The indices are encoded as `u32`s in the range of invalid `char`s, so
that we know that if any mapping fails to parse as a `char` we should
use the value for lookup in the multi-table.
This avoids the second binary search in cases where a multi-`char`
mapping is needed.
Idea from @nikic
This makes pin docs a little bit less jargon-y and easier to read, by
* splitting up the sentences
* making them less interrupted by punctuation
* turning the footnotes into paragraphs, as they contain useful information
that shouldn't be hidden in footnotes. Footnotes also interrupt the read flow.
* other improvements and simplifications
For larger applications it's important that users set `RUST_MIN_STACK`
at the start of their program because `min_stack` caches the value.
Not doing so can lead to their `env::set_var` call surprisingly not having any effect.
Flatten/inline format_args!() and (string and int) literal arguments into format_args!()
Implements https://github.com/rust-lang/rust/issues/78356
Gated behind `-Zflatten-format-args=yes`.
Part of #99012
This change inlines string literals, integer literals and nested format_args!() into format_args!() during ast lowering, making all of the following pairs result in equivalent hir:
```rust
println!("Hello, {}!", "World");
println!("Hello, World!");
```
```rust
println!("[info] {}", format_args!("error"));
println!("[info] error");
```
```rust
println!("[{}] {}", status, format_args!("error: {}", msg));
println!("[{}] error: {}", status, msg);
```
```rust
println!("{} + {} = {}", 1, 2, 1 + 2);
println!("1 + 2 = {}", 1 + 2);
```
And so on.
This is useful for macros. E.g. a `log::info!()` macro could just pass the tokens from the user directly into a `format_args!()` that gets efficiently flattened/inlined into a `format_args!("info: {}")`.
It also means that `dbg!(x)` will have its file, line, and expression name inlined:
```rust
eprintln!("[{}:{}] {} = {:#?}", file!(), line!(), stringify!(x), x); // before
eprintln!("[example.rs:1] x = {:#?}", x); // after
```
Which can be nice in some cases, but also means a lot more unique static strings than before if dbg!() is used a lot.
The majority of char case replacements are single char replacements,
so storing them as [char; 3] wastes a lot of space.
This commit splits the replacement tables for both `to_lower` and
`to_upper` into two separate tables, one with single-character mappings
and one with multi-character mappings.
This reduces the binary size for programs using all of these tables
with roughly 24K bytes.
Since ascii chars are already handled by a special case in the
`to_lower` and `to_upper` functions, there's no need to waste space on
them in the LUTs.
Ensure `ptr::read` gets all the same LLVM `load` metadata that dereferencing does
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`. Trying to narrow it down, it seems that was because `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
The root cause is that `ptr::read` is currently implemented via the *untyped* `copy_nonoverlapping`, and thus the `load` doesn't get any type-aware metadata: no `noundef`, no `!range`. This PR solves that by lowering `ptr::read(p)` to `copy *p` in MIR, for which the backends already do the right thing.
Fortuitiously, this also improves the IR we give to LLVM for things like `mem::replace`, and fixes a couple of long-standing bugs where `ptr::read` on `Copy` types was worse than `*`ing them.
Zulip conversation: <https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Move.20array.3A.3AIntoIter.20to.20ManuallyDrop/near/341189936>
cc `@erikdesjardins` `@JakobDegen` `@workingjubilee` `@the8472`
Fixes#106369Fixes#73258
`/dev/urandom` is usually available on Emscripten, except when using
the special `NODERAWFS` filesystem backend, which replaces all normal
filesystem access with direct Node.js operations.
Since this filesystem backend directly access the filesystem on the
OS, it is not recommended to depend on `/dev/urandom`, especially
when trying to run the Wasm binary on OSes that are not Unix-based.
This can be considered a non-functional change, since Emscripten
implements `/dev/urandom` in the same way as `getentropy()` when not
linking with `-sNODERAWFS`.
Remove `identity_future` indirection
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]`annotation.
Fixes https://github.com/rust-lang/rust/issues/104826.
use `as_ptr` to determine the address of atomics
The PR #107736 renamed atomic `as_mut_ptr` to `as_ptr`. Consequently, the futex implementation of the tier-3 platform `RutyHermit` has to use this new interface. In addition, this PR removes also an unused import.
Stabilize `atomic_as_ptr`
Fixes#66893
This stabilizes the `as_ptr` methods for atomics. The stabilization feature gate used here is `atomic_as_ptr` which supersedes `atomic_mut_ptr` to match the change in https://github.com/rust-lang/rust/pull/107736.
This needs FCP.
New stable API:
```rust
impl AtomicBool {
pub const fn as_ptr(&self) -> *mut bool;
}
impl AtomicI32 {
pub const fn as_ptr(&self) -> *mut i32;
}
// Includes all other atomic types
impl<T> AtomicPtr<T> {
pub const fn as_ptr(&self) -> *mut *mut T;
}
```
r? libs-api
``@rustbot`` label +needs-fcp
Move `Option::as_slice` to an always-sound implementation
This approach depends on CSE to not have any branches or selects when the guessed offset is correct -- which it always will be right now -- but to also be *sound* (just less efficient) if the layout algorithms change such that the guess is incorrect.
The codegen test confirms that CSE handles this as expected, leaving the optimal codegen.
cc JakobDegen #108545
Introduce `Rc::into_inner`, as a parallel to `Arc::into_inner`
Unlike `Arc`, `Rc` doesn't have the same race condition to avoid, but
maintaining an equivalent API still makes it easier to work with both
`Rc` and `Arc`.
This approach depends on CSE to not have any branches or selects when the guessed offset is correct -- which it always will be right now -- but to also be *sound* (just less efficient) if the layout algorithms change such that the guess is incorrect.
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`.
Turned out to be a more general problem as `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
This PR lowers `ptr::read(p)` to `copy *p` in MIR, which fortuitiously also improves the IR we give to LLVM for things like `mem::replace`.
Unlike `Arc`, `Rc` doesn't have the same race condition to avoid, but
maintaining an equivalent API still makes it easier to work with both
`Rc` and `Arc`.
Rollup of 9 pull requests
Successful merges:
- #104363 (Make `unused_allocation` lint against `Box::new` too)
- #106633 (Stabilize `nonzero_min_max`)
- #106844 (allow negative numeric literals in `concat!`)
- #108071 (Implement goal caching with the new solver)
- #108542 (Force parentheses around `match` expression in binary expression)
- #108690 (Place size limits on query keys and values)
- #108708 (Prevent overflow through Arc::downgrade)
- #108739 (Prevent the `start_bx` basic block in codegen from having two `Builder`s at the same time)
- #108806 (Querify register_tools and post-expansion early lints)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Guarantee that when `read_buf_exact` returns, all bytes read will be
appended to the buffer. Including the case when the operations fails.
The motivating use case are operations on a non-blocking reader. When
`read_buf_exact` fails with `ErrorKind::WouldBlock` error, the operation
can be resumed at a later time.
Stabilize `nonzero_min_max`
## Overall
Stabilizes `nonzero_min_max` to allow the "infallible" construction of ordinary minimum and maximum `NonZero*` instances.
The feature is fairly straightforward and already matured for some time in stable toolchains.
```rust
let _ = NonZeroU8::MIN;
let _ = NonZeroI32::MAX;
```
## History
* On 2022-01-25, implementation was [created](https://github.com/rust-lang/rust/pull/93293).
## Considerations
* This report is fruit of the inanition observed after two unsuccessful attempts at getting feedback.
* Other constant variants discussed at https://github.com/rust-lang/rust/issues/89065#issuecomment-923238190 are orthogonal to this feature.
Fixes https://github.com/rust-lang/rust/issues/89065
Make `unused_allocation` lint against `Box::new` too
Previously it only linted against `box` syntax, which likely won't ever be stabilized, which is pretty useless. Even now I'm not sure if it's a meaningful lint, but it's at least something 🤷
This means that code like the following will be linted against:
```rust
Box::new([1, 2, 3]).len();
f(&Box::new(1)); // where f : &i32 -> ()
```
The lint works by checking if a `Box::new` (or `box`) expression has an a borrow adjustment, meaning that the code that first stores the box in a variable won't be linted against:
```rust
let boxed = Box::new([1, 2, 3]); // no lint
boxed.len();
```
Move __thread_local_inner to sys
Move `__thread_local_inner` macro in `crate:🧵:local` to `crate::sys`. Initially, I was thinking about removing this macro completely, but I could not find a way to create the generic statics without macros, so in the end, I just moved to code around.
This probably will need a rebase once https://github.com/rust-lang/rust/pull/108917 is merged
r? ``@workingjubilee``