rust/src/doc/trpl/patterns.md
Steve Klabnik b577beeb3a copyedits: patterns
This also puts slice patterns in nightly docs, where they belong.
2015-04-10 12:26:58 -04:00

3.5 KiB
Raw Blame History

% Patterns

Patterns are quite common in Rust. We use them in variable bindings, match statements, and other places, too. Lets go on a whirlwind tour of all of the things patterns can do!

A quick refresher: you can match against literals directly, and _ acts as an any case:

let x = 1;

match x {
    1 => println!("one"),
    2 => println!("two"),
    3 => println!("three"),
    _ => println!("anything"),
}

Multiple patterns

You can match multiple patterns with |:

let x = 1;

match x {
    1 | 2 => println!("one or two"),
    3 => println!("three"),
    _ => println!("anything"),
}

Ranges

You can match a range of values with ...:

let x = 1;

match x {
    1 ... 5 => println!("one through five"),
    _ => println!("anything"),
}

Ranges are mostly used with integers and single characters.

Bindings

If youre matching multiple things, via a | or a ..., you can bind the value to a name with @:

let x = 1;

match x {
    e @ 1 ... 5 => println!("got a range element {}", e),
    _ => println!("anything"),
}

Ignoring variants

If youre matching on an enum which has variants, you can use .. to ignore the value and type in the variant:

enum OptionalInt {
    Value(i32),
    Missing,
}

let x = OptionalInt::Value(5);

match x {
    OptionalInt::Value(..) => println!("Got an int!"),
    OptionalInt::Missing => println!("No such luck."),
}

Guards

You can introduce match guards with if:

enum OptionalInt {
    Value(i32),
    Missing,
}

let x = OptionalInt::Value(5);

match x {
    OptionalInt::Value(i) if i > 5 => println!("Got an int bigger than five!"),
    OptionalInt::Value(..) => println!("Got an int!"),
    OptionalInt::Missing => println!("No such luck."),
}

ref and ref mut

If you want to get a reference, use the ref keyword:

let x = 5;

match x {
    ref r => println!("Got a reference to {}", r),
}

Here, the r inside the match has the type &i32. In other words, the ref keyword creates a reference, for use in the pattern. If you need a mutable reference, ref mut will work in the same way:

let mut x = 5;

match x {
    ref mut mr => println!("Got a mutable reference to {}", mr),
}

Destructuring

If you have a compound data type, like a struct, you can destructure it inside of a pattern:

struct Point {
    x: i32,
    y: i32,
}

let origin = Point { x: 0, y: 0 };

match origin {
    Point { x: x, y: y } => println!("({},{})", x, y),
}

If we only care about some of the values, we dont have to give them all names:

struct Point {
    x: i32,
    y: i32,
}

let origin = Point { x: 0, y: 0 };

match origin {
    Point { x: x, .. } => println!("x is {}", x),
}

You can do this kind of match on any member, not just the first:

struct Point {
    x: i32,
    y: i32,
}

let origin = Point { x: 0, y: 0 };

match origin {
    Point { y: y, .. } => println!("y is {}", y),
}

This destructuring behavior works on any compound data type, like tuples or enums.

Mix and Match

Whew! Thats a lot of different ways to match things, and they can all be mixed and matched, depending on what youre doing:

match x {
    Foo { x: Some(ref name), y: None } => ...
}

Patterns are very powerful. Make good use of them.