Fix sanitize/cfg.rs test
* Move needs-sanitizer conditions to specific revisions that require them (otherwise the conditions are mutually exclusive with needs-sanitizer-kcfi and test is always ignored).
* Add missing revisions
Improve "associated type not found" diagnostics
```rs
use core::ops::Deref;
fn foo<T>() where T: Deref<Output = u32> {}
```
Before:
```
error[E0220]: associated type `Output` not found for `Deref`
--> E0220.rs:5:28
|
5 | fn foo<T>() where T: Deref<Output = u32> {}
| ^^^^^^ associated type `Output` not found
```
After:
```
error[E0220]: associated type `Output` not found for `Deref`
--> E0220.rs:5:28
|
5 | fn foo<T>() where T: Deref<Output = u32> {}
| ^^^^^^ help: `Deref` has the following associated type: `Target`
```
---
`@rustbot` label +A-diagnostics +D-papercut
debuginfo: add compiler option to allow compressed debuginfo sections
LLVM already supports emitting compressed debuginfo. In debuginfo=full builds, the debug section is often a large amount of data, and it typically compresses very well (3x is not unreasonable.) We add a new knob to allow debuginfo to be compressed when the matching LLVM functionality is present. Like clang, if a known-but-disabled compression mechanism is requested, we disable compression and emit uncompressed debuginfo sections.
The API is different enough on older LLVMs we just pretend the support
is missing on LLVM older than 16.
Use the same DISubprogram for each instance of the same inlined function within a caller
# Issue Details:
The call to `panic` within a function like `Option::unwrap` is translated to LLVM as a `tail call` (as it will never return), when multiple calls to the same function like this are inlined LLVM will notice the common `tail call` block (i.e., loading the same panic string + location info and then calling `panic`) and merge them together.
When merging these instructions together, LLVM will also attempt to merge the debug locations as well, but this fails (i.e., debug info is dropped) as Rust emits a new `DISubprogram` at each inline site thus LLVM doesn't recognize that these are actually the same function and so thinks that there isn't a common debug location.
As an example of this, consider the following program:
```rust
#[no_mangle]
fn add_numbers(x: &Option<i32>, y: &Option<i32>) -> i32 {
let x1 = x.unwrap();
let y1 = y.unwrap();
x1 + y1
}
```
When building for x86_64 Windows using 1.72 it generates (note the lack of `.cv_loc` before the call to `panic`, thus it will be attributed to the same line at the `addq` instruction):
```llvm
.cv_loc 0 1 3 0 # src\lib.rs:3:0
addq $40, %rsp
retq
leaq .Lalloc_f570dea0a53168780ce9a91e67646421(%rip), %rcx
leaq .Lalloc_629ace53b7e5b76aaa810d549cc84ea3(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17h12e60b9063f6dee8E
int3
```
# Fix Details:
Cache the `DISubprogram` emitted for each inlined function instance within a caller so that this can be reused if that instance is encountered again.
Ideally, we would also deduplicate child scopes and variables, however my attempt to do that with #114643 resulted in asserts when building for Linux (#115156) which would require some deep changes to Rust to fix (#115455).
Instead, when using an inlined function as a debug scope, we will also create a new child scope such that subsequent child scopes and variables do not collide (from LLVM's perspective).
After this change the above assembly now (with <https://reviews.llvm.org/D159226> as well) shows the `panic!` was inlined from `unwrap` in `option.rs` at line 935 into the current function in `lib.rs` at line 0 (line 0 is emitted since it is ambiguous which line to use as there were two inline sites that lead to this same code):
```llvm
.cv_loc 0 1 3 0 # src\lib.rs:3:0
addq $40, %rsp
retq
.cv_inline_site_id 6 within 0 inlined_at 1 0 0
.cv_loc 6 2 935 0 # library\core\src\option.rs:935:0
leaq .Lalloc_5f55955de67e57c79064b537689facea(%rip), %rcx
leaq .Lalloc_e741d4de8cb5801e1fd7a6c6795c1559(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17hde1558f32d5b1c04E
int3
```
Use `#!/usr/bin/env` shebang
```
$ ls /bin/bash
ls: cannot access '/bin/bash': No such file or directory
```
On certain systems, `/bin` and `/usr/bin` are nothing but wastelands, with just `env`around as the last survivor of the great purge. The binaries have cowardly hidden away and only `env` can show us the way to greatness (bash). ❄️
```
$ ls /bin/bash
ls: cannot access '/bin/bash': No such file or directory
```
On certain systems, `/bin` and `/usr/bin` are nothing but wastelands, with just `env`around as the last survivor of the great purge. The binaries have cowardly hidden away and only `env` can show us the way to greatness (bash).
❄️
lto: load bitcode sections by name
Upstream change
llvm/llvm-project@6b539f5eb8 changed `isSectionBitcode` works and it now only respects `.llvm.lto` sections instead of also `.llvmbc`, which it says was never intended to be used for LTO. We instead load sections by name, and sniff for raw bitcode by hand.
This is an alternative approach to #115136, where we tried the same thing using the `object` crate, but it got too fraught to continue.
r? `@nikic`
`@rustbot` label: +llvm-main
Use `Freeze` for `SourceFile`
This uses the `Freeze` type in `SourceFile` to let accessing `external_src` and `lines` be lock-free.
Behavior of `add_external_src` is changed to set `ExternalSourceKind::AbsentErr` on a hash mismatch which matches the documentation. `ExternalSourceKind::Unneeded` was removed as it's unused.
Based on https://github.com/rust-lang/rust/pull/115401.
Using `ld.lld` may have been clever, but that was getting the /system/
ld.lld, not one we may have built as part of building llvm. By using the
warning message coming directly from rustc we now correctly skip the
zlib and zstd tests when the support is missing.
LLVM already supports emitting compressed debuginfo. In debuginfo=full
builds, the debug section is often a large amount of data, and it
typically compresses very well (3x is not unreasonable.) We add a new
knob to allow debuginfo to be compressed when the matching LLVM
functionality is present. Like clang, if a known-but-disabled
compression mechanism is requested, we disable compression and emit
uncompressed debuginfo sections.
The API is different enough on older LLVMs we just pretend the support
is missing on LLVM older than 16.
Upstream change
llvm/llvm-project@6b539f5eb8 changed
`isSectionBitcode` works and it now only respects `.llvm.lto` sections
instead of also `.llvmbc`, which it says was never intended to be used
for LTO. We instead load sections by name, and sniff for raw bitcode by
hand.
r? @nikic
@rustbot label: +llvm-main
Rollup of 6 pull requests
Successful merges:
- #104299 (Clarify stability guarantee for lifetimes in enum discriminants)
- #115088 (Fix Step Skipping Caused by Using the `--exclude` Option)
- #115201 (rustdoc: list matching impls on type aliases)
- #115633 (Lint node for `PRIVATE_BOUNDS`/`PRIVATE_INTERFACES` is the item which names the private type)
- #115638 (`-Cllvm-args` usability improvement)
- #115643 (fix: return early when has tainted in mir-lint)
r? `@ghost`
`@rustbot` modify labels: rollup
* Move needs-sanitizer conditions to specific revisions that
require them (otherwise the conditions are mutually exclusive
with needs-sanitizer-kcfi and test is always ignored).
* Add missing revisions
fix: return early when has tainted in mir-lint
Fixes#115203
`a[..]` is of indeterminate size, it had been reported error during borrow check, therefore we skip the mir lint process.
`-Cllvm-args` usability improvement
fixes: #26338fixes: #115564
Two problems were found during playing with `-Cllvm-args`
1. When `llvm.link-shared` is set to `false` in `config.toml`, output of `rustc -C llvm-args='--help-list-hidden'` doesn't contain `--emit-dwarf-unwind` and `--emulated-tls`. When it is set to `true`, `rustc -C llvm-args='--help-list-hidden'` emits `--emit-dwarf-unwind`, but `--emulated-tls` is still missing.
2. Setting `-Cllvm-args=--emit-dwarf-unwind=always` doesn't take any effect, but `-Cllvm-args=-machine-outliner-reruns=3` does work.
### 1
Adding `RegisterCodeGenFlags` to register codegen flags fixed the first problem. `rustc -C llvm-args='--help-list-hidden'` emits full codegen flags including `--emit-dwarf-unwind` and `--emulated-tls`.
### 2
Constructing `TargetOptions` from `InitTargetOptionsFromCodeGenFlags` in `LLVMRustCreateTargetMachine` fixed the second problem. The `LLVMRustSetLLVMOptions` calls `ParseCommandLineOptions` which parses given `llvm-args`. For options like `machine-outliner-reruns`, it just works, since the codegen logic directly consumes the parsing result:
[machine-outliner-reruns register](0537f6354c/llvm/lib/CodeGen/MachineOutliner.cpp (L114))
[machine-outliner-reruns consumption](0537f6354c/llvm/lib/CodeGen/MachineOutliner.cpp (L1138))
But for flags defined in `TargetOptions` and `MCTargetOptions` to take effect, constructing them with `InitTargetOptionsFromCodeGenFlags` is essential, or the parsing result is just not consumed. Similar patterns can be observed in [lli](0537f6354c/llvm/tools/llc/llc.cpp (L494)), [llc](0537f6354c/llvm/tools/lli/lli.cpp (L517)), etc.
Lint node for `PRIVATE_BOUNDS`/`PRIVATE_INTERFACES` is the item which names the private type
The HIR that the `PRIVATE_BOUNDS` lint should be attached to is the item that has the *bounds*, not the private type. This PR also aligns this behavior with the `EXPORTED_PRIVATE_DEPENDENCIES` lint, which also requires putting the `allow` on the item that names the private type.
Fixes#115475
r? petrochenkov
Clarify stability guarantee for lifetimes in enum discriminants
Since `std::mem::Discriminant` erases lifetimes, it should be clarified that changing the concrete value of a lifetime parameter does not change the value of an enum discriminant for a given variant. This is useful as it guarantees that it is safe to transmute `Discriminant<Foo<'a>>` to `Discriminant<Foo<'b>>` for any combination of `'a` and `'b`. This also holds for type-generics as long as the type parameters do not change, e.g. `Discriminant<Foo<T, 'a>>` can be transmuted to `Discriminant<Foo<T, 'b>>`.
Side note: Is what I've written actually enough to imply soundness (or rather codify it), or should it specifically be spelled out that it's OK to transmute in the above way?
Add CL and CMD into to pdb debug info
Partial fix for https://github.com/rust-lang/rust/issues/96475
The Arg0 and CommandLineArgs of the MCTargetOptions cpp class are not set within bb548f9645/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp (L378)
This causes LLVM to not neither output any compiler path (cl) nor the arguments that were used when invoking it (cmd) in the PDB file.
This fix adds the missing information to the target machine so LLVM can use it.
modify fuction clond() -> cloned()
optimize the code
Handle the problem that the pathset is empty and modify the judgment of the builder::tests::test_exclude_kind
Delete unnecessary judegment conditions
skip test for library/std duo to OOM in benches as library/alloc
Add FIXME for WASM32
Rollup of 7 pull requests
Successful merges:
- #115345 (MCP661: Move wasm32-wasi-preview1-threads target to Tier 2)
- #115604 (rustdoc: Render private fields in tuple struct as `/* private fields */`)
- #115624 (Print the path of a return-position impl trait in trait when `return_type_notation` is enabled)
- #115629 (Don't suggest dereferencing to unsized type)
- #115634 (Use `newtype_index` for `IntVid` and `FloatVid`.)
- #115649 (diagnostics: add test case for trait bounds diagnostic)
- #115655 (rustdoc: remove unused ID `mainThemeStyle`)
r? `@ghost`
`@rustbot` modify labels: rollup
`Span` has undergone some changes over the years (addition of an optional
parent, and possible inlining of the context in interned spans) but the
comments and identifiers used haven't kept up. As a result, I find it
harder to understand than I should.
This commit reworks the comments, renames some identifiers, and
restructures the code slightly, all to make things clearer. I now feel
like I understand this code again.