This commit adds syntax extension forms matching the types for procedural macros 2.0 (RFC #1566), these still require the usual syntax extension boiler plate, but this is a first step towards proper implementation and should be useful for macros 1.1 stuff too.
Supports both attribute-like and function-like macros.
Assign node ids during macro expansion
After this PR,
- The `ExtCtxt` can access `resolve`'s `Resolver` through the trait object `ext::base::Resolver`.
- The `Resolver` trait object can load macros and replaces today's `MacroLoader` trait object.
- The macro expander uses the `Resolver` trait object to resolve macro invocations.
- The macro expander assigns node ids and builds the `Resolver`'s `macros_at_scope` map.
- This is groundwork for merging import resolution and expansion.
- Performance of expansion together with node id assignment improves by ~5%.
**EDIT:** Since Github is reordering the commits, here is `git log`:
- b54e1e3997: Differentiate between monotonic and non-monotonic expansion and only assign node ids during monotonic expansion.
- 78c0039878: Expand generated test harnesses and macro registries.
- f3c2dca353: Remove scope placeholders from the crate root.
- c86c8d41a2: Perform node id assignment and `macros_at_scope` construction during the `InvocationCollector` and `PlaceholderExpander` folds.
- 72a636975f: Move macro resolution into `librustc_resolve`.
- 20b43b2323: Rewrite the unit tests in `ext/expand.rs` as a `compile-fail` test.
- a9821e1658: Refactor `ExtCtxt` to use a `Resolver` instead of a `MacroLoader`.
- 60440b226d: Refactor `noop_fold_stmt_kind` out of `noop_fold_stmt`.
- 50f94f6c95: Avoid needless reexpansions.
r? @nrc
This commit is an implementation of [RFC 1681] which adds support to the
compiler for first-class user-define custom `#[derive]` modes with a far more
stable API than plugins have today.
[RFC 1681]: https://github.com/rust-lang/rfcs/blob/master/text/1681-macros-1.1.md
The main features added by this commit are:
* A new `rustc-macro` crate-type. This crate type represents one which will
provide custom `derive` implementations and perhaps eventually flower into the
implementation of macros 2.0 as well.
* A new `rustc_macro` crate in the standard distribution. This crate will
provide the runtime interface between macro crates and the compiler. The API
here is particularly conservative right now but has quite a bit of room to
expand into any manner of APIs required by macro authors.
* The ability to load new derive modes through the `#[macro_use]` annotations on
other crates.
All support added here is gated behind the `rustc_macro` feature gate, both for
the library support (the `rustc_macro` crate) as well as the language features.
There are a few minor differences from the implementation outlined in the RFC,
such as the `rustc_macro` crate being available as a dylib and all symbols are
`dlsym`'d directly instead of having a shim compiled. These should only affect
the implementation, however, not the public interface.
This commit also ended up touching a lot of code related to `#[derive]`, making
a few notable changes:
* Recognized derive attributes are no longer desugared to `derive_Foo`. Wasn't
sure how to keep this behavior and *not* expose it to custom derive.
* Derive attributes no longer have access to unstable features by default, they
have to opt in on a granular level.
* The `derive(Copy,Clone)` optimization is now done through another "obscure
attribute" which is just intended to ferry along in the compiler that such an
optimization is possible. The `derive(PartialEq,Eq)` optimization was also
updated to do something similar.
---
One part of this PR which needs to be improved before stabilizing are the errors
and exact interfaces here. The error messages are relatively poor quality and
there are surprising spects of this such as `#[derive(PartialEq, Eq, MyTrait)]`
not working by default. The custom attributes added by the compiler end up
becoming unstable again when going through a custom impl.
Hopefully though this is enough to start allowing experimentation on crates.io!
syntax-[breaking-change]
Refactor `PathListItem`s
This refactors away variant `Mod` of `ast::PathListItemKind` and refactors the remaining variant `Ident` to a struct `ast::PathListItem_`.
Kicking off libproc_macro
This PR introduces `libproc_macro`, which is currently quite bare-bones (just a few macro construction tools and an initial `quote!` macro).
This PR also introduces a few test cases for it, and an additional `shim` file (at `src/libsyntax/ext/proc_macro_shim.rs` to allow a facsimile usage of Macros 2.0 *today*!
macros: Make metavariables hygienic
This PR makes metavariables hygienic. For example, consider:
```rust
macro_rules! foo {
($x:tt) => { // Suppose that this token tree argument is always a metavariable.
macro_rules! bar { ($x:expr, $y:expr) => { ($x, $y) } }
}
}
fn main() {
foo!($z); // This currently compiles.
foo!($y); // This is an error today but compiles after this PR.
}
```
Today, the `macro_rules! bar { ... }` definition is only valid when the metavariable passed to `foo` is not `$y` (since it unhygienically conflicts with the `$y` in the definition of `bar`) or `$x` (c.f. #35450).
After this PR, the definition of `bar` is always valid (and `bar!(a, b)` always expands to `(a, b)` as expected).
This can break code that was allowed in #34925 (landed two weeks ago). For example,
```rust
macro_rules! outer {
($t:tt) => {
macro_rules! inner { ($i:item) => { $t } }
}
}
outer!($i); // This `$i` should not interact with the `$i` in the definition of `inner!`.
inner!(fn main() {}); // After this PR, this is an error ("unknown macro variable `i`").
```
Due to the severe limitations on nested `macro_rules!` before #34925, this is not a breaking change for stable/beta.
Fixes#35450.
r? @nrc
Better attribute and metaitem encapsulation throughout the compiler
This PR refactors most (hopefully all?) of the `MetaItem` interactions outside of `libsyntax` (and a few inside) to interact with MetaItems through the provided traits instead of directly creating / destruct / matching against them. This is a necessary first step to eventually converting `MetaItem`s to internally use `TokenStream` representations (which will make `MetaItem` interactions much nicer for macro writers once the new macro system is in place).
r? @nrc
Simplify the macro hygiene algorithm
This PR removes renaming from the hygiene algorithm and treats differently marked identifiers as unequal.
This change makes the scope of identifiers in `macro_rules!` items empty. That is, identifiers in `macro_rules!` definitions do not inherit any semantics from the `macro_rules!`'s scope.
Since `macro_rules!` macros are items, the scope of their identifiers "should" be the same as that of other items; in particular, the scope should contain only items. Since all items are unhygienic today, this would mean the scope should be empty.
However, the scope of an identifier in a `macro_rules!` statement today is the scope that the identifier would have if it replaced the `macro_rules!` (excluding anything unhygienic, i.e. locals only).
To continue to support this, this PR tracks the scope of each `macro_rules!` and uses it in `resolve` to ensure that an identifier expanded from a `macro_rules!` gets a chance to resolve to the locals in the `macro_rules!`'s scope.
This PR is a pure refactoring. After this PR,
- `syntax::ext::expand` is much simpler.
- We can expand macros in any order without causing problems for hygiene (needed for macro modularization).
- We can deprecate or remove today's `macro_rules!` scope easily.
- Expansion performance improves by 25%, post-expansion memory usage decreases by ~5%.
- Expanding a block is no longer quadratic in the number of `let` statements (fixes#10607).
r? @nrc
Fix expansion performance regression
**syntax-[breaking-change] cc #31645**
This fixes#34630 by reverting commit 5bf7970 of PR #33943, which landed in #34424.
By removing the `Rc<_>` wrapping around `Delimited` and `SequenceRepetition` in `TokenTree`, 5bf7970 made cloning `TokenTree`s more expensive. While this had no measurable performance impact on the compiler's crates, it caused an order of magnitude performance regression on some macro-heavy code in the wild. I believe this is due to clones of `TokenTree`s in `macro_parser.rs` and/or `macro_rules.rs`.
r? @nrc
This is a spiritual succesor to #34268/8531d581, in which we replaced a
number of matches of None to the unit value with `if let` conditionals
where it was judged that this made for clearer/simpler code (as would be
recommended by Manishearth/rust-clippy's `single_match` lint). The same
rationale applies to matches of None to the empty block.
Forbid type parameters and global paths in macro invocations
Fixes#28558.
This is a [breaking-change]. For example, the following would break:
```rust
macro_rules! m { () => { () } }
fn main() {
m::<T>!(); // Type parameters are no longer allowed in macro invocations
::m!(); // Global paths are no longer allowed in macro invocations
}
```
Any breakage can be fixed by removing the type parameters or the leading `::` (respectively).
r? @eddyb
Batch up libsyntax breaking changes
Batch of the following syntax-[breaking-change] changes:
- #34213: Add a variant `Macro` to `TraitItemKind`
- #34368: Merge the variant `QPath` of `PatKind` into the variant `PatKind::Path`
- #34385: Move `syntax::ast::TokenTree` into a new module `syntax::tokenstream`
- #33943:
- Remove the type parameter from `visit::Visitor`
- Remove `attr::WithAttrs` -- use `attr::HasAttrs` instead.
- Change `fold_tt`/`fold_tts` to take token trees by value and avoid wrapping token trees in `Rc`.
- Remove the field `ctxt` of `ast::Mac_`
- Remove inherent method `attrs()` of types -- use the method `attrs` of `HasAttrs` instead.
- #34316:
- Remove `ast::Decl`/`ast::DeclKind` and add variants `Local` and `Item` to `StmtKind`.
- Move the node id for statements from the `StmtKind` variants to a field of `Stmt` (making `Stmt` a struct instead of an alias for `Spanned<StmtKind>`)
- Rename `ast::ExprKind::Again` to `Continue`.
- #34339: Generalize and abstract `ThinAttributes` to `ThinVec<Attribute>`
- Use `.into()` in convert between `Vec<Attribute>` and `ThinVec<Attribute>`
- Use autoderef instead of `.as_attr_slice()`
- #34436: Remove the optional expression from `ast::Block` and instead use a `StmtKind::Expr` at the end of the statement list.
- #34403: Move errors into a separate crate (unlikely to cause breakage)
To allow these braced macro invocation, this PR removes the optional expression from `ast::Block` and instead uses a `StmtKind::Expr` at the end of the statement list.
Currently, braced macro invocations in blocks can expand into statements (and items) except when they are last in a block, in which case they can only expand into expressions.
For example,
```rust
macro_rules! make_stmt {
() => { let x = 0; }
}
fn f() {
make_stmt! {} //< This is OK...
let x = 0; //< ... unless this line is commented out.
}
```
Fixes#34418.
syntax-[breaking-change] cc #31645
(Only breaking because ast::TokenTree is now tokenstream::TokenTree.)
This pull request refactors TokenTrees into their own file as src/libsyntax/tokenstream.rs, moving them out of src/libsyntax/ast.rs, in order to prepare for an accompanying TokenStream implementation (per RFC 1566).
This PR refactors the 'errors' part of libsyntax into its own crate (librustc_errors). This is the first part of a few refactorings to simplify error reporting and potentially support more output formats (like a standardized JSON output and possibly an --explain mode that can work with the user's code), though this PR stands on its own and doesn't assume further changes.
As part of separating out the errors crate, I have also refactored the code position portion of codemap into its own crate (libsyntax_pos). While it's helpful to have the common code positions in a separate crate for the new errors crate, this may also enable further simplifications in the future.
**syntax-[breaking-change]** cc #31645
New `TraitItemKind::Macro` variant
This change adds support for macro expansion inside trait items by adding the new `TraitItemKind::Macro` and associated parsing code.
Add an abs_path member to FileMap, use it when writing debug info.
Fixes#34179.
When items are inlined from extern crates, the filename in the debug info
is taken from the FileMap that's serialized in the rlib metadata.
Currently this is just FileMap.name, which is whatever path is passed to rustc.
Since libcore and libstd are built by invoking rustc with relative paths,
they wind up with relative paths in the rlib, and when linked into a binary
the debug info uses relative paths for the names, but since the compilation
directory for the final binary, tools trying to read source filenames
will wind up with bad paths. We noticed this in Firefox with source
filenames from libcore/libstd having bad paths.
This change stores an absolute path in FileMap.abs_path, and uses that
if available for writing debug info. This is not going to magically make
debuggers able to find the source, but it will at least provide sensible
paths.
When items are inlined from extern crates, the filename in the debug info
is taken from the FileMap that's serialized in the rlib metadata.
Currently this is just FileMap.name, which is whatever path is passed to rustc.
Since libcore and libstd are built by invoking rustc with relative paths,
they wind up with relative paths in the rlib, and when linked into a binary
the debug info uses relative paths for the names, but since the compilation
directory for the final binary, tools trying to read source filenames
will wind up with bad paths. We noticed this in Firefox with source
filenames from libcore/libstd having bad paths.
This change stores an absolute path in FileMap.abs_path, and uses that
if available for writing debug info. This is not going to magically make
debuggers able to find the source, but it will at least provide sensible
paths.
Revert a change in the scope of macros imported from crates to fix a regression
Fixes#34212.
The regression was caused by #34032, which changed the scope of macros imported from extern crates to match the scope of macros imported from modules.
r? @nrc
Remove the old FOLLOW checking (aka `check_matcher_old`).
It was supposed to be removed at the next release cycle but is still in the tree since like 6 months.
Potential breaking change, since some cases (such as #25658) will change from a warning to an error. But the warning stating that it will be a hard error in the next release has been there for 6 months now.
I think it's safe to break this code. ^_^
Projection cache and better warnings for #32330
This PR does three things:
- it lays the groundwork for the more precise subtyping rules discussed in #32330, but does not enable them;
- it issues warnings when the result of a leak-check or subtyping check relies on a late-bound region which will late become early-bound when #32330 is fixed;
- it introduces a cache for projection in the inference context.
I'm not 100% happy with the approach taken by the cache here, but it seems like a step in the right direction. It results in big wins on some test cases, but not as big as previous versions -- I think because it is caching the `Vec<Obligation>` (whereas before I just returned the normalized type with an empty vector). However, that change was needed to fix an ICE in @alexcrichton's future-rs module (I haven't fully tracked the cause of that ICE yet). Also, because trans/the collector use a fresh inference context for every call to `fulfill_obligation`, they don't profit nearly as much from this cache as they ought to.
Still, here are the results from the future-rs `retry.rs`:
```
06:26 <nmatsakis> time: 6.246; rss: 44MB item-bodies checking
06:26 <nmatsakis> time: 54.783; rss: 63MB translation item collection
06:26 <nmatsakis> time: 140.086; rss: 86MB translation
06:26 <nmatsakis> time: 0.361; rss: 46MB item-bodies checking
06:26 <nmatsakis> time: 5.299; rss: 63MB translation item collection
06:26 <nmatsakis> time: 12.140; rss: 86MB translation
```
~~Another example is the example from #31849. For that, I get 34s to run item-bodies without any cache. The version of the cache included here takes 2s to run item-bodies type-checking. An alternative version which doesn't track nested obligations takes 0.2s, but that version ICEs on @alexcrichton's future-rs (and may well be incorrect, I've not fully convinced myself of that). So, a definite win, but I think there's definitely room for further progress.~~
Pushed a modified version which improves performance of the case from #31849:
```
lunch-box. time rustc --stage0 ~/tmp/issue-31849.rs -Z no-trans
real 0m33.539s
user 0m32.932s
sys 0m0.570s
lunch-box. time rustc --stage2 ~/tmp/issue-31849.rs -Z no-trans
real 0m0.195s
user 0m0.154s
sys 0m0.042s
```
Some sort of cache is also needed for unblocking further work on lazy normalization, since that will lean even more heavily on the cache, and will also require cycle detection.
r? @arielb1
Reject a LHS formed of a single sequence TT during `macro_rules!` checking.
This was already rejected during expansion. Encountering malformed LHS or RHS during expansion is now considered a bug.
Follow up to #33689.
r? @pnkfelix
Note: this can break code that defines such macros but does not use them.
Perform `cfg` attribute processing during macro expansion and fix bugs
This PR refactors `cfg` attribute processing and fixes bugs. More specifically:
- It merges gated feature checking for stmt/expr attributes, `cfg_attr` processing, and `cfg` processing into a single fold.
- This allows feature gated `cfg` variables to be used in `cfg_attr` on unconfigured items. All other feature gated attributes can already be used on unconfigured items.
- It performs `cfg` attribute processing during macro expansion instead of after expansion so that macro-expanded items are configured the same as ordinary items. In particular, to match their non-expanded counterparts,
- macro-expanded unconfigured macro invocations are no longer expanded,
- macro-expanded unconfigured macro definitions are no longer usable, and
- feature gated `cfg` variables on macro-expanded macro definitions/invocations are now errors.
This is a [breaking-change]. For example, the following would break:
```rust
macro_rules! m {
() => {
#[cfg(attr)]
macro_rules! foo { () => {} }
foo!(); // This will be an error
macro_rules! bar { () => { fn f() {} } }
#[cfg(attr)] bar!(); // This will no longer be expanded ...
fn g() { f(); } // ... so that `f` will be unresolved.
#[cfg(target_thread_local)] // This will be a gated feature error
macro_rules! baz { () => {} }
}
}
m!();
```
r? @nrc
This makes the \"shadowing labels\" warning *not* print the entire loop as a span, but only the lifetime.
Also makes #31719 go away, but does not fix its root cause (the span of the expanded loop is still wonky, but not used anymore).
Make sure that macros that didn't pass LHS checking are not expanded.
This avoid duplicate errors for things like invalid fragment specifiers, or
parsing errors for ambiguous macros.