Paper over privacy issues with Deref by changing field names.
Types that implement Deref can cause weird error messages due to their
private fields conflicting with a field of the type they deref to, e.g.,
previously
struct Foo { x: int }
let a: Arc<Foo> = ...;
println!("{}", a.x);
would complain the the `x` field of `Arc` was private (since Arc has a
private field called `x`) rather than just ignoring it.
This patch doesn't fix that issue, but does mean one would have to write
`a._ptr` to hit the same error message, which seems far less
common. (This patch `_`-prefixes all private fields of
`Deref`-implementing types.)
cc #12808
Types that implement Deref can cause weird error messages due to their
private fields conflicting with a field of the type they deref to, e.g.,
previously
struct Foo { x: int }
let a: Arc<Foo> = ...;
println!("{}", a.x);
would complain the the `x` field of `Arc` was private (since Arc has a
private field called `x`) rather than just ignoring it.
This patch doesn't fix that issue, but does mean one would have to write
`a._ptr` to hit the same error message, which seems far less
common. (This patch `_`-prefixes all private fields of
`Deref`-implementing types.)
cc #12808
This commit is part of the libstd facade RFC, issue #13851. This creates a new
library, liballoc, which is intended to be the core allocation library for all
of Rust. It is pinned on the basic assumption that an allocation failure is an
abort or failure.
This module has inherited the heap/libc_heap modules from std::rt, the owned/rc
modules from std, and the arc module from libsync. These three pointers are
currently the three most core pointer implementations in Rust.
The UnsafeArc type in std::sync should be considered deprecated and replaced by
Arc<Unsafe<T>>. This commit does not currently migrate to this type, but future
commits will continue this refactoring.
Submitting PR again, because I cannot reopen#13349, and github does not attach new patch to that PR.
=======
Optimize `Once::doit`: perform optimistic check that initializtion is
already completed. `load` is much cheaper than `fetch_add` at least
on x86_64.
Verified with this test:
```
static mut o: one::Once = one::ONCE_INIT;
unsafe {
loop {
let start = time::precise_time_ns();
let iters = 50000000u64;
for _ in range(0, iters) {
o.doit(|| { println!("once!"); });
}
let end = time::precise_time_ns();
let ps_per_iter = 1000 * (end - start) / iters;
println!("{} ps per iter", ps_per_iter);
// confuse the optimizer
o.doit(|| { println!("once!"); });
}
}
```
Test executed on Mac, Intel Core i7 2GHz. Result is:
* 20ns per iteration without patch
* 4ns per iteration with this patch applied
Once.doit could be even faster (800ps per iteration), if `doit` function
was split into a pair of `doit`/`doit_slow`, and `doit` marked as
`#[inline]` like this:
```
#[inline(always)]
pub fn doit(&self, f: ||) {
if self.cnt.load(atomics::SeqCst) < 0 {
return
}
self.doit_slow(f);
}
fn doit_slow(&self, f: ||) { ... }
```
Optimize `Once::doit`: perform optimistic check that initializtion is
already completed. `load` is much cheaper than `fetch_add` at least
on x86_64.
Verified with this test:
```
static mut o: one::Once = one::ONCE_INIT;
unsafe {
loop {
let start = time::precise_time_ns();
let iters = 50000000u64;
for _ in range(0, iters) {
o.doit(|| { println!("once!"); });
}
let end = time::precise_time_ns();
let ps_per_iter = 1000 * (end - start) / iters;
println!("{} ps per iter", ps_per_iter);
// confuse the optimizer
o.doit(|| { println!("once!"); });
}
}
```
Test executed on Mac, Intel Core i7 2GHz. Result is:
* 20ns per iteration without patch
* 4ns per iteration with this patch applied
Once.doit could be even faster (800ps per iteration), if `doit` function
was split into a pair of `doit`/`doit_slow`, and `doit` marked as
`#[inline]` like this:
```
#[inline(always)]
pub fn doit(&self, f: ||) {
if self.cnt.load(atomics::SeqCst) < 0 {
return
}
self.doit_slow(f);
}
fn doit_slow(&self, f: ||) { ... }
```
This commit revisits the `cast` module in libcore and libstd, and scrutinizes
all functions inside of it. The result was to remove the `cast` module entirely,
folding all functionality into the `mem` module. Specifically, this is the fate
of each function in the `cast` module.
* transmute - This function was moved to `mem`, but it is now marked as
#[unstable]. This is due to planned changes to the `transmute`
function and how it can be invoked (see the #[unstable] comment).
For more information, see RFC 5 and #12898
* transmute_copy - This function was moved to `mem`, with clarification that is
is not an error to invoke it with T/U that are different
sizes, but rather that it is strongly discouraged. This
function is now #[stable]
* forget - This function was moved to `mem` and marked #[stable]
* bump_box_refcount - This function was removed due to the deprecation of
managed boxes as well as its questionable utility.
* transmute_mut - This function was previously deprecated, and removed as part
of this commit.
* transmute_mut_unsafe - This function doesn't serve much of a purpose when it
can be achieved with an `as` in safe code, so it was
removed.
* transmute_lifetime - This function was removed because it is likely a strong
indication that code is incorrect in the first place.
* transmute_mut_lifetime - This function was removed for the same reasons as
`transmute_lifetime`
* copy_lifetime - This function was moved to `mem`, but it is marked
`#[unstable]` now due to the likelihood of being removed in
the future if it is found to not be very useful.
* copy_mut_lifetime - This function was also moved to `mem`, but had the same
treatment as `copy_lifetime`.
* copy_lifetime_vec - This function was removed because it is not used today,
and its existence is not necessary with DST
(copy_lifetime will suffice).
In summary, the cast module was stripped down to these functions, and then the
functions were moved to the `mem` module.
transmute - #[unstable]
transmute_copy - #[stable]
forget - #[stable]
copy_lifetime - #[unstable]
copy_mut_lifetime - #[unstable]
[breaking-change]
In stage0, all allocations are 8-byte aligned. Passing a size and
alignment to free is not yet implemented everywhere (0 size and 8 align
are used as placeholders). Fixing this is part of #13994.
Closes#13616
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
Turning a `&T` into an `&mut T` carries a large risk of undefined
behaviour, and needs to be done very very carefully. Providing a
convenience function for exactly this task is a bad idea, just tempting
people into doing the wrong thing.
The right thing is to use types like `Cell`, `RefCell` or `Unsafe`.
For memory safety, Rust has that guarantee that `&mut` pointers do not
alias with any other pointer, that is, if you have a `&mut T` then that
is the only usable pointer to that `T`. This allows Rust to assume that
writes through a `&mut T` do not affect the values of any other `&` or
`&mut` references. `&` pointers have no guarantees about aliasing or
not, so it's entirely possible for the same pointer to be passed into
both arguments of a function like
fn foo(x: &int, y: &int) { ... }
Converting either of `x` or `y` to a `&mut` pointer and modifying it
would affect the other value: invalid behaviour.
(Similarly, it's undefined behaviour to modify the value of an immutable
local, like `let x = 1;`.)
At a low-level, the *only* safe way to obtain an `&mut` out of a `&` is
using the `Unsafe` type (there are higher level wrappers around it, like
`Cell`, `RefCell`, `Mutex` etc.). The `Unsafe` type is registered with
the compiler so that it can reason a little about these `&` to `&mut`
casts, but it is still up to the user to ensure that the `&mut`s
obtained out of an `Unsafe` never alias.
(Note that *any* conversion from `&` to `&mut` can be invalid, including
a plain `transmute`, or casting `&T` -> `*T` -> `*mut T` -> `&mut T`.)
[breaking-change]
The constructor for `TaskBuilder` is being changed to an associated
function called `new` for consistency with the rest of the standard
library.
Closes#13666
[breaking-change]
There are currently a number of return values from the std::comm methods, not
all of which are necessarily completely expressive:
Sender::try_send(t: T) -> bool
This method currently doesn't transmit back the data `t` if the send fails
due to the other end having disconnected. Additionally, this shares the name
of the synchronous try_send method, but it differs in semantics in that it
only has one failure case, not two (the buffer can never be full).
SyncSender::try_send(t: T) -> TrySendResult<T>
This method accurately conveys all possible information, but it uses a
custom type to the std::comm module with no convenience methods on it.
Additionally, if you want to inspect the result you're forced to import
something from `std::comm`.
SyncSender::send_opt(t: T) -> Option<T>
This method uses Some(T) as an "error value" and None as a "success value",
but almost all other uses of Option<T> have Some/None the other way
Receiver::try_recv(t: T) -> TryRecvResult<T>
Similarly to the synchronous try_send, this custom return type is lacking in
terms of usability (no convenience methods).
With this number of drawbacks in mind, I believed it was time to re-work the
return types of these methods. The new API for the comm module is:
Sender::send(t: T) -> ()
Sender::send_opt(t: T) -> Result<(), T>
SyncSender::send(t: T) -> ()
SyncSender::send_opt(t: T) -> Result<(), T>
SyncSender::try_send(t: T) -> Result<(), TrySendError<T>>
Receiver::recv() -> T
Receiver::recv_opt() -> Result<T, ()>
Receiver::try_recv() -> Result<T, TryRecvError>
The notable changes made are:
* Sender::try_send => Sender::send_opt. This renaming brings the semantics in
line with the SyncSender::send_opt method. An asychronous send only has one
failure case, unlike the synchronous try_send method which has two failure
cases (full/disconnected).
* Sender::send_opt returns the data back to the caller if the send is guaranteed
to fail. This method previously returned `bool`, but then it was unable to
retrieve the data if the data was guaranteed to fail to send. There is still a
race such that when `Ok(())` is returned the data could still fail to be
received, but that's inherent to an asynchronous channel.
* Result is now the basis of all return values. This not only adds lots of
convenience methods to all return values for free, but it also means that you
can inspect the return values with no extra imports (Ok/Err are in the
prelude). Additionally, it's now self documenting when something failed or not
because the return value has "Err" in the name.
Things I'm a little uneasy about:
* The methods send_opt and recv_opt are not returning options, but rather
results. I felt more strongly that Option was the wrong return type than the
_opt prefix was wrong, and I coudn't think of a much better name for these
methods. One possible way to think about them is to read the _opt suffix as
"optionally".
* Result<T, ()> is often better expressed as Option<T>. This is only applicable
to the recv_opt() method, but I thought it would be more consistent for
everything to return Result rather than one method returning an Option.
Despite my two reasons to feel uneasy, I feel much better about the consistency
in return values at this point, and I think the only real open question is if
there's a better suffix for {send,recv}_opt.
Closes#11527
Summary:
So far, we've used the term POD "Plain Old Data" to refer to types that
can be safely copied. However, this term is not consistent with the
other built-in bounds that use verbs instead. This patch renames the Pod
kind into Copy.
RFC: 0003-opt-in-builtin-traits
Test Plan: make check
Reviewers: cmr
Differential Revision: http://phabricator.octayn.net/D3
This commit contains an implementation of synchronous, bounded channels for
Rust. This is an implementation of the proposal made last January [1]. These
channels are built on mutexes, and currently focus on a working implementation
rather than speed. Receivers for sync channels have select() implemented for
them, but there is currently no implementation of select() for sync senders.
Rust will continue to provide both synchronous and asynchronous channels as part
of the standard distribution, there is no intent to remove asynchronous
channels. This flavor of channels is meant to provide an alternative to
asynchronous channels because like green tasks, asynchronous channels are not
appropriate for all situations.
[1] - https://mail.mozilla.org/pipermail/rust-dev/2014-January/007924.html
This removes the now-outdated MutexArc and RWArc types. These are superseded by
Arc<Mutex<T>> and Arc<RWLock<T>>. The only remaining arc is the one true Arc.
Additionally, the arc now has weak pointers implemented for it to assist in
breaking cycles.
This commit brings the arc api up to parity with the sibling Rc api, making them
nearly interchangeable for inter and intra task communication.
This introduces new synchronization types which are meant to be the foundational
building blocks for sharing data among tasks. The new Mutex and RWLock types
have a type parameter which is the internal data that is accessed. Access to the
data is all performed through the guards returned, and the guards all have
autoderef implemented for easy access.
This commit rewrites the core primitives of the sync library: Mutex, RWLock, and
Semaphore. These primitives now have updated, more modernized apis:
* Guards are returned instead of locking with closures. All condition variables
have moved inside the guards and extraneous methods have been removed.
* Downgrading on an rwlock is now done through the guard instead of the rwlock
itself.
These types are meant to be general locks, not locks of an internal type (for
external usage). New types will be introduced for locking shared data.
Similarly to the rest of the previous commits, this moves the once primitive to
using &self instead of &mut self for proper sharing among many threads now.
This will make the types more readable in the documentation, since the letters correspond with what you should either be sending or expecting to receive.