rust/crates/hir_ty/src/infer/unify.rs

321 lines
12 KiB
Rust
Raw Normal View History

//! Unification and canonicalization logic.
use std::{borrow::Cow, fmt, sync::Arc};
2021-04-03 10:49:29 -05:00
use chalk_ir::{
cast::Cast, fold::Fold, interner::HasInterner, FloatTy, IntTy, TyVariableKind, UniverseIndex,
VariableKind,
2021-04-03 10:49:29 -05:00
};
use chalk_solve::infer::ParameterEnaVariableExt;
use ena::unify::UnifyKey;
use super::InferenceContext;
use crate::{
db::HirDatabase, fold_tys, static_lifetime, BoundVar, Canonical, DebruijnIndex, GenericArg,
InferenceVar, Interner, Scalar, Substitution, TraitEnvironment, Ty, TyKind,
};
impl<'a> InferenceContext<'a> {
pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
&mut self,
t: T,
) -> Canonicalized<T::Result>
where
T::Result: HasInterner<Interner = Interner>,
{
let result = self.table.var_unification_table.canonicalize(&Interner, t);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(&Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
}
}
#[derive(Debug)]
2021-04-03 10:49:29 -05:00
pub(super) struct Canonicalized<T>
where
T: HasInterner<Interner = Interner>,
{
2020-11-02 09:31:38 -06:00
pub(super) value: Canonical<T>,
free_vars: Vec<GenericArg>,
2019-05-04 08:42:00 -05:00
}
2021-04-03 10:49:29 -05:00
impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
2021-04-05 11:54:31 -05:00
pub(super) fn decanonicalize_ty(&self, ty: Ty) -> Ty {
2021-04-07 14:26:37 -05:00
crate::fold_free_vars(ty, |bound, _binders| {
let var = self.free_vars[bound.index];
var.assert_ty_ref(&Interner).clone()
2021-04-07 14:26:37 -05:00
})
}
pub(super) fn apply_solution(
&self,
ctx: &mut InferenceContext<'_>,
2021-03-15 15:02:34 -05:00
solution: Canonical<Substitution>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substitution::from_iter(
&Interner,
solution.binders.iter(&Interner).map(|k| match k.kind {
VariableKind::Ty(TyVariableKind::General) => {
ctx.table.new_type_var().cast(&Interner)
}
VariableKind::Ty(TyVariableKind::Integer) => {
ctx.table.new_integer_var().cast(&Interner)
}
VariableKind::Ty(TyVariableKind::Float) => {
ctx.table.new_float_var().cast(&Interner)
}
// Chalk can sometimes return new lifetime variables. We just use the static lifetime everywhere
VariableKind::Lifetime => static_lifetime().cast(&Interner),
_ => panic!("const variable in solution"),
}),
);
for (i, ty) in solution.value.iter(&Interner).enumerate() {
// FIXME: deal with non-type vars here -- the only problematic part is the normalization
// and maybe we don't need that with lazy normalization?
let var = self.free_vars[i];
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(
2021-04-05 12:01:41 -05:00
new_vars.apply(ty.assert_ty_ref(&Interner).clone(), &Interner),
);
ctx.table.unify(var.assert_ty_ref(&Interner), &ty);
}
}
}
pub fn could_unify(db: &dyn HirDatabase, env: Arc<TraitEnvironment>, t1: &Ty, t2: &Ty) -> bool {
InferenceTable::new(db, env).unify(t1, t2)
}
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = Substitution::from_iter(
&Interner,
tys.binders
.iter(&Interner)
// we always use type vars here because we want everything to
// fallback to Unknown in the end (kind of hacky, as below)
.map(|_| table.new_type_var()),
);
2021-04-05 12:01:41 -05:00
let ty1_with_vars = vars.apply(tys.value.0.clone(), &Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), &Interner);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
2019-12-01 15:14:28 -06:00
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
for (i, var) in vars.iter(&Interner).enumerate() {
let var = var.assert_ty_ref(&Interner);
if &*table.resolve_ty_shallow(var) == var {
table.unify(
var,
&TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, i)).intern(&Interner),
);
}
}
Some(Substitution::from_iter(
&Interner,
vars.iter(&Interner)
.map(|v| table.resolve_ty_completely(v.assert_ty_ref(&Interner).clone())),
))
}
#[derive(Clone, Debug)]
pub(super) struct TypeVariableTable {
inner: Vec<TypeVariableData>,
}
impl TypeVariableTable {
fn push(&mut self, data: TypeVariableData) {
self.inner.push(data);
}
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.inner[iv.index() as usize].diverging = diverging;
}
fn is_diverging(&mut self, iv: InferenceVar) -> bool {
self.inner[iv.index() as usize].diverging
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
match kind {
_ if self.inner[iv.index() as usize].diverging => TyKind::Never,
2021-04-05 07:37:11 -05:00
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(&Interner)
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct TypeVariableData {
diverging: bool,
}
type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;
#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
db: &'a dyn HirDatabase,
trait_env: Arc<TraitEnvironment>,
pub(super) var_unification_table: ChalkInferenceTable,
pub(super) type_variable_table: TypeVariableTable,
}
impl<'a> InferenceTable<'a> {
pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
InferenceTable {
db,
trait_env,
var_unification_table: ChalkInferenceTable::new(),
type_variable_table: TypeVariableTable { inner: Vec::new() },
}
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
self.type_variable_table.inner.extend(
(0..1 + var.index() as usize - self.type_variable_table.inner.len())
.map(|_| TypeVariableData { diverging: false }),
);
assert_eq!(var.index() as usize, self.type_variable_table.inner.len() - 1);
self.type_variable_table.inner[var.index() as usize].diverging = diverging;
var.to_ty_with_kind(&Interner, kind)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
self.resolve_ty_completely_inner(&mut Vec::new(), ty)
}
// FIXME get rid of this, instead resolve shallowly where necessary
pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
}
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
let result = self.var_unification_table.relate(
&Interner,
&self.db,
&self.trait_env.env,
chalk_ir::Variance::Invariant,
ty1,
ty2,
);
let result = if let Ok(r) = result {
r
2021-02-28 12:13:37 -06:00
} else {
return false;
};
// TODO deal with new goals
true
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
// FIXME this could probably just return Ty
pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
self.var_unification_table
.normalize_ty_shallow(&Interner, ty)
.map_or(Cow::Borrowed(ty), Cow::Owned)
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<InferenceVar>, ty: Ty) -> Ty {
2021-04-08 06:32:48 -05:00
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
if tv_stack.contains(&tv) {
2021-04-08 06:32:48 -05:00
cov_mark::hit!(type_var_cycles_resolve_as_possible);
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) = self.var_unification_table.probe_var(tv) {
2021-04-08 06:32:48 -05:00
// known_ty may contain other variables that are known by now
tv_stack.push(tv);
let result = self.resolve_ty_as_possible_inner(
tv_stack,
known_ty.assert_ty_ref(&Interner).clone(),
);
2021-04-08 06:32:48 -05:00
tv_stack.pop();
result
} else {
ty
}
}
2021-04-08 06:32:48 -05:00
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
/// Resolves the type completely; type variables without known type are
/// replaced by TyKind::Unknown.
fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<InferenceVar>, ty: Ty) -> Ty {
// FIXME implement as a proper Folder, handle lifetimes and consts as well
2021-04-08 06:32:48 -05:00
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
if tv_stack.contains(&tv) {
2021-04-08 06:32:48 -05:00
cov_mark::hit!(type_var_cycles_resolve_completely);
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) = self.var_unification_table.probe_var(tv) {
2021-04-08 06:32:48 -05:00
// known_ty may contain other variables that are known by now
tv_stack.push(tv);
let result = self.resolve_ty_completely_inner(
tv_stack,
known_ty.assert_ty_ref(&Interner).clone(),
);
2021-04-08 06:32:48 -05:00
tv_stack.pop();
result
} else {
self.type_variable_table.fallback_value(tv, kind)
}
}
2021-04-08 06:32:48 -05:00
_ => ty,
},
DebruijnIndex::INNERMOST,
)
}
}
impl<'a> fmt::Debug for InferenceTable<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("InferenceTable")
.field("num_vars", &self.type_variable_table.inner.len())
.finish()
}
}