Permit the MIR inliner to inline diverging functions
This heuristic prevents inlining of `hint::unreachable_unchecked`, which in turn makes `Option/Result::unwrap_unchecked` a bad inlining candidate. I looked through the changes to `core`, `alloc`, `std`, and `hashbrown` by hand and they all seem reasonable. Let's see how this looks in perf...
---
Based on rustc-perf it looks like this regresses ctfe-stress, and the cachegrind diff indicates that this regression is in `InterpCx::statement`. I don't know how to do any deeper analysis because that function is _enormous_ in the try toolchain, which has no debuginfo in it. And a local build produces significantly different codegen for that function, even with LTO.
Simpler checked shifts in MIR building
Doing masking to check unsigned shift amounts is overcomplicated; just comparing the shift directly saves a statement and a temporary, as well as is much easier to read as a human. And shifting by unsigned is the canonical case -- notably, all the library shifting methods (that don't support every type) take shift RHSs as `u32` -- so we might as well make that simpler since it's easy to do so.
This PR also changes *signed* shift amounts to `IntToInt` casts and then uses the same check as for unsigned. The bit-masking is a nice trick, but for example LLVM actually canonicalizes it to an unsigned comparison anyway <https://rust.godbolt.org/z/8h59fMGT4> so I don't think it's worth the effort and the extra `Constant`. (If MIR's `assert` was `assert_nz` then the masking might make sense, but when the `!=` uses another statement I think the comparison is better.)
To review, I suggest looking at 2ee0468c49 first -- that's the interesting code change and has a MIR diff.
My favourite part of the diff:
```diff
- _20 = BitAnd(_19, const 340282366920938463463374607431768211448_u128); // scope 0 at $DIR/shifts.rs:+2:34: +2:44
- _21 = Ne(move _20, const 0_u128); // scope 0 at $DIR/shifts.rs:+2:34: +2:44
- assert(!move _21, "attempt to shift right by `{}`, which would overflow", _19) -> [success: bb3, unwind: bb7]; // scope 0 at $DIR/shifts.rs:+2:34: +2:44
+ _18 = Lt(_17, const 8_u128); // scope 0 at $DIR/shifts.rs:+2:34: +2:44
+ assert(move _18, "attempt to shift right by `{}`, which would overflow", _17) -> [success: bb3, unwind: bb7]; // scope 0 at $DIR/shifts.rs:+2:34: +2:44
```
Updates `interpret`, `codegen_ssa`, and `codegen_cranelift` to consume the new cast instead of the intrinsic.
Includes `CastTransmute` for custom MIR building, to be able to test the extra UB.
Custom MIR: Allow optional RET type annotation
This currently doesn't compile because the type of `RET` is inferred, which fails if RET is a composite type and fields are initialised separately.
```rust
#![feature(custom_mir, core_intrinsics)]
extern crate core;
use core::intrinsics::mir::*;
#[custom_mir(dialect = "runtime", phase = "optimized")]
fn fn0() -> (i32, bool) {
mir! ({
RET.0 = 0;
RET.1 = true;
Return()
})
}
```
```
error[E0282]: type annotations needed
--> src/lib.rs:8:9
|
8 | RET.0 = 0;
| ^^^ cannot infer type
For more information about this error, try `rustc --explain E0282`.
```
This PR allows the user to manually specify the return type with `type RET = ...;` if required:
```rust
#[custom_mir(dialect = "runtime", phase = "optimized")]
fn fn0() -> (i32, bool) {
mir! (
type RET = (i32, bool);
{
RET.0 = 0;
RET.1 = true;
Return()
}
)
}
```
The syntax is not optimal, I'm happy to see other suggestions. Ideally I wanted it to be a normal type annotation like `let RET: ...;`, but this runs into the multiple parsing options error during macro expansion, as it can be parsed as a normal `let` declaration as well.
r? ```@oli-obk``` or ```@tmiasko``` or ```@JakobDegen```
move Option::as_slice to intrinsic
````@scottmcm```` suggested on #109095 I use a direct approach of unpacking the operation in MIR lowering, so here's the implementation.
cc ````@nikic```` as this should hopefully unblock #107224 (though perhaps other changes to the prior implementation, which I left for bootstrapping, are needed).
Use index based drop loop for slices and arrays
Instead of building two kinds of drop pair loops, of which only one will be eventually used at runtime in a given monomorphization, always use index based loop.
Wrap the whole LocalInfo in ClearCrossCrate.
MIR contains a lot of information about locals. The primary purpose of this information is the quality of borrowck diagnostics.
This PR aims to drop this information after MIR analyses are finished, ie. starting from post-cleanup runtime MIR.
Implement checked Shl/Shr at MIR building.
This does not require any special handling by codegen backends,
as the overflow behaviour is entirely determined by the rhs (shift amount).
This allows MIR ConstProp to remove the overflow check for constant shifts.
~There is an existing different behaviour between cg_llvm and cg_clif (cc `@bjorn3).`
I took cg_llvm's one as reference: overflow if `rhs < 0 || rhs > number_of_bits_in_lhs_ty`.~
EDIT: `cg_llvm` and `cg_clif` implement the overflow check differently. This PR uses `cg_llvm`'s implementation based on a `BitAnd` instead of `cg_clif`'s one based on an unsigned comparison.
Ensure `ptr::read` gets all the same LLVM `load` metadata that dereferencing does
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`. Trying to narrow it down, it seems that was because `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
The root cause is that `ptr::read` is currently implemented via the *untyped* `copy_nonoverlapping`, and thus the `load` doesn't get any type-aware metadata: no `noundef`, no `!range`. This PR solves that by lowering `ptr::read(p)` to `copy *p` in MIR, for which the backends already do the right thing.
Fortuitiously, this also improves the IR we give to LLVM for things like `mem::replace`, and fixes a couple of long-standing bugs where `ptr::read` on `Copy` types was worse than `*`ing them.
Zulip conversation: <https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Move.20array.3A.3AIntoIter.20to.20ManuallyDrop/near/341189936>
cc `@erikdesjardins` `@JakobDegen` `@workingjubilee` `@the8472`
Fixes#106369Fixes#73258
Instead of building two kinds of drop pair loops, of which only one will
be eventually used at runtime in a given monomorphization, always use
index based loop.
Remove `identity_future` indirection
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]`annotation.
Fixes https://github.com/rust-lang/rust/issues/104826.
Remove `box_syntax`
r? `@Nilstrieb`
This removes the feature `box_syntax`, which allows the use of `box <expr>` to create a Box, and finalises removing use of the feature from the compiler. `box_patterns` (allowing the use of `box <pat>` in a pattern) is unaffected.
It also removes `ast::ExprKind::Box` - the only way to create a 'box' expression now is with the rustc-internal `#[rustc_box]` attribute.
As a temporary measure to help users move away, `box <expr>` now parses the inner expression, and emits a `MachineApplicable` lint to replace it with `Box::new`
Closes#49733
Strengthen state tracking in const-prop
Some/many of the changes are replicated between both the const-prop lint and the const-prop optimization.
Behaviour changes:
- const-prop opt does not give a span to propagated values. This was useless as that span's primary purpose is to diagnose evaluation failure in codegen.
- we remove the `OnlyPropagateInto` mode. It was only used for function arguments, which are better modeled by a write before entry.
- the tracking of assignments and discriminants make clearer that we do nothing in `NoPropagation` mode or on indirect places.
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`.
Turned out to be a more general problem as `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
This PR lowers `ptr::read(p)` to `copy *p` in MIR, which fortuitiously also improves the IR we give to LLVM for things like `mem::replace`.
Rollup of 8 pull requests
Successful merges:
- #108754 (Retry `pred_known_to_hold_modulo_regions` with fulfillment if ambiguous)
- #108759 (1.41.1 supported 32-bit Apple targets)
- #108839 (Canonicalize root var when making response from new solver)
- #108856 (Remove DropAndReplace terminator)
- #108882 (Tweak E0740)
- #108898 (Set `LIBC_CHECK_CFG=1` when building Rust code in bootstrap)
- #108911 (Improve rustdoc-gui/tester.js code a bit)
- #108916 (Remove an unused return value in `rustc_hir_typeck`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Do not consider `&mut *x` as mutating `x` in `CopyProp`
This PR removes an unfortunate overly cautious case from the current implementation.
Found by https://github.com/rust-lang/rust/pull/105274 cc `@saethlin`
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]` annotation.
This commit desugars the drop and replace deriving from an
assignment at MIR build, avoiding the construction of the
DropAndReplace terminator (which will be removed in a followign PR)
In order to retain the same error messages for replaces a new
DesugaringKind::Replace variant is introduced.
Stabilize `#![feature(target_feature_11)]`
## Stabilization report
### Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.
Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot be assigned to safe function pointers, and don't implement the `Fn*` traits.
However, calling them from other `#[target_feature]` functions with a superset of features is safe.
```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}
fn foo() {
// Calling `avx2` here is unsafe, as we must ensure
// that AVX is available first.
unsafe {
avx2();
}
}
#[target_feature(enable = "avx2")]
fn bar() {
// Calling `avx2` here is safe.
avx2();
}
```
### Test cases
Tests for this feature can be found in [`src/test/ui/rfcs/rfc-2396-target_feature-11/`](b67ba9ba20/src/test/ui/rfcs/rfc-2396-target_feature-11/).
### Edge cases
- https://github.com/rust-lang/rust/issues/73631
Closures defined inside functions marked with `#[target_feature]` inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.
```rust
#[target_feature(enable = "avx2")]
fn qux() {
let my_closure = || avx2(); // this call to `avx2` is safe
let f: fn() = my_closure;
}
```
This means that in order to call a function with `#[target_feature]`, you must show that the target-feature is available while the function executes *and* for as long as whatever may escape from that function lives.
### Documentation
- Reference: https://github.com/rust-lang/reference/pull/1181
---
cc tracking issue #69098
r? `@ghost`