Resolve function lifetime elision on the AST
~Based on https://github.com/rust-lang/rust/pull/97720~
Lifetime elision for functions is purely syntactic in nature, so can be resolved on the AST.
This PR replicates the elision logic and diagnostics on the AST, and replaces HIR-based resolution by a `delay_span_bug`.
This refactor allows for more consistent diagnostics, which don't have to guess the original code from HIR.
r? `@petrochenkov`
Implement `for<>` lifetime binder for closures
This PR implements RFC 3216 ([TI](https://github.com/rust-lang/rust/issues/97362)) and allows code like the following:
```rust
let _f = for<'a, 'b> |a: &'a A, b: &'b B| -> &'b C { b.c(a) };
// ^^^^^^^^^^^--- new!
```
cc ``@Aaron1011`` ``@cjgillot``
Create fresh lifetime parameters for bare fn trait too
The current code fails to account for the equivalence between `dyn FnMut(&mut u8)` and bare `FnMut(&mut u8)`, and treated them differently.
This PR introduces a special case for `Fn` traits, which are always fully resolved.
Fixes#98616Fixes#98726
This will require a beta-backport, as beta contains that bug.
r? `@petrochenkov`
Allow inline consts to reference generic params
Tracking issue: #76001
The RFC says that inline consts cannot reference to generic parameters (for now), same as array length expressions. And expresses that it's desirable for it to reference in-scope generics, when array length expressions gain that feature as well.
However it is possible to implement this for inline consts before doing this for all anon consts, because inline consts are only used as values and they won't be used in the type system. So we can have:
```rust
fn foo<T>() {
let x = [4i32; std::mem::size_of::<T>()]; // NOT ALLOWED (for now)
let x = const { std::mem::size_of::<T>() }; // ALLOWED with this PR!
let x = [4i32; const { std::mem::size_of::<T>() }]; // NOT ALLOWED (for now)
}
```
This would make inline consts super useful for compile-time checks and assertions:
```rust
fn assert_zst<T>() {
const { assert!(std::mem::size_of::<T>() == 0) };
}
```
This would create an error during monomorphization when `assert_zst` is instantiated with non-ZST `T`s. A error during mono might sound scary, but this is exactly what a "desugared" inline const would do:
```rust
fn assert_zst<T>() {
struct F<T>(T);
impl<T> F<T> {
const V: () = assert!(std::mem::size_of::<T>() == 0);
}
let _ = F::<T>::V;
}
```
It should also be noted that the current inline const implementation can already reference the type params via type inference, so this resolver-level restriction is not any useful either:
```rust
fn foo<T>() -> usize {
let (_, size): (PhantomData<T>, usize) = const {
const fn my_size_of<T>() -> (PhantomData<T>, usize) {
(PhantomData, std::mem::size_of::<T>())
}
my_size_of()
};
size
}
```
```@rustbot``` label: F-inline_const
do not suggest when trait_ref is some
Update compiler/rustc_resolve/src/late/diagnostics.rs
Co-authored-by: lcnr <rust@lcnr.de>
use helper struct
add a test for functions with some params
refactor debug log