The move_after_borrow / fu_move_after_borrow tests in
run-pass/borrowck-field-sensitivity.rs are not testing the right thing,
since the scope of the borrow is limited to the call to borrow(). When
fixed, these tests fail and thus should be moved to the corresponding
compile-fail test file.
A number of borrowck field-sensitivity tests perform more moves and
copies than their naming scheme would indicate. This is only necessary
for borrowed pointers (to ensure that the borrowws stay alive in the
near future when borrow liveness is tracked), but all other test
functions should be changed to match their name more closely.
Some of the borrowck field-sensitivity test functions have 'use' in
their name, but they don't refer to the specific kind of use (whether a
copy or a deref). It would be better if the name more precisely
reflected what the function is testing.
I tried to split up the less mechanical changes into separate commits so they are easier to review. One thing I'm not quite sure of is whether `MoveReason` should just be replaced with `move_data::MoveKind`.
When converting check_loans to use ExprUseVisitor I encountered a few
issues where the wrong number of errors were being emitted for multiple
closure captures, but there is no existing test for this.
Currently it is not possible to distinguish moves caused by captures
in the ExprUseVisitor interface. Since check_Loans needs to make that
distinction for generating good diagnostics, this is necessary for
check_loans to switch to ExprUseVisitor.
This isn't necessary right now, but check_loans needs to be able to
distinguish between initialization and writes in the ExprUseVisitor
mutate callback.
Currently mem_categorization categorizes an AutoObject adjustment the
same as the original expression. This can cause two moves to be
generated for the same underlying expression. Currently this isn't a
problem in practice, since check_loans doesn't rely on ExprUseVisitor.
Refactor a number of functions in check_loans to take node IDs and spans
rather than taking expressions directly. Also rename some variables to
make them less ambiguous.
This is the first step towards using ExprUseVisitor in check_loans, as
now some of the interfaces more closely match those used in
ExprUseVisitor.
part of #14248, fix#14420
Removed @richo's contribution (outdated comment)
Quoting @brson: let's move forward with this one. The only
statement I'm missing is @richo's and it sounds like his was a
minor patch.
The most frequent failure for our travis builds is running into the timeout
limits when building the compiler itself. Building librustc takes a very long
amount of time, often hitting the 10 minutes with no output threshold that
travis imposes on us.
This commit switches the relevant `make` step to being wrapped in the
`travis_wait` command [1]. This command will print something once a minute so as
to not time out a build.
This will hopefully enable us to have fewer flaky builds on travis!
[1]: http://docs.travis-ci.com/user/build-timeouts/
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]
This fix suppresses dead_code warnings from code generated by regex! when
the result of regex! is unused. Correct behavior should be a single
unused variable warning.
Regression tests are included for both `let` and `static` bound regex!
values.
see #14185
An interface that gives a better control over the load factor and the minimum capacity for HashMap.
The size of `HashMap<K, V>` is now 64 bytes by default on a 64-bit platform (or at least 40 bytes, that is 3 words less, with FNV and without minimum capacity)
Unanswered questions about `ResizePolicy`
* should it control the `INITIAL_CAPACITY`?
* should it fully control the resizing behavior? Even though the capacity always changes by a factor of 2.
* is caching `grow_at` desirable?
special thanks to @eddyb and @pnkfelix
A few notable improvements were implemented to cut down on the number of aborts
triggered by the standard library when a local task is not found.
* Primarily, the unwinding functionality was restructured to support an unsafe
top-level function, `try`. This function invokes a closure, capturing any
failure which occurs inside of it. The purpose of this function is to be as
lightweight of a "try block" as possible for rust, intended for use when the
runtime is difficult to set up.
This function is *not* meant to be used by normal rust code, nor should it be
consider for use with normal rust code.
* When invoking spawn(), a `fail!()` is triggered rather than an abort.
* When invoking LocalIo::borrow(), which is transitively called by all I/O
constructors, None is returned rather than aborting to indicate that there is
no local I/O implementation.
A test case was also added showing the variety of things that you can do without
a runtime or task set up now. In general, this is just a refactoring to abort
less quickly in the standard library when a local task is not found.
Previously, documentation for an inlined trait (i.e. a trait imported
and reexported from another crate) didn't display the trait's supertraits.
Closes#14636
Previously, documentation for an inlined trait (i.e. a trait imported
and reexported from another crate) didn't display the trait's
supertraits.
Closes#14636
part of #14248, fix#14420
Removed @richo's contribution (outdated comment)
Quoting @brson: let's move forward with this one. The only
statement I'm missing is @richo's and it sounds like his was a
minor patch.
This PR adds two features to make it possible to transform an `Iterator<u8>` into a `Reader`. The first patch adds a method to mutable slices that allows it to be updated with an `Iterator<T>` without paying for the bounds cost. The second adds a Iterator adaptor, `IterReader`, to provide that `Reader` interface.
I had two questions. First, are these named the right things? Second, should `IterReader` instead wrap an `Iterator<Result<u8, E>>`? This would allow you to `IterReader::new(rdr.bytes())`, which could be useful if you want to apply some iterator transformations on a reader while still exporting the Reader interface, but I'd expect there'd be a lot of overhead annotating each byte with an error result.
This commit removes the <M: Any + Send> type parameter from Option::expect in
favor of just taking a hard-coded `&str` argument. This allows this function to
move into libcore.
Previous code using strings with `expect` will continue to work, but code using
this implicitly to transmit task failure will need to unwrap manually with a
`match` statement.
[breaking-change]
Closes#14008
This time we're not promoting anything directly to 'stable', but instead promoting functions we're happy with to 'unstable'. They'll become stable in another pass later.
* null and mut_null are unstable. Their names may change if the unsafe
pointer types change.
* copy_memory and copy_overlapping_memory are unstable. We think they
aren't going to change.
* set_memory and zero_memory are experimental. Both the names and
the semantics are under question.
* swap and replace are unstable and probably won't change.
* read is unstable, probably won't change
* read_and_zero is experimental. It's necessity is in doubt.
* mem::overwrite is now called ptr::write to match read and is
unstable. mem::overwrite is now deprecated
* array_each, array_each_with_len, buf_len, and position are
all deprecated because they use old style iteration and their
utility is generally under question.
Note that `mem::overwrite`, which was just declared stable last week, is deprecated now in favor of `ptr::write`. Woo!
* null and mut_null are unstable. Their names may change if the unsafe
pointer types change.
* copy_memory and copy_overlapping_memory are unstable. We think they
aren't going to change.
* set_memory and zero_memory are experimental. Both the names and
the semantics are under question.
* swap and replace are unstable and probably won't change.
* read is unstable, probably won't change
* read_and_zero is experimental. It's necessity is in doubt.
* mem::overwrite is now called ptr::write to match read and is
unstable. mem::overwrite is now deprecated
* array_each, array_each_with_len, buf_len, and position are
all deprecated because they use old style iteration and their
utility is generally under question.