//! Unification and canonicalization logic. use std::{borrow::Cow, fmt, sync::Arc}; use chalk_ir::{ cast::Cast, fold::Fold, interner::HasInterner, FloatTy, IntTy, TyVariableKind, UniverseIndex, VariableKind, }; use chalk_solve::infer::ParameterEnaVariableExt; use ena::unify::UnifyKey; use super::InferenceContext; use crate::{ db::HirDatabase, fold_tys, static_lifetime, BoundVar, Canonical, DebruijnIndex, GenericArg, InferenceVar, Interner, Scalar, Substitution, TraitEnvironment, Ty, TyKind, }; impl<'a> InferenceContext<'a> { pub(super) fn canonicalize + HasInterner>( &mut self, t: T, ) -> Canonicalized where T::Result: HasInterner, { let result = self.table.var_unification_table.canonicalize(&Interner, t); let free_vars = result .free_vars .into_iter() .map(|free_var| free_var.to_generic_arg(&Interner)) .collect(); Canonicalized { value: result.quantified, free_vars } } } #[derive(Debug)] pub(super) struct Canonicalized where T: HasInterner, { pub(super) value: Canonical, free_vars: Vec, } impl> Canonicalized { pub(super) fn decanonicalize_ty(&self, ty: Ty) -> Ty { crate::fold_free_vars(ty, |bound, _binders| { let var = self.free_vars[bound.index]; var.assert_ty_ref(&Interner).clone() }) } pub(super) fn apply_solution( &self, ctx: &mut InferenceContext<'_>, solution: Canonical, ) { // the solution may contain new variables, which we need to convert to new inference vars let new_vars = Substitution::from_iter( &Interner, solution.binders.iter(&Interner).map(|k| match k.kind { VariableKind::Ty(TyVariableKind::General) => { ctx.table.new_type_var().cast(&Interner) } VariableKind::Ty(TyVariableKind::Integer) => { ctx.table.new_integer_var().cast(&Interner) } VariableKind::Ty(TyVariableKind::Float) => { ctx.table.new_float_var().cast(&Interner) } // Chalk can sometimes return new lifetime variables. We just use the static lifetime everywhere VariableKind::Lifetime => static_lifetime().cast(&Interner), _ => panic!("const variable in solution"), }), ); for (i, ty) in solution.value.iter(&Interner).enumerate() { // FIXME: deal with non-type vars here -- the only problematic part is the normalization // and maybe we don't need that with lazy normalization? let var = self.free_vars[i]; // eagerly replace projections in the type; we may be getting types // e.g. from where clauses where this hasn't happened yet let ty = ctx.normalize_associated_types_in( new_vars.apply(ty.assert_ty_ref(&Interner).clone(), &Interner), ); ctx.table.unify(var.assert_ty_ref(&Interner), &ty); } } } pub fn could_unify(db: &dyn HirDatabase, env: Arc, t1: &Ty, t2: &Ty) -> bool { InferenceTable::new(db, env).unify(t1, t2) } pub(crate) fn unify( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> Option { let mut table = InferenceTable::new(db, env); let vars = Substitution::from_iter( &Interner, tys.binders .iter(&Interner) // we always use type vars here because we want everything to // fallback to Unknown in the end (kind of hacky, as below) .map(|_| table.new_type_var()), ); let ty1_with_vars = vars.apply(tys.value.0.clone(), &Interner); let ty2_with_vars = vars.apply(tys.value.1.clone(), &Interner); if !table.unify(&ty1_with_vars, &ty2_with_vars) { return None; } // default any type vars that weren't unified back to their original bound vars // (kind of hacky) for (i, var) in vars.iter(&Interner).enumerate() { let var = var.assert_ty_ref(&Interner); if &*table.resolve_ty_shallow(var) == var { table.unify( var, &TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, i)).intern(&Interner), ); } } Some(Substitution::from_iter( &Interner, vars.iter(&Interner) .map(|v| table.resolve_ty_completely(v.assert_ty_ref(&Interner).clone())), )) } #[derive(Clone, Debug)] pub(super) struct TypeVariableTable { inner: Vec, } impl TypeVariableTable { fn push(&mut self, data: TypeVariableData) { self.inner.push(data); } pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) { self.inner[iv.index() as usize].diverging = diverging; } fn is_diverging(&mut self, iv: InferenceVar) -> bool { self.inner[iv.index() as usize].diverging } fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty { match kind { _ if self.inner[iv.index() as usize].diverging => TyKind::Never, TyVariableKind::General => TyKind::Error, TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)), TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)), } .intern(&Interner) } } #[derive(Copy, Clone, Debug)] pub(crate) struct TypeVariableData { diverging: bool, } type ChalkInferenceTable = chalk_solve::infer::InferenceTable; #[derive(Clone)] pub(crate) struct InferenceTable<'a> { db: &'a dyn HirDatabase, trait_env: Arc, pub(super) var_unification_table: ChalkInferenceTable, pub(super) type_variable_table: TypeVariableTable, } impl<'a> InferenceTable<'a> { pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc) -> Self { InferenceTable { db, trait_env, var_unification_table: ChalkInferenceTable::new(), type_variable_table: TypeVariableTable { inner: Vec::new() }, } } fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); self.type_variable_table.inner.extend( (0..1 + var.index() as usize - self.type_variable_table.inner.len()) .map(|_| TypeVariableData { diverging: false }), ); assert_eq!(var.index() as usize, self.type_variable_table.inner.len() - 1); self.type_variable_table.inner[var.index() as usize].diverging = diverging; var.to_ty_with_kind(&Interner, kind) } pub(crate) fn new_type_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, false) } pub(crate) fn new_integer_var(&mut self) -> Ty { self.new_var(TyVariableKind::Integer, false) } pub(crate) fn new_float_var(&mut self) -> Ty { self.new_var(TyVariableKind::Float, false) } pub(crate) fn new_maybe_never_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, true) } pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty { self.resolve_ty_completely_inner(&mut Vec::new(), ty) } // FIXME get rid of this, instead resolve shallowly where necessary pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty { self.resolve_ty_as_possible_inner(&mut Vec::new(), ty) } pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { let result = self.var_unification_table.relate( &Interner, &self.db, &self.trait_env.env, chalk_ir::Variance::Invariant, ty1, ty2, ); let result = if let Ok(r) = result { r } else { return false; }; // TODO deal with new goals true } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. // FIXME this could probably just return Ty pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { self.var_unification_table .normalize_ty_shallow(&Interner, ty) .map_or(Cow::Borrowed(ty), Cow::Owned) } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { fold_tys( ty, |ty, _| match ty.kind(&Interner) { &TyKind::InferenceVar(tv, kind) => { if tv_stack.contains(&tv) { cov_mark::hit!(type_var_cycles_resolve_as_possible); // recursive type return self.type_variable_table.fallback_value(tv, kind); } if let Some(known_ty) = self.var_unification_table.probe_var(tv) { // known_ty may contain other variables that are known by now tv_stack.push(tv); let result = self.resolve_ty_as_possible_inner( tv_stack, known_ty.assert_ty_ref(&Interner).clone(), ); tv_stack.pop(); result } else { ty } } _ => ty, }, DebruijnIndex::INNERMOST, ) } /// Resolves the type completely; type variables without known type are /// replaced by TyKind::Unknown. fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec, ty: Ty) -> Ty { // FIXME implement as a proper Folder, handle lifetimes and consts as well fold_tys( ty, |ty, _| match ty.kind(&Interner) { &TyKind::InferenceVar(tv, kind) => { if tv_stack.contains(&tv) { cov_mark::hit!(type_var_cycles_resolve_completely); // recursive type return self.type_variable_table.fallback_value(tv, kind); } if let Some(known_ty) = self.var_unification_table.probe_var(tv) { // known_ty may contain other variables that are known by now tv_stack.push(tv); let result = self.resolve_ty_completely_inner( tv_stack, known_ty.assert_ty_ref(&Interner).clone(), ); tv_stack.pop(); result } else { self.type_variable_table.fallback_value(tv, kind) } } _ => ty, }, DebruijnIndex::INNERMOST, ) } } impl<'a> fmt::Debug for InferenceTable<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("InferenceTable") .field("num_vars", &self.type_variable_table.inner.len()) .finish() } }