445 lines
16 KiB
Rust
Raw Normal View History

//! Unification and canonicalization logic.
use std::{borrow::Cow, fmt, sync::Arc};
2021-04-03 17:49:29 +02:00
use chalk_ir::{
cast::Cast, fold::Fold, interner::HasInterner, FloatTy, IntTy, TyVariableKind, UniverseIndex,
2021-04-03 17:49:29 +02:00
};
use chalk_solve::infer::ParameterEnaVariableExt;
use ena::unify::UnifyKey;
use super::{InferOk, InferResult, InferenceContext, TypeError};
use crate::{
db::HirDatabase, fold_tys, static_lifetime, BoundVar, Canonical, DebruijnIndex, GenericArg,
2021-05-09 20:06:24 +02:00
InferenceVar, Interner, Scalar, Substitution, TraitEnvironment, Ty, TyKind, VariableKind,
};
impl<'a> InferenceContext<'a> {
pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
&mut self,
t: T,
) -> Canonicalized<T::Result>
where
T::Result: HasInterner<Interner = Interner>,
{
let result = self.table.var_unification_table.canonicalize(&Interner, t);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(&Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
}
}
#[derive(Debug)]
2021-04-03 17:49:29 +02:00
pub(super) struct Canonicalized<T>
where
T: HasInterner<Interner = Interner>,
{
2020-11-02 16:31:38 +01:00
pub(super) value: Canonical<T>,
free_vars: Vec<GenericArg>,
2019-05-04 15:42:00 +02:00
}
2021-04-03 17:49:29 +02:00
impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
2021-04-05 18:54:31 +02:00
pub(super) fn decanonicalize_ty(&self, ty: Ty) -> Ty {
2021-04-07 21:26:37 +02:00
crate::fold_free_vars(ty, |bound, _binders| {
let var = self.free_vars[bound.index].clone();
var.assert_ty_ref(&Interner).clone()
2021-04-07 21:26:37 +02:00
})
}
pub(super) fn apply_solution(
&self,
ctx: &mut InferenceContext<'_>,
2021-03-15 21:02:34 +01:00
solution: Canonical<Substitution>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substitution::from_iter(
&Interner,
solution.binders.iter(&Interner).map(|k| match k.kind {
VariableKind::Ty(TyVariableKind::General) => {
ctx.table.new_type_var().cast(&Interner)
}
VariableKind::Ty(TyVariableKind::Integer) => {
ctx.table.new_integer_var().cast(&Interner)
}
VariableKind::Ty(TyVariableKind::Float) => {
ctx.table.new_float_var().cast(&Interner)
}
// Chalk can sometimes return new lifetime variables. We just use the static lifetime everywhere
VariableKind::Lifetime => static_lifetime().cast(&Interner),
_ => panic!("const variable in solution"),
}),
);
for (i, ty) in solution.value.iter(&Interner).enumerate() {
// FIXME: deal with non-type vars here -- the only problematic part is the normalization
// and maybe we don't need that with lazy normalization?
let var = self.free_vars[i].clone();
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(
2021-04-05 19:01:41 +02:00
new_vars.apply(ty.assert_ty_ref(&Interner).clone(), &Interner),
);
ctx.table.unify(var.assert_ty_ref(&Interner), &ty);
}
}
}
pub fn could_unify(db: &dyn HirDatabase, env: Arc<TraitEnvironment>, t1: &Ty, t2: &Ty) -> bool {
InferenceTable::new(db, env).unify(t1, t2)
}
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = Substitution::from_iter(
&Interner,
tys.binders
.iter(&Interner)
// we always use type vars here because we want everything to
// fallback to Unknown in the end (kind of hacky, as below)
.map(|_| table.new_type_var()),
);
2021-04-05 19:01:41 +02:00
let ty1_with_vars = vars.apply(tys.value.0.clone(), &Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), &Interner);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
2019-12-01 22:14:28 +01:00
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
2021-05-09 20:06:24 +02:00
let find_var = |iv| {
vars.iter(&Interner).position(|v| match v.interned() {
chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(&Interner),
chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(&Interner),
chalk_ir::GenericArgData::Const(c) => c.inference_var(&Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(&Interner).cast(&Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(&Interner).cast(&Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(&Interner, ty).cast(&Interner)),
2021-05-09 20:06:24 +02:00
};
Some(Substitution::from_iter(
&Interner,
vars.iter(&Interner)
2021-05-09 20:06:24 +02:00
.map(|v| table.resolve_with_fallback(v.assert_ty_ref(&Interner).clone(), fallback)),
))
}
#[derive(Clone, Debug)]
pub(super) struct TypeVariableTable {
inner: Vec<TypeVariableData>,
}
impl TypeVariableTable {
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.inner[iv.index() as usize].diverging = diverging;
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
match kind {
_ if self.inner[iv.index() as usize].diverging => TyKind::Never,
2021-04-05 15:37:11 +03:00
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(&Interner)
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct TypeVariableData {
diverging: bool,
}
type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;
#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
db: &'a dyn HirDatabase,
trait_env: Arc<TraitEnvironment>,
pub(super) var_unification_table: ChalkInferenceTable,
pub(super) type_variable_table: TypeVariableTable,
}
impl<'a> InferenceTable<'a> {
pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
InferenceTable {
db,
trait_env,
var_unification_table: ChalkInferenceTable::new(),
type_variable_table: TypeVariableTable { inner: Vec::new() },
}
}
/// Chalk doesn't know about the `diverging` flag, so when it unifies two
/// type variables of which one is diverging, the chosen root might not be
/// diverging and we have no way of marking it as such at that time. This
/// function goes through all type variables and make sure their root is
/// marked as diverging if necessary, so that resolving them gives the right
/// result.
pub(super) fn propagate_diverging_flag(&mut self) {
for i in 0..self.type_variable_table.inner.len() {
if !self.type_variable_table.inner[i].diverging {
continue;
}
let v = InferenceVar::from(i as u32);
let root = self.var_unification_table.inference_var_root(v);
if let Some(data) = self.type_variable_table.inner.get_mut(root.index() as usize) {
data.diverging = true;
}
}
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
// Chalk might have created some type variables for its own purposes that we don't know about...
self.type_variable_table.inner.extend(
(0..1 + var.index() as usize - self.type_variable_table.inner.len())
.map(|_| TypeVariableData { diverging: false }),
);
assert_eq!(var.index() as usize, self.type_variable_table.inner.len() - 1);
self.type_variable_table.inner[var.index() as usize].diverging = diverging;
var.to_ty_with_kind(&Interner, kind)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
2021-05-09 20:06:24 +02:00
pub(crate) fn resolve_with_fallback<T>(
&mut self,
t: T,
fallback: impl Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
2021-05-09 20:06:24 +02:00
) -> T::Result
where
T: HasInterner<Interner = Interner> + Fold<Interner>,
{
self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback)
}
fn resolve_with_fallback_inner<T>(
&mut self,
var_stack: &mut Vec<InferenceVar>,
t: T,
fallback: &impl Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
2021-05-09 20:06:24 +02:00
) -> T::Result
where
T: HasInterner<Interner = Interner> + Fold<Interner>,
{
t.fold_with(
&mut resolve::Resolver {
type_variable_table: &self.type_variable_table,
var_unification_table: &mut self.var_unification_table,
var_stack,
fallback,
2021-05-09 20:06:24 +02:00
},
DebruijnIndex::INNERMOST,
)
.expect("fold failed unexpectedly")
2021-05-09 20:06:24 +02:00
}
pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
self.resolve_with_fallback(ty, |_, _, d, _| d)
}
// FIXME get rid of this, instead resolve shallowly where necessary
pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
}
/// Unify two types and register new trait goals that arise from that.
// TODO give these two functions better names
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
2021-05-02 16:20:37 +02:00
let _result = if let Ok(r) = self.unify_inner(ty1, ty2) {
r
2021-02-28 19:13:37 +01:00
} else {
return false;
};
// TODO deal with new goals
true
}
/// Unify two types and return new trait goals arising from it, so the
/// caller needs to deal with them.
pub(crate) fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty) -> InferResult {
match self.var_unification_table.relate(
&Interner,
&self.db,
&self.trait_env.env,
chalk_ir::Variance::Invariant,
ty1,
ty2,
) {
2021-05-02 16:20:37 +02:00
Ok(_result) => {
// TODO deal with new goals
Ok(InferOk {})
}
2021-05-02 16:20:37 +02:00
Err(chalk_ir::NoSolution) => Err(TypeError),
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
// FIXME this could probably just return Ty
pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
self.var_unification_table
.normalize_ty_shallow(&Interner, ty)
.map_or(Cow::Borrowed(ty), Cow::Owned)
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types.
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<InferenceVar>, ty: Ty) -> Ty {
2021-04-08 13:32:48 +02:00
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
if tv_stack.contains(&tv) {
2021-04-08 13:32:48 +02:00
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) = self.var_unification_table.probe_var(tv) {
2021-04-08 13:32:48 +02:00
// known_ty may contain other variables that are known by now
tv_stack.push(tv);
let result = self.resolve_ty_as_possible_inner(
tv_stack,
known_ty.assert_ty_ref(&Interner).clone(),
);
2021-04-08 13:32:48 +02:00
tv_stack.pop();
result
} else {
ty
}
}
2021-04-08 13:32:48 +02:00
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
}
impl<'a> fmt::Debug for InferenceTable<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("InferenceTable")
.field("num_vars", &self.type_variable_table.inner.len())
.finish()
}
}
mod resolve {
use super::{ChalkInferenceTable, TypeVariableTable};
use crate::{
ConcreteConst, Const, ConstData, ConstValue, DebruijnIndex, GenericArg, InferenceVar,
Interner, Ty, TyVariableKind, VariableKind,
};
use chalk_ir::{
cast::Cast,
fold::{Fold, Folder},
Fallible,
};
use hir_def::type_ref::ConstScalar;
pub(super) struct Resolver<'a, F> {
pub type_variable_table: &'a TypeVariableTable,
pub var_unification_table: &'a mut ChalkInferenceTable,
pub var_stack: &'a mut Vec<InferenceVar>,
pub fallback: F,
}
impl<'a, 'i, F> Folder<'i, Interner> for Resolver<'a, F>
where
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg + 'i,
{
fn as_dyn(&mut self) -> &mut dyn Folder<'i, Interner> {
self
}
fn interner(&self) -> &'i Interner {
&Interner
}
fn fold_inference_ty(
&mut self,
var: InferenceVar,
kind: TyVariableKind,
outer_binder: DebruijnIndex,
) -> Fallible<Ty> {
let var = self.var_unification_table.inference_var_root(var);
if self.var_stack.contains(&var) {
// recursive type
let default = self.type_variable_table.fallback_value(var, kind).cast(&Interner);
return Ok((self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(&Interner)
.clone());
}
let result = if let Some(known_ty) = self.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result =
known_ty.fold_with(self, outer_binder).expect("fold failed unexpectedly");
self.var_stack.pop();
result.assert_ty_ref(&Interner).clone()
} else {
let default = self.type_variable_table.fallback_value(var, kind).cast(&Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(&Interner)
.clone()
};
Ok(result)
}
fn fold_inference_const(
&mut self,
ty: Ty,
var: InferenceVar,
outer_binder: DebruijnIndex,
) -> Fallible<Const> {
let var = self.var_unification_table.inference_var_root(var);
let default = ConstData {
ty: ty.clone(),
value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }),
}
.intern(&Interner)
.cast(&Interner);
if self.var_stack.contains(&var) {
// recursive
return Ok((self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(&Interner)
.clone());
}
let result = if let Some(known_ty) = self.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result =
known_ty.fold_with(self, outer_binder).expect("fold failed unexpectedly");
self.var_stack.pop();
result.assert_const_ref(&Interner).clone()
} else {
(self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(&Interner)
.clone()
};
Ok(result)
}
}
}