Get rid of resolve_ty_as_possible

Instead use shallow resolving where necessary.
This commit is contained in:
Florian Diebold 2021-05-16 17:56:38 +02:00
parent a78f0076ab
commit 4bd446f5b3
8 changed files with 56 additions and 88 deletions

View File

@ -273,7 +273,7 @@ impl<'a> InferenceContext<'a> {
}
fn err_ty(&self) -> Ty {
TyKind::Error.intern(&Interner)
self.result.standard_types.unknown.clone()
}
fn resolve_all(mut self) -> InferenceResult {
@ -284,12 +284,14 @@ impl<'a> InferenceContext<'a> {
self.table.propagate_diverging_flag();
let mut result = std::mem::take(&mut self.result);
for ty in result.type_of_expr.values_mut() {
let resolved = self.table.resolve_ty_completely(ty.clone());
*ty = resolved;
*ty = self.table.resolve_ty_completely(ty.clone());
}
for ty in result.type_of_pat.values_mut() {
let resolved = self.table.resolve_ty_completely(ty.clone());
*ty = resolved;
*ty = self.table.resolve_ty_completely(ty.clone());
}
for mismatch in result.type_mismatches.values_mut() {
mismatch.expected = self.table.resolve_ty_completely(mismatch.expected.clone());
mismatch.actual = self.table.resolve_ty_completely(mismatch.actual.clone());
}
result
}
@ -343,6 +345,14 @@ impl<'a> InferenceContext<'a> {
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty.kind(&Interner) {
TyKind::Error => self.table.new_type_var(),
TyKind::InferenceVar(..) => {
let ty_resolved = self.resolve_ty_shallow(&ty);
if ty_resolved.is_unknown() {
self.table.new_type_var()
} else {
ty
}
}
_ => ty,
}
}
@ -371,18 +381,8 @@ impl<'a> InferenceContext<'a> {
self.table.unify_inner(ty1, ty2)
}
// FIXME get rid of this, instead resolve shallowly where necessary
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_obligations_as_possible();
self.table.resolve_ty_as_possible(ty)
}
fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
self.resolve_obligations_as_possible();
self.table.resolve_ty_shallow(ty)
}
@ -416,7 +416,7 @@ impl<'a> InferenceContext<'a> {
};
self.push_obligation(trait_ref.cast(&Interner));
self.push_obligation(alias_eq.cast(&Interner));
self.resolve_ty_as_possible(ty)
ty
}
None => self.err_ty(),
}

View File

@ -19,12 +19,12 @@ impl<'a> InferenceContext<'a> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
// TODO handle expectations properly
if to_ty.is_unknown() {
return true;
}
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty) {
Ok(_result) => {
// TODO deal with goals

View File

@ -35,7 +35,7 @@ use super::{
impl<'a> InferenceContext<'a> {
pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(tgt_expr, expected);
if ty.is_never() {
if self.resolve_ty_shallow(&ty).is_never() {
// Any expression that produces a value of type `!` must have diverged
self.diverges = Diverges::Always;
}
@ -46,7 +46,7 @@ impl<'a> InferenceContext<'a> {
TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
);
}
self.resolve_ty_as_possible(ty)
ty
}
/// Infer type of expression with possibly implicit coerce to the expected type.
@ -67,7 +67,7 @@ impl<'a> InferenceContext<'a> {
expected.ty.clone()
};
self.resolve_ty_as_possible(ty)
ty
}
fn callable_sig_from_fn_trait(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
@ -284,8 +284,7 @@ impl<'a> InferenceContext<'a> {
// Now go through the argument patterns
for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
let resolved = self.resolve_ty_as_possible(arg_ty);
self.infer_pat(*arg_pat, &resolved, BindingMode::default());
self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
}
let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
@ -525,14 +524,14 @@ impl<'a> InferenceContext<'a> {
Expr::Ref { expr, rawness, mutability } => {
let mutability = lower_to_chalk_mutability(*mutability);
let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) =
&expected.ty.as_reference_or_ptr()
&self.resolve_ty_shallow(&expected.ty).as_reference_or_ptr()
{
if *exp_mutability == Mutability::Mut && mutability == Mutability::Not {
// FIXME: throw type error - expected mut reference but found shared ref,
// FIXME: record type error - expected mut reference but found shared ref,
// which cannot be coerced
}
if *exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
// FIXME: throw type error - expected reference but found ptr,
// FIXME: record type error - expected reference but found ptr,
// which cannot be coerced
}
Expectation::rvalue_hint(Ty::clone(exp_inner))
@ -559,6 +558,7 @@ impl<'a> InferenceContext<'a> {
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
let inner_ty = self.resolve_ty_shallow(&inner_ty);
match op {
UnaryOp::Deref => match self.resolver.krate() {
Some(krate) => {
@ -615,8 +615,10 @@ impl<'a> InferenceContext<'a> {
_ => Expectation::none(),
};
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty.clone());
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
let ret = op::binary_op_return_ty(*op, lhs_ty.clone(), rhs_ty.clone());
@ -699,7 +701,7 @@ impl<'a> InferenceContext<'a> {
}
}
Expr::Tuple { exprs } => {
let mut tys = match expected.ty.kind(&Interner) {
let mut tys = match self.resolve_ty_shallow(&expected.ty).kind(&Interner) {
TyKind::Tuple(_, substs) => substs
.iter(&Interner)
.map(|a| a.assert_ty_ref(&Interner).clone())
@ -716,7 +718,7 @@ impl<'a> InferenceContext<'a> {
TyKind::Tuple(tys.len(), Substitution::from_iter(&Interner, tys)).intern(&Interner)
}
Expr::Array(array) => {
let elem_ty = match expected.ty.kind(&Interner) {
let elem_ty = match self.resolve_ty_shallow(&expected.ty).kind(&Interner) {
TyKind::Array(st, _) | TyKind::Slice(st) => st.clone(),
_ => self.table.new_type_var(),
};
@ -788,7 +790,6 @@ impl<'a> InferenceContext<'a> {
};
// use a new type variable if we got unknown here
let ty = self.insert_type_vars_shallow(ty);
let ty = self.resolve_ty_as_possible(ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
@ -816,7 +817,6 @@ impl<'a> InferenceContext<'a> {
}
}
let ty = self.resolve_ty_as_possible(ty);
self.infer_pat(*pat, &ty, BindingMode::default());
}
Statement::Expr { expr, .. } => {
@ -894,7 +894,8 @@ impl<'a> InferenceContext<'a> {
};
// Apply autoref so the below unification works correctly
// FIXME: return correct autorefs from lookup_method
let actual_receiver_ty = match expected_receiver_ty.as_reference() {
let actual_receiver_ty = match self.resolve_ty_shallow(&expected_receiver_ty).as_reference()
{
Some((_, lifetime, mutability)) => {
TyKind::Ref(mutability, lifetime, derefed_receiver_ty).intern(&Interner)
}
@ -974,6 +975,7 @@ impl<'a> InferenceContext<'a> {
}
fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
let callable_ty = self.resolve_ty_shallow(&callable_ty);
if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(&Interner) {
let def: CallableDefId = from_chalk(self.db, *fn_def);
let generic_predicates = self.db.generic_predicates(def.into());

View File

@ -94,14 +94,15 @@ impl<'a> InferenceContext<'a> {
pub(super) fn infer_pat(
&mut self,
pat: PatId,
mut expected: &Ty,
expected: &Ty,
mut default_bm: BindingMode,
) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let mut expected = self.resolve_ty_shallow(expected);
if is_non_ref_pat(&body, pat) {
while let Some((inner, _lifetime, mutability)) = expected.as_reference() {
expected = inner;
expected = self.resolve_ty_shallow(inner);
default_bm = match default_bm {
BindingMode::Move => BindingMode::Ref(mutability),
BindingMode::Ref(Mutability::Not) => BindingMode::Ref(Mutability::Not),
@ -147,9 +148,9 @@ impl<'a> InferenceContext<'a> {
}
Pat::Or(ref pats) => {
if let Some((first_pat, rest)) = pats.split_first() {
let ty = self.infer_pat(*first_pat, expected, default_bm);
let ty = self.infer_pat(*first_pat, &expected, default_bm);
for pat in rest {
self.infer_pat(*pat, expected, default_bm);
self.infer_pat(*pat, &expected, default_bm);
}
ty
} else {
@ -173,13 +174,13 @@ impl<'a> InferenceContext<'a> {
Pat::TupleStruct { path: p, args: subpats, ellipsis } => self.infer_tuple_struct_pat(
p.as_deref(),
subpats,
expected,
&expected,
default_bm,
pat,
*ellipsis,
),
Pat::Record { path: p, args: fields, ellipsis: _ } => {
self.infer_record_pat(p.as_deref(), fields, expected, default_bm, pat)
self.infer_record_pat(p.as_deref(), fields, &expected, default_bm, pat)
}
Pat::Path(path) => {
// FIXME use correct resolver for the surrounding expression
@ -193,7 +194,7 @@ impl<'a> InferenceContext<'a> {
BindingMode::convert(*mode)
};
let inner_ty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected, default_bm)
self.infer_pat(*subpat, &expected, default_bm)
} else {
expected.clone()
};
@ -206,7 +207,6 @@ impl<'a> InferenceContext<'a> {
}
BindingMode::Move => inner_ty.clone(),
};
let bound_ty = self.resolve_ty_as_possible(bound_ty);
self.write_pat_ty(pat, bound_ty);
return inner_ty;
}
@ -265,13 +265,12 @@ impl<'a> InferenceContext<'a> {
};
// use a new type variable if we got error type here
let ty = self.insert_type_vars_shallow(ty);
if !self.unify(&ty, expected) {
if !self.unify(&ty, &expected) {
self.result.type_mismatches.insert(
pat.into(),
TypeMismatch { expected: expected.clone(), actual: ty.clone() },
);
}
let ty = self.resolve_ty_as_possible(ty);
self.write_pat_ty(pat, ty.clone());
ty
}

View File

@ -65,7 +65,6 @@ impl<'a> InferenceContext<'a> {
let typable: ValueTyDefId = match value {
ValueNs::LocalBinding(pat) => {
let ty = self.result.type_of_pat.get(pat)?.clone();
let ty = self.resolve_ty_as_possible(ty);
return Some(ty);
}
ValueNs::FunctionId(it) => it.into(),
@ -275,6 +274,7 @@ impl<'a> InferenceContext<'a> {
name: &Name,
id: ExprOrPatId,
) -> Option<(ValueNs, Option<Substitution>)> {
let ty = self.resolve_ty_shallow(ty);
let (enum_id, subst) = match ty.as_adt() {
Some((AdtId::EnumId(e), subst)) => (e, subst),
_ => return None,

View File

@ -24,6 +24,9 @@ impl<'a> InferenceContext<'a> {
where
T::Result: HasInterner<Interner = Interner>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.resolve_obligations_as_possible();
self.table.canonicalize(t)
}
}
@ -216,7 +219,6 @@ impl<'a> InferenceTable<'a> {
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
pub(super) fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
let ty = self.resolve_ty_as_possible(ty);
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
@ -302,11 +304,6 @@ impl<'a> InferenceTable<'a> {
self.resolve_with_fallback(ty, |_, _, d, _| d)
}
// FIXME get rid of this, instead resolve shallowly where necessary
pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
}
/// Unify two types and register new trait goals that arise from that.
// TODO give these two functions better names
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
@ -344,36 +341,6 @@ impl<'a> InferenceTable<'a> {
self.var_unification_table.normalize_ty_shallow(&Interner, ty).unwrap_or_else(|| ty.clone())
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types.
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<InferenceVar>, ty: Ty) -> Ty {
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
if tv_stack.contains(&tv) {
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) = self.var_unification_table.probe_var(tv) {
// known_ty may contain other variables that are known by now
tv_stack.push(tv);
let result = self.resolve_ty_as_possible_inner(
tv_stack,
known_ty.assert_ty_ref(&Interner).clone(),
);
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
pub fn register_obligation(&mut self, goal: Goal) {
let in_env = InEnvironment::new(&self.trait_env.env, goal);
self.register_obligation_in_env(in_env)

View File

@ -117,19 +117,19 @@ fn recursive_vars_2() {
"#,
expect![[r#"
10..79 '{ ...x)]; }': ()
20..21 'x': {unknown}
24..31 'unknown': {unknown}
20..21 'x': &{unknown}
24..31 'unknown': &{unknown}
41..42 'y': {unknown}
45..52 'unknown': {unknown}
58..76 '[(x, y..., &x)]': [({unknown}, {unknown}); 2]
59..65 '(x, y)': ({unknown}, {unknown})
60..61 'x': {unknown}
58..76 '[(x, y..., &x)]': [(&{unknown}, {unknown}); 2]
59..65 '(x, y)': (&{unknown}, {unknown})
60..61 'x': &{unknown}
63..64 'y': {unknown}
67..75 '(&y, &x)': (&{unknown}, &{unknown})
67..75 '(&y, &x)': (&{unknown}, {unknown})
68..70 '&y': &{unknown}
69..70 'y': {unknown}
72..74 '&x': &{unknown}
73..74 'x': {unknown}
72..74 '&x': &&{unknown}
73..74 'x': &{unknown}
"#]],
);
}

View File

@ -3104,7 +3104,7 @@ fn foo() {
568..573 'f(&s)': FnOnce::Output<dyn FnOnce(&Option<i32>), (&Option<i32>,)>
570..572 '&s': &Option<i32>
571..572 's': Option<i32>
549..562: expected Box<dyn FnOnce(&Option<i32>)>, got Box<|_| -> ()>
549..562: expected Box<dyn FnOnce(&Option<i32>)>, got Box<|{unknown}| -> ()>
"#]],
);
}