Now that `std::old_io` has been removed for quite some time the naming real
estate here has opened up to allow these modules to move back to their proper
names.
This commit is an implementation of [RFC 1044][rfc] which adds additional
surface area to the `std::fs` module. All new APIs are `#[unstable]` behind
assorted feature names for each one.
[rfc]: https://github.com/rust-lang/rfcs/pull/1044
The new APIs added are:
* `fs::canonicalize` - bindings to `realpath` on unix and
`GetFinalPathNameByHandle` on windows.
* `fs::symlink_metadata` - similar to `lstat` on unix
* `fs::FileType` and accessor methods as `is_{file,dir,symlink}`
* `fs::Metadata::file_type` - accessor for the raw file type
* `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows
but requires a syscall on unix.
* `fs::DirEntry::file_type` - access the file type which may not require a
syscall on most platforms.
* `fs::DirEntry::file_name` - access just the file name without leading
components.
* `fs::PathExt::symlink_metadata` - convenience method for the top-level
function.
* `fs::PathExt::canonicalize` - convenience method for the top-level
function.
* `fs::PathExt::read_link` - convenience method for the top-level
function.
* `fs::PathExt::read_dir` - convenience method for the top-level
function.
* `std::os::raw` - type definitions for raw OS/C types available on all
platforms.
* `std::os::$platform` - new modules have been added for all currently supported
platforms (e.g. those more specific than just `unix`).
* `std::os::$platform::raw` - platform-specific type definitions. These modules
are populated with the bare essentials necessary for lowing I/O types into
their raw representations, and currently largely consist of the `stat`
definition for unix platforms.
This commit also deprecates `Metadata::{modified, accessed}` in favor of
inspecting the raw representations via the lowering methods of `Metadata`.
Implement [RFC #1048][rfc].
On Windows, when you create a symbolic link you must specify whether it
points to a directory or a file, even if it is created dangling, while
on Unix, the same symbolic link could point to a directory, a file, or
nothing at all. Furthermore, on Windows special privilege is necessary
to use a symbolic link, while on Unix, you can generally create a
symbolic link in any directory you have write privileges to.
This means that it is unlikely to be able to use symbolic links purely
portably; anyone who uses them will need to think about the cross
platform implications. This means that using platform-specific APIs
will make it easier to see where code will need to differ between the
platforms, rather than trying to provide some kind of compatibility
wrapper.
Furthermore, `soft_link` has no precedence in any other API, so to avoid
confusion, move back to the more standard `symlink` terminology.
Create a `std::os::unix::symlink` for the Unix version that is
destination type agnostic, as well as `std::os::windows::{symlink_file,
symlink_dir}` for Windows.
Because this is a stable API, leave a compatibility wrapper in
`std::fs::soft_link`, which calls `symlink` on Unix and `symlink_file`
on Windows, preserving the existing behavior of `soft_link`.
[rfc]: https://github.com/rust-lang/rfcs/pull/1048
On Windows, when you create a symbolic link you must specify whether it
points to a directory or a file, even if it is created dangling, while
on Unix, the same symbolic link could point to a directory, a file, or
nothing at all. Furthermore, on Windows special privilege is necessary
to use a symbolic link, while on Unix, you can generally create a
symbolic link in any directory you have write privileges to.
This means that it is unlikely to be able to use symbolic links purely
portably; anyone who uses them will need to think about the cross
platform implications. This means that using platform-specific APIs
will make it easier to see where code will need to differ between the
platforms, rather than trying to provide some kind of compatibility
wrapper.
Furthermore, `soft_link` has no precedence in any other API, so to avoid
confusion, move back to the more standard `symlink` terminology.
Create a `std::os::unix::symlink` for the Unix version that is
destination type agnostic, as well as `std::os::windows::{symlink_file,
symlink_dir}` for Windows.
Because this is a stable API, leave a compatibility wrapper in
`std::fs::soft_link`, which calls `symlink` on Unix and `symlink_file`
on Windows, preserving the existing behavior of `soft_link`.
This patch adds a `Debug` impl for `std::fs::File`.
On all platforms (Unix and Windows) it shows the file descriptor.
On Linux, it displays the path and access mode as well.
Ideally we should show the path/mode for all platforms, not just Linux,
but this will do for now.
cc #24570
This commit cleans out a large amount of deprecated APIs from the standard
library and some of the facade crates as well, updating all users in the
compiler and in tests as it goes along.
This commit moves `std::env` away from the `std::old_io` error type as well as
the `std::old_path` module. Methods returning an error now return `io::Error`
and methods consuming or returning paths use `std::path` instead of
`std::old_path`. This commit does not yet mark these APIs as `#[stable]`.
This commit also migrates `std::old_io::TempDir` to `std::fs::TempDir` with
essentially the exact same API. This type was added to interoperate with the new
path API and has its own `tempdir` feature.
Finally, this commit reverts the deprecation of `std::os` APIs returning the old
path API types. This deprecation can come back once the entire `std::old_path`
module is deprecated.
[breaking-change]
This commit is an implementation of [RFC 739][rfc] which adds a new `std::fs`
module to the standard library. This module provides much of the same
functionality as `std::old_io::fs` but it has many tweaked APIs as well as uses
the new `std::path` module.
[rfc]: https://github.com/rust-lang/rfcs/pull/739
- Move io, run and rand to core.
- Remove incorrect ctypes module (use libc).
- Remove os-specific modules for os and fs.
- Split fs between core::path and core::os.
As per discussion on IRC. I am about to file an RFC for further
discussion about the more general issue of whether to enforce
invariants through types, typestate, or dynamic checks, but for now,
removing the misleading name "last_unsafe".
* Renamed str::split -> str::split_byte
* Renamed str::splitn -> str::splitn_byte
* Renamed str::split_func -> str::split
* Renamed str::split_char -> str::split_char
* Renamed str::split_chars_iter -> str::split_char_iter
* Added u8::is_ascii
* Fixed the behavior of str::split_str, so that it matches split_chars
and split (i.e. ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", "."))
* Fixed str::split_byte and str::splitn_byte so that they handle
splitting UTF-8 strings on a given UTF-8/ASCII byte and also handle ""
as the others do