rust/crates/hir_ty/src/infer/unify.rs

529 lines
20 KiB
Rust
Raw Normal View History

//! Unification and canonicalization logic.
2021-05-16 08:56:27 -05:00
use std::{fmt, mem, sync::Arc};
2021-04-03 10:49:29 -05:00
use chalk_ir::{
2021-05-15 16:09:18 -05:00
cast::Cast, fold::Fold, interner::HasInterner, zip::Zip, FloatTy, IntTy, TyVariableKind,
UniverseIndex,
2021-04-03 10:49:29 -05:00
};
use chalk_solve::infer::ParameterEnaVariableExt;
use ena::unify::UnifyKey;
use super::{InferOk, InferResult, InferenceContext, TypeError};
use crate::{
db::HirDatabase, fold_tys, static_lifetime, AliasEq, AliasTy, BoundVar, Canonical,
DebruijnIndex, GenericArg, Goal, Guidance, InEnvironment, InferenceVar, Interner, ProjectionTy,
Scalar, Solution, Substitution, TraitEnvironment, Ty, TyKind, VariableKind,
};
impl<'a> InferenceContext<'a> {
pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
&mut self,
t: T,
) -> Canonicalized<T::Result>
where
T::Result: HasInterner<Interner = Interner>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.resolve_obligations_as_possible();
self.table.canonicalize(t)
}
}
#[derive(Debug, Clone)]
2021-04-03 10:49:29 -05:00
pub(super) struct Canonicalized<T>
where
T: HasInterner<Interner = Interner>,
{
2020-11-02 09:31:38 -06:00
pub(super) value: Canonical<T>,
free_vars: Vec<GenericArg>,
2019-05-04 08:42:00 -05:00
}
2021-04-03 10:49:29 -05:00
impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
2021-04-05 11:54:31 -05:00
pub(super) fn decanonicalize_ty(&self, ty: Ty) -> Ty {
2021-05-15 16:09:18 -05:00
chalk_ir::Substitute::apply(&self.free_vars, ty, &Interner)
}
pub(super) fn apply_solution(
&self,
ctx: &mut InferenceTable,
2021-03-15 15:02:34 -05:00
solution: Canonical<Substitution>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substitution::from_iter(
&Interner,
solution.binders.iter(&Interner).map(|k| match k.kind {
VariableKind::Ty(TyVariableKind::General) => ctx.new_type_var().cast(&Interner),
VariableKind::Ty(TyVariableKind::Integer) => ctx.new_integer_var().cast(&Interner),
VariableKind::Ty(TyVariableKind::Float) => ctx.new_float_var().cast(&Interner),
// Chalk can sometimes return new lifetime variables. We just use the static lifetime everywhere
VariableKind::Lifetime => static_lifetime().cast(&Interner),
_ => panic!("const variable in solution"),
}),
);
2021-05-15 16:09:18 -05:00
for (i, v) in solution.value.iter(&Interner).enumerate() {
let var = self.free_vars[i].clone();
2021-05-15 16:09:18 -05:00
if let Some(ty) = v.ty(&Interner) {
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(new_vars.apply(ty.clone(), &Interner));
ctx.unify(var.assert_ty_ref(&Interner), &ty);
2021-05-15 16:09:18 -05:00
} else {
2021-05-21 11:20:56 -05:00
let _ = ctx.try_unify(&var, &new_vars.apply(v.clone(), &Interner));
2021-05-15 16:09:18 -05:00
}
}
}
}
pub fn could_unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
unify(db, env, tys).is_some()
}
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = Substitution::from_iter(
&Interner,
tys.binders
.iter(&Interner)
// we always use type vars here because we want everything to
// fallback to Unknown in the end (kind of hacky, as below)
.map(|_| table.new_type_var()),
);
2021-04-05 12:01:41 -05:00
let ty1_with_vars = vars.apply(tys.value.0.clone(), &Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), &Interner);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
2019-12-01 15:14:28 -06:00
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
2021-05-09 13:06:24 -05:00
let find_var = |iv| {
vars.iter(&Interner).position(|v| match v.interned() {
chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(&Interner),
chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(&Interner),
chalk_ir::GenericArgData::Const(c) => c.inference_var(&Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(&Interner).cast(&Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(&Interner).cast(&Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(&Interner, ty).cast(&Interner)),
2021-05-09 13:06:24 -05:00
};
Some(Substitution::from_iter(
&Interner,
vars.iter(&Interner)
2021-05-09 13:06:24 -05:00
.map(|v| table.resolve_with_fallback(v.assert_ty_ref(&Interner).clone(), fallback)),
))
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct TypeVariableData {
diverging: bool,
}
type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;
#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
pub db: &'a dyn HirDatabase,
pub trait_env: Arc<TraitEnvironment>,
pub(super) var_unification_table: ChalkInferenceTable,
2021-05-16 13:04:00 -05:00
pub(super) type_variable_table: Vec<TypeVariableData>,
pending_obligations: Vec<Canonicalized<InEnvironment<Goal>>>,
}
impl<'a> InferenceTable<'a> {
pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
InferenceTable {
db,
trait_env,
var_unification_table: ChalkInferenceTable::new(),
2021-05-16 13:04:00 -05:00
type_variable_table: Vec::new(),
pending_obligations: Vec::new(),
}
}
/// Chalk doesn't know about the `diverging` flag, so when it unifies two
/// type variables of which one is diverging, the chosen root might not be
/// diverging and we have no way of marking it as such at that time. This
/// function goes through all type variables and make sure their root is
/// marked as diverging if necessary, so that resolving them gives the right
/// result.
pub(super) fn propagate_diverging_flag(&mut self) {
2021-05-16 13:04:00 -05:00
for i in 0..self.type_variable_table.len() {
if !self.type_variable_table[i].diverging {
continue;
}
let v = InferenceVar::from(i as u32);
let root = self.var_unification_table.inference_var_root(v);
2021-05-16 13:04:00 -05:00
if let Some(data) = self.type_variable_table.get_mut(root.index() as usize) {
data.diverging = true;
}
}
}
2021-05-16 13:04:00 -05:00
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.type_variable_table[iv.index() as usize].diverging = diverging;
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
match kind {
_ if self
.type_variable_table
.get(iv.index() as usize)
.map_or(false, |data| data.diverging) =>
{
TyKind::Never
}
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(&Interner)
}
pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
&mut self,
t: T,
) -> Canonicalized<T::Result>
where
T::Result: HasInterner<Interner = Interner>,
{
let result = self.var_unification_table.canonicalize(&Interner, t);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(&Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
}
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
pub(super) fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
self.normalize_projection_ty(proj_ty.clone())
}
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
pub(super) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
let var = self.new_type_var();
let alias_eq = AliasEq { alias: AliasTy::Projection(proj_ty), ty: var.clone() };
let obligation = alias_eq.cast(&Interner);
self.register_obligation(obligation);
var
}
2021-05-16 13:04:00 -05:00
fn extend_type_variable_table(&mut self, to_index: usize) {
self.type_variable_table.extend(
(0..1 + to_index - self.type_variable_table.len())
.map(|_| TypeVariableData { diverging: false }),
);
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
// Chalk might have created some type variables for its own purposes that we don't know about...
2021-05-16 13:04:00 -05:00
self.extend_type_variable_table(var.index() as usize);
assert_eq!(var.index() as usize, self.type_variable_table.len() - 1);
self.type_variable_table[var.index() as usize].diverging = diverging;
var.to_ty_with_kind(&Interner, kind)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
2021-05-09 13:06:24 -05:00
pub(crate) fn resolve_with_fallback<T>(
&mut self,
t: T,
fallback: impl Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
2021-05-09 13:06:24 -05:00
) -> T::Result
where
T: HasInterner<Interner = Interner> + Fold<Interner>,
{
self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback)
}
fn resolve_with_fallback_inner<T>(
&mut self,
var_stack: &mut Vec<InferenceVar>,
t: T,
fallback: &impl Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
2021-05-09 13:06:24 -05:00
) -> T::Result
where
T: HasInterner<Interner = Interner> + Fold<Interner>,
{
t.fold_with(
2021-05-16 13:04:00 -05:00
&mut resolve::Resolver { table: self, var_stack, fallback },
2021-05-09 13:06:24 -05:00
DebruijnIndex::INNERMOST,
)
.expect("fold failed unexpectedly")
2021-05-09 13:06:24 -05:00
}
pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
self.resolve_with_fallback(ty, |_, _, d, _| d)
}
/// Unify two types and register new trait goals that arise from that.
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
2021-05-21 11:20:56 -05:00
let result = if let Ok(r) = self.try_unify(ty1, ty2) {
r
2021-02-28 12:13:37 -06:00
} else {
return false;
};
self.register_infer_ok(result);
true
}
/// Unify two types and return new trait goals arising from it, so the
/// caller needs to deal with them.
2021-05-21 11:20:56 -05:00
pub(crate) fn try_unify<T: Zip<Interner>>(&mut self, t1: &T, t2: &T) -> InferResult {
match self.var_unification_table.relate(
&Interner,
&self.db,
&self.trait_env.env,
chalk_ir::Variance::Invariant,
2021-05-15 16:09:18 -05:00
t1,
t2,
) {
Ok(result) => Ok(InferOk { goals: result.goals }),
2021-05-02 09:20:37 -05:00
Err(chalk_ir::NoSolution) => Err(TypeError),
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
2021-05-16 08:56:27 -05:00
pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
self.var_unification_table.normalize_ty_shallow(&Interner, ty).unwrap_or_else(|| ty.clone())
}
pub fn register_obligation(&mut self, goal: Goal) {
let in_env = InEnvironment::new(&self.trait_env.env, goal);
self.register_obligation_in_env(in_env)
}
fn register_obligation_in_env(&mut self, goal: InEnvironment<Goal>) {
let canonicalized = self.canonicalize(goal);
if !self.try_resolve_obligation(&canonicalized) {
self.pending_obligations.push(canonicalized);
}
}
pub fn register_infer_ok(&mut self, infer_ok: InferOk) {
infer_ok.goals.into_iter().for_each(|goal| self.register_obligation_in_env(goal));
}
pub fn resolve_obligations_as_possible(&mut self) {
let _span = profile::span("resolve_obligations_as_possible");
let mut changed = true;
let mut obligations = Vec::new();
while changed {
changed = false;
mem::swap(&mut self.pending_obligations, &mut obligations);
for canonicalized in obligations.drain(..) {
if !self.check_changed(&canonicalized) {
self.pending_obligations.push(canonicalized);
continue;
}
changed = true;
let uncanonical = chalk_ir::Substitute::apply(
&canonicalized.free_vars,
canonicalized.value.value,
&Interner,
);
self.register_obligation_in_env(uncanonical);
}
}
}
/// This checks whether any of the free variables in the `canonicalized`
/// have changed (either been unified with another variable, or with a
/// value). If this is not the case, we don't need to try to solve the goal
/// again -- it'll give the same result as last time.
fn check_changed(&mut self, canonicalized: &Canonicalized<InEnvironment<Goal>>) -> bool {
canonicalized.free_vars.iter().any(|var| {
let iv = match var.data(&Interner) {
chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(&Interner),
chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(&Interner),
chalk_ir::GenericArgData::Const(c) => c.inference_var(&Interner),
}
.expect("free var is not inference var");
if self.var_unification_table.probe_var(iv).is_some() {
return true;
}
let root = self.var_unification_table.inference_var_root(iv);
iv != root
})
}
fn try_resolve_obligation(
&mut self,
canonicalized: &Canonicalized<InEnvironment<Goal>>,
) -> bool {
let solution = self.db.trait_solve(self.trait_env.krate, canonicalized.value.clone());
match solution {
Some(Solution::Unique(canonical_subst)) => {
canonicalized.apply_solution(
self,
Canonical {
binders: canonical_subst.binders,
// FIXME: handle constraints
value: canonical_subst.value.subst,
},
);
true
}
Some(Solution::Ambig(Guidance::Definite(substs))) => {
canonicalized.apply_solution(self, substs);
false
}
Some(_) => {
// FIXME use this when trying to resolve everything at the end
false
}
None => {
// FIXME obligation cannot be fulfilled => diagnostic
true
}
}
}
}
impl<'a> fmt::Debug for InferenceTable<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2021-05-16 13:04:00 -05:00
f.debug_struct("InferenceTable").field("num_vars", &self.type_variable_table.len()).finish()
}
}
mod resolve {
2021-05-16 13:04:00 -05:00
use super::InferenceTable;
use crate::{
ConcreteConst, Const, ConstData, ConstValue, DebruijnIndex, GenericArg, InferenceVar,
Interner, Ty, TyVariableKind, VariableKind,
};
use chalk_ir::{
cast::Cast,
fold::{Fold, Folder},
Fallible,
};
use hir_def::type_ref::ConstScalar;
2021-05-16 13:04:00 -05:00
pub(super) struct Resolver<'a, 'b, F> {
pub table: &'a mut InferenceTable<'b>,
pub var_stack: &'a mut Vec<InferenceVar>,
pub fallback: F,
}
2021-05-16 13:04:00 -05:00
impl<'a, 'b, 'i, F> Folder<'i, Interner> for Resolver<'a, 'b, F>
where
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg + 'i,
{
fn as_dyn(&mut self) -> &mut dyn Folder<'i, Interner> {
self
}
fn interner(&self) -> &'i Interner {
&Interner
}
fn fold_inference_ty(
&mut self,
var: InferenceVar,
kind: TyVariableKind,
outer_binder: DebruijnIndex,
) -> Fallible<Ty> {
2021-05-16 13:04:00 -05:00
let var = self.table.var_unification_table.inference_var_root(var);
if self.var_stack.contains(&var) {
// recursive type
2021-05-16 13:04:00 -05:00
let default = self.table.fallback_value(var, kind).cast(&Interner);
return Ok((self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(&Interner)
.clone());
}
2021-05-16 13:04:00 -05:00
let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result =
known_ty.fold_with(self, outer_binder).expect("fold failed unexpectedly");
self.var_stack.pop();
result.assert_ty_ref(&Interner).clone()
} else {
2021-05-16 13:04:00 -05:00
let default = self.table.fallback_value(var, kind).cast(&Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(&Interner)
.clone()
};
Ok(result)
}
fn fold_inference_const(
&mut self,
ty: Ty,
var: InferenceVar,
outer_binder: DebruijnIndex,
) -> Fallible<Const> {
2021-05-16 13:04:00 -05:00
let var = self.table.var_unification_table.inference_var_root(var);
let default = ConstData {
ty: ty.clone(),
value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }),
}
.intern(&Interner)
.cast(&Interner);
if self.var_stack.contains(&var) {
// recursive
return Ok((self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(&Interner)
.clone());
}
2021-05-16 13:04:00 -05:00
let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result =
known_ty.fold_with(self, outer_binder).expect("fold failed unexpectedly");
self.var_stack.pop();
result.assert_const_ref(&Interner).clone()
} else {
(self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(&Interner)
.clone()
};
Ok(result)
}
}
}