub struct BarrierWaitResult(bool);
impl Barrier {
/// Create a new barrier that can block a given number of threads.
///
/// A barrier will block `n`-1 threads which call `wait` and then wake up
/// all threads at once when the `n`th thread calls `wait`.
#[stable]
pub fn new(n: uint) -> Barrier {
Barrier {
lock: Mutex::new(BarrierState {
@ -68,7 +70,13 @@ impl Barrier {
///
/// Barriers are re-usable after all threads have rendezvoused once, and can
/// be used continuously.
pub fn wait(&self) {
///
/// A single (arbitrary) thread will receive a `BarrierWaitResult` that
/// returns `true` from `is_leader` when returning from this function, and
/// all other threads will receive a result that will return `false` from
/// `is_leader`
#[stable]
pub fn wait(&self) -> BarrierWaitResult {
let mut lock = self.lock.lock().unwrap();
let local_gen = lock.generation_id;
lock.count += 1;
@ -79,14 +87,25 @@ impl Barrier {
lock.count < self.num_threads {
lock = self.cvar.wait(lock).unwrap();
}
BarrierWaitResult(false)
} else {
lock.count = 0;
lock.generation_id += 1;
self.cvar.notify_all();
BarrierWaitResult(true)
}
}
}
impl BarrierWaitResult {
/// Return whether this thread from `wait` is the "leader thread".
///
/// Only one thread will have `true` returned from their result, all other
/// threads will have `false` returned.
#[stable]
pub fn is_leader(&self) -> bool { self.0 }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
@ -97,15 +116,16 @@ mod tests {
#[test]
fn test_barrier() {
let barrier = Arc::new(Barrier::new(10));
const N: uint = 10;
let barrier = Arc::new(Barrier::new(N));
let (tx, rx) = channel();
for _ in range(0u, 9) {
for _ in range(0u, N - 1) {
let c = barrier.clone();
let tx = tx.clone();
Thread::spawn(move|| {
c.wait();
tx.send(true).unwrap();
tx.send(c.wait().is_leader()).unwrap();
}).detach();
}
@ -116,10 +136,15 @@ mod tests {
_ => false,
});
barrier.wait();
let mut leader_found = barrier.wait().is_leader();
// Now, the barrier is cleared and we should get data.
for _ in range(0u, 9) {
rx.recv().unwrap();
for _ in range(0u, N - 1) {
if rx.recv().unwrap() {
assert!(!leader_found);
leader_found = true;
}
}
assert!(leader_found);
}
}

View File

@ -88,7 +88,7 @@ unsafe impl Sync for StaticCondvar {}
#[unstable = "may be merged with Condvar in the future"]
pub const CONDVAR_INIT: StaticCondvar = StaticCondvar {
inner: sys::CONDVAR_INIT,
mutex: atomic::INIT_ATOMIC_UINT,
mutex: atomic::ATOMIC_UINT_INIT,
};
impl Condvar {

View File

@ -8,8 +8,8 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A type representing values that may be computed concurrently and operations for working with
//! them.
//! A type representing values that may be computed concurrently and operations
//! for working with them.
//!
//! # Example
//!
@ -23,6 +23,9 @@
//! ```
#![allow(missing_docs)]
#![unstable = "futures as-is have yet to be deeply reevaluated with recent \
core changes to Rust's synchronization story, and will likely \
become stable in the future but are unstable until that time"]
use core::prelude::*;
use core::mem::replace;

View File

@ -26,7 +26,7 @@ pub use self::rwlock::{RWLockReadGuard, RWLockWriteGuard};
pub use self::condvar::{Condvar, StaticCondvar, CONDVAR_INIT};
pub use self::once::{Once, ONCE_INIT};
pub use self::semaphore::{Semaphore, SemaphoreGuard};
pub use self::barrier::Barrier;
pub use self::barrier::{Barrier, BarrierWaitResult};
pub use self::poison::{PoisonError, TryLockError, TryLockResult, LockResult};
pub use self::future::Future;

View File

@ -11,7 +11,7 @@
//! Generic support for building blocking abstractions.
use thread::Thread;
use sync::atomic::{AtomicBool, INIT_ATOMIC_BOOL, Ordering};
use sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
use sync::Arc;
use kinds::{Sync, Send};
use kinds::marker::{NoSend, NoSync};
@ -40,7 +40,7 @@ pub struct WaitToken {
pub fn tokens() -> (WaitToken, SignalToken) {
let inner = Arc::new(Inner {
thread: Thread::current(),
woken: INIT_ATOMIC_BOOL,
woken: ATOMIC_BOOL_INIT,
});
let wait_token = WaitToken {
inner: inner.clone(),

View File

@ -32,10 +32,11 @@ use sync::{StaticMutex, MUTEX_INIT};
///
/// static START: Once = ONCE_INIT;
///
/// START.doit(|| {
/// START.call_once(|| {
/// // run initialization here
/// });
/// ```
#[stable]
pub struct Once {
mutex: StaticMutex,
cnt: atomic::AtomicInt,
@ -45,23 +46,25 @@ pub struct Once {
unsafe impl Sync for Once {}
/// Initialization value for static `Once` values.
#[stable]
pub const ONCE_INIT: Once = Once {
mutex: MUTEX_INIT,
cnt: atomic::INIT_ATOMIC_INT,
lock_cnt: atomic::INIT_ATOMIC_INT,
cnt: atomic::ATOMIC_INT_INIT,
lock_cnt: atomic::ATOMIC_INT_INIT,
};
impl Once {
/// Perform an initialization routine once and only once. The given closure
/// will be executed if this is the first time `doit` has been called, and
/// otherwise the routine will *not* be invoked.
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling task if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it may not be the closure specified).
pub fn doit<F>(&'static self, f: F) where F: FnOnce() {
#[stable]
pub fn call_once<F>(&'static self, f: F) where F: FnOnce() {
// Optimize common path: load is much cheaper than fetch_add.
if self.cnt.load(atomic::SeqCst) < 0 {
return
@ -91,13 +94,13 @@ impl Once {
//
// It is crucial that the negative value is swapped in *after* the
// initialization routine has completed because otherwise new threads
// calling `doit` will return immediately before the initialization has
// completed.
// calling `call_once` will return immediately before the initialization
// has completed.
let prev = self.cnt.fetch_add(1, atomic::SeqCst);
if prev < 0 {
// Make sure we never overflow, we'll never have int::MIN
// simultaneous calls to `doit` to make this value go back to 0
// simultaneous calls to `call_once` to make this value go back to 0
self.cnt.store(int::MIN, atomic::SeqCst);
return
}
@ -118,6 +121,10 @@ impl Once {
unsafe { self.mutex.destroy() }
}
}
/// Deprecated
#[deprecated = "renamed to `call_once`"]
pub fn doit<F>(&'static self, f: F) where F: FnOnce() { self.call_once(f) }
}
#[cfg(test)]
@ -132,9 +139,9 @@ mod test {
fn smoke_once() {
static O: Once = ONCE_INIT;
let mut a = 0i;
O.doit(|| a += 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
O.doit(|| a += 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
}
@ -149,7 +156,7 @@ mod test {
Thread::spawn(move|| {
for _ in range(0u, 4) { Thread::yield_now() }
unsafe {
O.doit(|| {
O.call_once(|| {
assert!(!run);
run = true;
});
@ -160,7 +167,7 @@ mod test {
}
unsafe {
O.doit(|| {
O.call_once(|| {
assert!(!run);
run = true;
});

View File

@ -8,6 +8,9 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![unstable = "the interaction between semaphores and the acquisition/release \
of resources is currently unclear"]
use ops::Drop;
use sync::{Mutex, Condvar};

View File

@ -10,6 +10,11 @@
//! Abstraction of a thread pool for basic parallelism.
#![unstable = "the semantics of a failing task and whether a thread is \
re-attached to a thread pool are somewhat unclear, and the \
utility of this type in `std::sync` is questionable with \
respect to the jobs of other primitives"]
use core::prelude::*;
use sync::{Arc, Mutex};

View File

@ -137,7 +137,7 @@ pub const INIT: StaticKey = StaticKey {
///
/// This value allows specific configuration of the destructor for a TLS key.
pub const INIT_INNER: StaticKeyInner = StaticKeyInner {
key: atomic::INIT_ATOMIC_UINT,
key: atomic::ATOMIC_UINT_INIT,
};
static INIT_KEYS: Once = ONCE_INIT;

View File

@ -20,7 +20,7 @@ use libc::{mod, c_int, c_char, c_void};
use os;
use path::{BytesContainer};
use ptr;
use sync::atomic::{AtomicInt, INIT_ATOMIC_INT, SeqCst};
use sync::atomic::{AtomicInt, SeqCst};
use sys::fs::FileDesc;
use os::TMPBUF_SZ;

View File

@ -10,6 +10,8 @@
use prelude::v1::*;
use prelude::*;
use libc;
use c_str::CString;
use mem;
@ -117,9 +119,6 @@ pub struct UnixStream {
write_deadline: u64,
}
unsafe impl Send for UnixStream {}
unsafe impl Sync for UnixStream {}
impl UnixStream {
pub fn connect(addr: &CString,
timeout: Option<u64>) -> IoResult<UnixStream> {
@ -218,6 +217,7 @@ pub struct UnixListener {
path: CString,
}
// we currently own the CString, so these impls should be safe
unsafe impl Send for UnixListener {}
unsafe impl Sync for UnixListener {}
@ -265,9 +265,6 @@ struct AcceptorInner {
closed: atomic::AtomicBool,
}
unsafe impl Send for AcceptorInner {}
unsafe impl Sync for AcceptorInner {}
impl UnixAcceptor {
pub fn fd(&self) -> fd_t { self.inner.listener.fd() }

View File

@ -211,7 +211,7 @@ impl Timer {
// instead of ()
HELPER.boot(|| {}, helper);
static ID: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
static ID: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
let id = ID.fetch_add(1, atomic::Relaxed);
Ok(Timer {
id: id,

View File

@ -173,7 +173,7 @@ pub fn init_net() {
unsafe {
static START: Once = ONCE_INIT;
START.doit(|| {
START.call_once(|| {
let mut data: c::WSADATA = mem::zeroed();
let ret = c::WSAStartup(0x202, // version 2.2
&mut data);

View File

@ -20,7 +20,7 @@ const SPIN_COUNT: DWORD = 4000;
pub struct Mutex { inner: atomic::AtomicUint }
pub const MUTEX_INIT: Mutex = Mutex { inner: atomic::INIT_ATOMIC_UINT };
pub const MUTEX_INIT: Mutex = Mutex { inner: atomic::ATOMIC_UINT_INIT };
unsafe impl Sync for Mutex {}

View File

@ -45,7 +45,7 @@ fn precise_time_ns() -> u64 {
denom: 0 };
static ONCE: sync::Once = sync::ONCE_INIT;
unsafe {
ONCE.doit(|| {
ONCE.call_once(|| {
imp::mach_timebase_info(&mut TIMEBASE);
});
let time = imp::mach_absolute_time();

View File

@ -197,7 +197,7 @@ pub fn precise_time_ns() -> u64 {
denom: 0 };
static ONCE: std::sync::Once = std::sync::ONCE_INIT;
unsafe {
ONCE.doit(|| {
ONCE.call_once(|| {
imp::mach_timebase_info(&mut TIMEBASE);
});
let time = imp::mach_absolute_time();

View File

@ -11,12 +11,12 @@
use std::sync::atomic;
pub const C1: uint = 1;
pub const C2: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
pub const C2: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
pub const C3: fn() = foo;
pub const C4: uint = C1 * C1 + C1 / C1;
pub const C5: &'static uint = &C4;
pub static S1: uint = 3;
pub static S2: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
pub static S2: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
fn foo() {}

View File

@ -41,9 +41,7 @@
extern crate arena;
use std::iter::range_step;
use std::str::from_str;
use std::sync::Future;
use std::thread::Thread;
use arena::TypedArena;
enum Tree<'a> {
@ -97,7 +95,7 @@ fn main() {
let mut messages = range_step(min_depth, max_depth + 1, 2).map(|depth| {
use std::num::Int;
let iterations = 2i.pow((max_depth - depth + min_depth) as uint);
Future::spawn(move|| {
Thread::spawn(move|| {
let mut chk = 0;
for i in range(1, iterations + 1) {
let arena = TypedArena::new();
@ -108,10 +106,10 @@ fn main() {
format!("{}\t trees of depth {}\t check: {}",
iterations * 2, depth, chk)
})
}).collect::<Vec<Future<String>>>();
}).collect::<Vec<_>>();
for message in messages.iter_mut() {
println!("{}", *message.get_ref());
for message in messages.into_iter() {
println!("{}", message.join().ok().unwrap());
}
println!("long lived tree of depth {}\t check: {}",

View File

@ -40,9 +40,8 @@
#![feature(slicing_syntax)]
use std::str::from_str;
use std::sync::Future;
use std::{cmp, iter, mem};
use std::thread::Thread;
fn rotate(x: &mut [i32]) {
let mut prev = x[0];
@ -169,15 +168,15 @@ fn fannkuch(n: i32) -> (i32, i32) {
for (i, j) in range(0, N).zip(iter::count(0, k)) {
let max = cmp::min(j+k, perm.max());
futures.push(Future::spawn(move|| {
futures.push(Thread::spawn(move|| {
work(perm, j as uint, max as uint)
}))
}
let mut checksum = 0;
let mut maxflips = 0;
for fut in futures.iter_mut() {
let (cs, mf) = fut.get();
for fut in futures.into_iter() {
let (cs, mf) = fut.join().ok().unwrap();
checksum += cs;
maxflips = cmp::max(maxflips, mf);
}

View File

@ -16,11 +16,11 @@ use std::sync::atomic::*;
use std::ptr;
fn main() {
let x = INIT_ATOMIC_BOOL;
let x = ATOMIC_BOOL_INIT;
let x = *&x; //~ ERROR: cannot move out of dereference
let x = INIT_ATOMIC_INT;
let x = ATOMIC_INT_INIT;
let x = *&x; //~ ERROR: cannot move out of dereference
let x = INIT_ATOMIC_UINT;
let x = ATOMIC_UINT_INIT;
let x = *&x; //~ ERROR: cannot move out of dereference
let x: AtomicPtr<uint> = AtomicPtr::new(ptr::null_mut());
let x = *&x; //~ ERROR: cannot move out of dereference

View File

@ -15,7 +15,7 @@ extern crate "issue-17718" as other;
use std::sync::atomic;
const C1: uint = 1;
const C2: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
const C2: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
const C3: fn() = foo;
const C4: uint = C1 * C1 + C1 / C1;
const C5: &'static uint = &C4;
@ -25,7 +25,7 @@ const C6: uint = {
};
static S1: uint = 3;
static S2: atomic::AtomicUint = atomic::INIT_ATOMIC_UINT;
static S2: atomic::AtomicUint = atomic::ATOMIC_UINT_INIT;
mod test {
static A: uint = 4;

View File

@ -9,7 +9,7 @@
// except according to those terms.
use std::task;
use std::sync::atomic::{AtomicUint, INIT_ATOMIC_UINT, Relaxed};
use std::sync::atomic::{AtomicUint, ATOMIC_UINT_INIT, Relaxed};
use std::rand::{thread_rng, Rng, Rand};
const REPEATS: uint = 5;
@ -17,18 +17,18 @@ const MAX_LEN: uint = 32;
static drop_counts: [AtomicUint; MAX_LEN] =
// FIXME #5244: AtomicUint is not Copy.
[
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT, INIT_ATOMIC_UINT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT, ATOMIC_UINT_INIT,
];
static creation_count: AtomicUint = INIT_ATOMIC_UINT;
static creation_count: AtomicUint = ATOMIC_UINT_INIT;
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord)]
struct DropCounter { x: uint, creation_id: uint }