Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Check hidden types for well formedness at the definition site instead of only at the opaque type itself
work towards #90409 . We'll need to look into closure and generator bodies of closures and generators nested inside the hidden type in order to fix that. In hindsight this PR is not necessary for that, but it may be a bit easier with it and we'll get better diagnostics from it on its own.
Fortify handing of where bounds on trait & trait alias definitions
Closes https://github.com/rust-lang/rust/issues/96664
Closes https://github.com/rust-lang/rust/issues/96665
Since https://github.com/rust-lang/rust/pull/93803, when listing all bounds and predicates we now need to account for the possible presence of predicates on any of the generic parameters. Both bugs were hidden by the special handling of bounds at the generic parameter declaration position.
Trait alias expansion used to confuse predicates on `Self` and where predicates.
Exiting too late when listing all the bounds caused a cycle error.
Begin fixing all the broken doctests in `compiler/`
Begins to fix#95994.
All of them pass now but 24 of them I've marked with `ignore HELP (<explanation>)` (asking for help) as I'm unsure how to get them to work / if we should leave them as they are.
There are also a few that I marked `ignore` that could maybe be made to work but seem less important.
Each `ignore` has a rough "reason" for ignoring after it parentheses, with
- `(pseudo-rust)` meaning "mostly rust-like but contains foreign syntax"
- `(illustrative)` a somewhat catchall for either a fragment of rust that doesn't stand on its own (like a lone type), or abbreviated rust with ellipses and undeclared types that would get too cluttered if made compile-worthy.
- `(not-rust)` stuff that isn't rust but benefits from the syntax highlighting, like MIR.
- `(internal)` uses `rustc_*` code which would be difficult to make work with the testing setup.
Those reason notes are a bit inconsistently applied and messy though. If that's important I can go through them again and try a more principled approach. When I run `rg '```ignore \(' .` on the repo, there look to be lots of different conventions other people have used for this sort of thing. I could try unifying them all if that would be helpful.
I'm not sure if there was a better existing way to do this but I wrote my own script to help me run all the doctests and wade through the output. If that would be useful to anyone else, I put it here: https://github.com/Elliot-Roberts/rust_doctest_fixing_tool
Fixes#96319
The logic around handling co-inductive cycles in the evaluation cache
is confusing and error prone. Fortunately, a perf run showed that it
doesn't actually appear to improve performance, so we can simplify
this code (and eliminate a source of ICEs) by just skipping caching
the evaluation results for co-inductive cycle participants.
This commit makes no changes to any of the other logic around
co-inductive cycle handling. Thus, while this commit could
potentially expose latent bugs that were being hidden by
caching, it should not introduce any new bugs.
Revert "Prefer projection candidates instead of param_env candidates for Sized predicates"
Fixes#93262Reopens#89352
This was a hack that seemed to have no negative side-effects at the time. Given that the latter has a workaround and likely less common than the former, it makes sense to revert this change.
r? `@compiler-errors`
Quick fix for #96223.
This PR is a quick fix regarding #96223.
As mentioned in the issue, others modification could be added to not elide types with bound vars from suggestions.
Special thanks to ``@jackh726`` for mentoring and ``@Manishearth`` for minimal test case.
r? ``@jackh726``
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
Enforce Copy bounds for repeat elements while considering lifetimes
fixes https://github.com/rust-lang/rust/issues/95477
this is a breaking change in order to fix a soundness bug.
Before this PR we only checked whether the repeat element type had an `impl Copy`, but not whether that impl also had the appropriate lifetimes. E.g. if the impl was for `YourType<'static>` and not a general `'a`, then copying any type other than a `'static` one should have been rejected, but wasn't.
r? `@lcnr`
Implement Valtree to ConstValue conversion
Once we start to use `ValTree`s in the type system we will need to be able to convert them into `ConstValue` instances, which we want to continue to use after MIR construction.
r? `@oli-obk`
cc `@RalfJung`
Improved diagnostic on failure to meet send bound on future in a foreign crate
Provide a better diagnostic on failure to meet send bound on futures in a foreign crate.
fixes#78543
Adding diagnostic data on generators to the crate metadata and using it to provide
a better diagnostic on failure to meet send bound on futures originated from a foreign crate
Better method call error messages
Rebase/continuation of #71827
~Based on #92360~
~Based on #93118~
There's a decent description in #71827 that I won't copy here (for now at least)
In addition to rebasing, I've tried to restore most of the original suggestions for invalid arguments. Unfortunately, this does make some of the errors a bit verbose. To fix this will require a bit of refactoring to some of the generalized error suggestion functions, and I just don't have the time to go into it right now.
I think this is in a state that the error messages are overall better than before without a reduction in the suggestions given.
~I've tried to split out some of the easier and self-contained changes into separate commits (mostly in #92360, but also one here). There might be more than can be done here, but again just lacking time.~
r? `@estebank` as the original reviewer of #71827
This attempts to bring better error messages to invalid method calls, by applying some heuristics to identify common mistakes.
The algorithm is inspired by Levenshtein distance and longest common sub-sequence. In essence, we treat the types of the function, and the types of the arguments you provided as two "words" and compute the edits to get from one to the other.
We then modify that algorithm to detect 4 cases:
- A function input is missing
- An extra argument was provided
- The type of an argument is straight up invalid
- Two arguments have been swapped
- A subset of the arguments have been shuffled
(We detect the last two as separate cases so that we can detect two swaps, instead of 4 parameters permuted.)
It helps to understand this argument by paying special attention to terminology: "inputs" refers to the inputs being *expected* by the function, and "arguments" refers to what has been provided at the call site.
The basic sketch of the algorithm is as follows:
- Construct a boolean grid, with a row for each argument, and a column for each input. The cell [i, j] is true if the i'th argument could satisfy the j'th input.
- If we find an argument that could satisfy no inputs, provided for an input that can't be satisfied by any other argument, we consider this an "invalid type".
- Extra arguments are those that can't satisfy any input, provided for an input that *could* be satisfied by another argument.
- Missing inputs are inputs that can't be satisfied by any argument, where the provided argument could satisfy another input
- Swapped / Permuted arguments are identified with a cycle detection algorithm.
As each issue is found, we remove the relevant inputs / arguments and check for more issues. If we find no issues, we match up any "valid" arguments, and start again.
Note that there's a lot of extra complexity:
- We try to stay efficient on the happy path, only computing the diagonal until we find a problem, and then filling in the rest of the matrix.
- Closure arguments are wrapped in a tuple and need to be unwrapped
- We need to resolve closure types after the rest, to allow the most specific type constraints
- We need to handle imported C functions that might be variadic in their inputs.
I tried to document a lot of this in comments in the code and keep the naming clear.
only downgrade selection Error -> Ambiguous if type error is in predicate
That is, we don't care if there's a TypeError type in the ParamEnv.
Fixes#95408
Stabilize `derive_default_enum`
This stabilizes `#![feature(derive_default_enum)]`, as proposed in [RFC 3107](https://github.com/rust-lang/rfcs/pull/3107) and tracked in #87517. In short, it permits you to `#[derive(Default)]` on `enum`s, indicating what the default should be by placing a `#[default]` attribute on the desired variant (which must be a unit variant in the interest of forward compatibility).
```````@rustbot``````` label +S-waiting-on-review +T-lang
when checking pointee metadata, canonicalize the `Sized` check
Use `infcx.predicate_must_hold_modulo_regions` with a `Sized` obligation instead of just calling `ty.is_sized`, because the latter does not canonicalize region and type vars (and in the test case I added in this PR, there's a region var in the `ParamEnv`).
Fixes#95311
Use mir constant in thir instead of ty::Const
This is blocked on https://github.com/rust-lang/rust/pull/94059 (does include its changes, the first two commits in this PR correspond to those changes) and https://github.com/rust-lang/rust/pull/93800 being reinstated (which had to be reverted). Mainly opening since `@lcnr` offered to give some feedback and maybe also for a perf-run (if necessary).
This currently contains a lot of duplication since some of the logic of `ty::Const` had to be copied to `mir::ConstantKind`, but with the introduction of valtrees a lot of that functionality will disappear from `ty::Const`.
Only the last commit contains changes that need to be reviewed here. Did leave some `FIXME` comments regarding future implementation decisions and some things that might be incorrectly implemented.
r? `@oli-obk`
Rollup of 7 pull requests
Successful merges:
- #95743 (Update binary_search example to instead redirect to partition_point)
- #95771 (Update linker-plugin-lto.md to 1.60)
- #95861 (Note that CI tests Windows 10)
- #95875 (bootstrap: show available paths help text for aliased subcommands)
- #95876 (Add a note for unsatisfied `~const Drop` bounds)
- #95907 (address fixme for diagnostic variable name)
- #95917 (thin_box test: import from std, not alloc)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Make def names and HIR names consistent.
The name in the `DefKey` is interned to create the `DefId`, so it does not
require any query to access. This can be leveraged to avoid a few useless
HIR accesses for names.
~In order to achieve that, generic parameters created from universal
impl-trait are given the pretty-printed ast as a name, instead of
`{{opaque}}`.~
~Drive-by: the `TyCtxt::opt_item_name` used a dummy span for non-local
definitions. We have access to `def_ident_span`, so we use it.~
Cached stable hash cleanups
r? `@nnethercote`
Add a sanity assertion in debug mode to check that the cached hashes are actually the ones we get if we compute the hash each time.
Add a new data structure that bundles all the hash-caching work to make it easier to re-use it for different interned data structures
Bump bootstrap compiler to 1.61.0 beta
This PR bumps the bootstrap compiler to the 1.61.0 beta. The first commit changes the stage0 compiler, the second commit applies the "mechanical" changes and the third and fourth commits apply changes explained in the relevant comments.
r? `@Mark-Simulacrum`
This commit updates the signatures of all diagnostic functions to accept
types that can be converted into a `DiagnosticMessage`. This enables
existing diagnostic calls to continue to work as before and Fluent
identifiers to be provided. The `SessionDiagnostic` derive just
generates normal diagnostic calls, so these APIs had to be modified to
accept Fluent identifiers.
In addition, loading of the "fallback" Fluent bundle, which contains the
built-in English messages, has been implemented.
Each diagnostic now has "arguments" which correspond to variables in the
Fluent messages (necessary to render a Fluent message) but no API for
adding arguments has been added yet. Therefore, diagnostics (that do not
require interpolation) can be converted to use Fluent identifiers and
will be output as before.
`MultiSpan` contains labels, which are more complicated with the
introduction of diagnostic translation and will use types from
`rustc_errors` - however, `rustc_errors` depends on `rustc_span` so
`rustc_span` cannot use types like `DiagnosticMessage` without
dependency cycles. Introduce a new `rustc_error_messages` crate that can
contain `DiagnosticMessage` and `MultiSpan`.
Signed-off-by: David Wood <david.wood@huawei.com>
Introduce a `DiagnosticMessage` type that will enable diagnostic
messages to be simple strings or Fluent identifiers.
`DiagnosticMessage` is now used in the implementation of the standard
`DiagnosticBuilder` APIs.
Signed-off-by: David Wood <david.wood@huawei.com>
Fix late-bound ICE in `dyn` return type suggestion
This fixes the root-cause of the attached issues -- the root problem is that we're using the return type from a signature with late-bound instead of early-bound regions. The change on line 1087 (`let Some(liberated_sig) = typeck_results.liberated_fn_sigs().get(fn_hir_id) else { return false; };`) makes sure we're grabbing the _right_ return type for this suggestion to check the `dyn` predicates with.
Fixes#91801Fixes#91803
This fix also includes some drive-by changes, specifically:
1. Don't suggest boxing when we have `-> dyn Trait` and are already returning `Box<T>` where `T: Trait` (before we always boxed the value).
2. Suggestion applies even when the return type is a type alias (e.g. `type Foo = dyn Trait`). This does cause the suggestion to expand to the aliased type, but I think it's still beneficial.
3. Split up the multipart suggestion because there's a 6-line max in the printed output...
I am open to splitting out the above changes, if we just want to fix the ICE first.
cc: ```@terrarier2111``` and #92289
Mention implementers of unsatisfied trait
When encountering an unsatisfied trait bound, if there are no other
suggestions, mention all the types that *do* implement that trait:
```
error[E0277]: the trait bound `f32: Foo` is not satisfied
--> $DIR/impl_wf.rs:22:6
|
LL | impl Baz<f32> for f32 { }
| ^^^^^^^^ the trait `Foo` is not implemented for `f32`
|
= help: the trait `Foo` is implemented for `i32`
note: required by a bound in `Baz`
--> $DIR/impl_wf.rs:18:31
|
LL | trait Baz<U: ?Sized> where U: Foo { }
| ^^^ required by this bound in `Baz`
```
```
error[E0277]: the trait bound `u32: Foo` is not satisfied
--> $DIR/associated-types-path-2.rs:29:5
|
LL | f1(2u32, 4u32);
| ^^ the trait `Foo` is not implemented for `u32`
|
= help: the trait `Foo` is implemented for `i32`
note: required by a bound in `f1`
--> $DIR/associated-types-path-2.rs:13:14
|
LL | pub fn f1<T: Foo>(a: T, x: T::A) {}
| ^^^ required by this bound in `f1`
```
Suggest dereferencing in more cases.
Fix#87437, fix#90970.
When encountering an unsatisfied trait bound, if there are no other
suggestions, mention all the types that *do* implement that trait:
```
error[E0277]: the trait bound `f32: Foo` is not satisfied
--> $DIR/impl_wf.rs:22:6
|
LL | impl Baz<f32> for f32 { }
| ^^^^^^^^ the trait `Foo` is not implemented for `f32`
|
= help: the following other types implement trait `Foo`:
Option<T>
i32
str
note: required by a bound in `Baz`
--> $DIR/impl_wf.rs:18:31
|
LL | trait Baz<U: ?Sized> where U: Foo { }
| ^^^ required by this bound in `Baz`
```
Mention implementers of traits in `ImplObligation`s.
Do not mention other `impl`s for closures, ranges and `?`.
Suggest borrowing when trying to coerce unsized type into `dyn Trait`
A helpful error in response to #95598, since we can't coerce e.g. `&str` into `&dyn Display`, but we can coerce `&&str` into `&dyn Display` :)
Not sure if the suggestion message needs some help. Let me know, and I can refine this PR.
Do not use `ParamEnv::and` when building a cache key from a param-env and trait eval candidate
Do not use `ParamEnv::and` to cache a param-env with a selection/evaluation candidate.
This is because if the param-env is `RevealAll` mode, and the candidate looks global (i.e. it has erased regions, which can show up when we normalize a projection type under a binder<sup>1</sup>), then when we use `ParamEnv::and` to pair the candidate and the param-env for use as a cache key, we will throw away the param-env's caller bounds, and we'll end up caching a candidate that we inferred from the param-env with a empty param-env, which may cause cache-hit later when we have an empty param-env, and possibly mess with normalization like we see in the referenced issue during codegen.
Not sure how to trigger this with a more structured test, but changing `check-pass` to `build-pass` triggers the case that https://github.com/rust-lang/rust/issues/94903 detected.
<sup>1.</sup> That is, we will replace the late-bound region with a placeholder, which gets canonicalized and turned into an infererence variable, which gets erased during region freshening right before we cache the result. Sorry, it's quite a few steps.
Fixes#94903
r? `@Aaron1011` (or reassign as you see fit)
Make GATs object safe under generic_associated_types_extended feature
Based on #94869
Let's say we have
```rust
trait StreamingIterator {
type Item<'a> where Self: 'a;
}
```
And `dyn for<'a> StreamingIterator<Item<'a> = &'a i32>`.
If we ask `(dyn for<'a> StreamingIterator<Item<'a> = &'a i32>): StreamingIterator`, then we have to prove that `for<'x> (&'x i32): Sized`. So, we generate *new* bound vars to subst for the GAT generics.
Importantly, this doesn't fully verify that these are usable and sound.
r? `@nikomatsakis`
Better suggestions for `Fn`-family trait selection errors
1. Suppress suggestions to add `std::ops::Fn{,Mut,Once}` bounds when a type already implements `Fn{,Mut,Once}`
2. Add a note that points out that a type does in fact implement `Fn{,Mut,Once}`, but the arguments vary (either by number or by actual arguments)
3. Add a note that points out that a type does in fact implement `Fn{,Mut,Once}`, but not the right one (e.g. implements `FnMut`, but `Fn` is required).
Fixes#95147
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
Don't ICE when opaque types get their hidden type constrained again.
Contrary to popular belief, `codegen_fulfill_obligation` does not get used solely in codegen, so we cannot rely on `param_env` being set to RevealAll and thus revealing the hidden types instead of constraining them.
Fixes#89312 (for real this time)
Add the generic_associated_types_extended feature
Right now, this only ignore obligations that reference new placeholders in `poly_project_and_unify_type`. In the future, this might do other things, like allowing object-safe GATs.
**This feature is *incomplete* and quite likely unsound. This is mostly just for testing out potential future APIs using a "relaxed" set of rules until we figure out *proper* rules.**
Also drive by cleanup of adding a `ProjectAndUnifyResult` enum instead of using a `Result<Result<Option>>`.
r? `@nikomatsakis`
Contrary to popular belief, `codegen_fulfill_obligation` does not get used solely in codegen, so we cannot rely on `param_env` being set to RevealAll and thus revealing the hidden types instead of constraining them.
Rollup of 5 pull requests
Successful merges:
- #95294 (Document Linux kernel handoff in std::io::copy and std::fs::copy)
- #95443 (Clarify how `src/tools/x` searches for python)
- #95452 (fix since field version for termination stabilization)
- #95460 (Spellchecking compiler code)
- #95461 (Spellchecking some comments)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Skip pointing out ambiguous impls in alloc/std crates too in inference errors
This generalizes the logic in `annotate_source_of_ambiguity` to skip printing ambiguity errors traits in `alloc` and `std` as well, not just `core`.
While this does spot-fix the issue mentioned below, it would be nicer to generalize this logic, for example to detect when the trait predicate's `self_ty` has any numerical inference variables. Is it worthwhile to scrap this solution for one like that?
Fixes#93450
r? `@estebank`
feel free to reassign
Remove `Session::one_time_diagnostic`
This is untracked mutable state, which modified the behaviour of queries.
It was used for 2 things: some full-blown errors, but mostly for lint declaration notes ("the lint level is defined here" notes).
It is replaced by the diagnostic deduplication infra which already exists in the diagnostic emitter.
A new diagnostic level `OnceNote` is introduced specifically for lint notes, to deduplicate subdiagnostics.
As a drive-by, diagnostic emission takes a `&mut` to allow dropping the `SubDiagnostic`s.
Swap DtorckConstraint to DropckConstraint
This change was made as per suspicion that this struct was never renamed after consistent use of DropCk.
This also clarifies the meaning behind the name of this structure.
Fixes https://github.com/rust-lang/rust/issues/94310
This change was made as per suspicion that this struct was never renamed after consistent use of DropCk.
This also clarifies the meaning behind the name of this structure.
Change Thir to lazily create constants
To allow `AbstractConst`s to work with the previous thir changes we made and those we want to make, i.e. to avoid problems due to `ValTree` and `ConstValue` conversions, we instead switch to a thir representation for constants that allows us to lazily create constants.
r? `@oli-obk`
Properly track `ImplObligations`
Instead of probing for all possible `impl`s that could have caused an
`ImplObligation`, keep track of its `DefId` and obligation spans for
accurate error reporting.
Follow to #89580. Addresses #89418.
Instead of probing for all possible impls that could have caused an
`ImplObligation`, keep track of its `DefId` and obligation spans for
accurate error reporting.
Follow up to #89580. Addresses #89418.
Remove some unnecessary clones.
Tweak output for auto trait impl obligations.
Better errors when a Copy impl on a Struct is not self-consistent
As discovered in a Zulip thread with `@nnethercote` and `@Mark-Simulacrum,` it's not immediately obvious why a field on an ADT doesn't implement `Copy`. This PR attempts to give slightly more detailed information by spinning up a fulfillment context to try to dig down and discover transitive fulfillment errors that cause `is_copy_modulo_regions` to fail on a ADT field.
The error message still kinda sucks, but should only show up in the case that an existing error message was totally missing... so I think it's a good compromise for now?
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
fix typos
Rework of #94603 which got closed as I was trying to unmerge and repush. This is a subset of changes from the original pr as I sed'd whatever typos I remembered from the original PR
thanks to `@cuishuang` for the original PR
check ~Projection~ all supertrait bounds when confirming dyn candidate
I'm pretty sure Projection is the only other PredicateKind that we care about enforcing here.
Fixes#80800
Type params and assoc types have unit metadata if they are sized
Extend the logic in `Pointee` projection to ensure that we can satisfy `<T as Pointee>::Metadata = ()` if `T: Sized`.
cc: `@SimonSapin` and #93959
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Better error for normalization errors from parent crates that use `#![feature(generic_const_exprs)]`
This PR implements a somewhat rudimentary heuristic to suggest using `#![feature(generic_const_exprs)]` in a child crate when a function from a foreign crate (that may have used `#![feature(generic_const_exprs)]`) fails to normalize during codegen.
cc: #79018
cc: #94287
diagnostics: use rustc_on_unimplemented to recommend `[].iter()`
To make this work, the `#[rustc_on_unimplemented]` data needs to be used to
report method resolution errors, which is most of what this commit does.
Fixes#94581
To make this work, the `#[rustc_on_unimplemented]` data needs to be used to
report method resolution errors, which is most of what this commit does.
Fixes#94581
Use impl substs in `#[rustc_on_unimplemented]`
We were using the trait-ref substs instead of impl substs in `rustc_on_unimplemented`, even when computing the `rustc_on_unimplemented` attached to an impl block. Let's not do that.
This PR also untangles impl and trait def-ids in the logic in `on_unimplemented` a bit.
Fixes#94675
improve comments for `simplify_type`
Should now correctly describe what's going on. Experimented with checking the invariant for projections
but that ended up requiring fairly involved changes. I assume that it is not possible to get unsoundness here,
at least for now and I can pretty much guarantee that it's impossible to trigger it by accident.
r? `````@nikomatsakis````` cc #92721
remove obligation dedup from `impl_or_trait_obligations`
Looking at the examples from #38528 they all seem to compile fine even without this and it seems like this might be unnecessary effort
rustc_trait_selection: adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This PR handles rustc_trait_selection.
fix a message
implement a rustfix-applicable suggestion
implement `suggest_floating_point_literal`
add `ObligationCauseCode::BinOp`
remove duplicate code
fix function names in uitests
use `Diagnostic` instead of `DiagnosticBuilder`
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
safely `transmute<&List<Ty<'tcx>>, &List<GenericArg<'tcx>>>`
This PR has 3 relevant steps which are is split in distinct commits.
The first commit now interns `List<Ty<'tcx>>` and `List<GenericArg<'tcx>>` together, potentially reusing memory while allowing free conversions between these two using `List<Ty<'tcx>>::as_substs()` and `SubstsRef<'tcx>::try_as_type_list()`.
Using this, we then use `&'tcx List<Ty<'tcx>>` instead of a `SubstsRef<'tcx>` for tuple fields, simplifying a bunch of code.
Finally, as tuple fields and other generic arguments now use a different `TypeFoldable<'tcx>` impl, we optimize the impl for `List<Ty<'tcx>>` improving perf by slightly less than 1% in tuple heavy benchmarks.
Normalize obligation and expected trait_refs in confirm_poly_trait_refs
Consolidate normalization the obligation and expected trait refs in `confirm_poly_trait_refs`. Also, _always_ normalize these trait refs -- we were already normalizing the obligation trait ref when confirming closure and generator candidates, but this does it for fn pointer confirmation as well.
This presumably does more work in the case that the obligation's trait ref is already normalized, but we can see from the perf runs in #94070, it actually (paradoxically, perhaps) improves performance when paired with logic that normalizes projections in fulfillment loop.
Move ty::print methods to Drop-based scope guards
Primary goal is reducing codegen of the TLS access for each closure, which shaves ~3 seconds of bootstrap time over rustc as a whole.
Only mark projection as ambiguous if GAT substs are constrained
A slightly more targeted version of #92917, where we only give up with ambiguity if we infer something about the GATs substs when probing for a projection candidate.
fixes#93874
also note (but like the previous PR, does not fix) #91762
r? `@jackh726`
cc `@nikomatsakis` who reviewed #92917
Do not ICE when inlining a function with un-satisfiable bounds
Fixes#93008
This is kinda a hack... but it's the fix I thought had the least blast-radius.
We use `normalize_param_env_or_error` to verify that the predicates in the param env are self-consistent, since with RevealAll, a bad predicate like `<&'static () as Clone>` will be evaluated with an empty ParamEnv (since it references no generics), and we'll raise an error for it.
Suggest copying trait associated type bounds on lifetime error
Closes#92033
Kind of the most simple suggestion to make - we don't try to be fancy. Turns out, it's still pretty useful (the couple existing tests that trigger this error end up fixed - for this error - upon applying the fix).
r? ``@estebank``
cc ``@nikomatsakis``
Correctly mark the span of captured arguments in `format_args!()`
It should not include the braces, or misspelling suggestions will be wrong.
Fixes#94010.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
The variant names are exported, so we can use them directly (possibly
with a `ty::` qualifier). Lots of places already do this, this commit
just increases consistency.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
Specifically, change `Ty` from this:
```
pub struct Predicate<'tcx> { inner: &'tcx PredicateInner<'tcx> }
```
to this:
```
pub struct Predicate<'tcx>(&'tcx Interned<PredicateS<'tcx>>)
```
where `PredicateInner` is renamed as `PredicateS`.
This (plus a few other minor changes) makes the parallels with `Ty` and
`TyS` much clearer, and makes the uniqueness more explicit.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
This is required to avoid creating large numbers of universes from each
Chalk query, while still having enough universe information for lifetime
errors.
Make all `hir::Map` methods consistently by-value
`hir::Map` only consists of a single reference (as part of the contained `TyCtxt`) anyways, so copying is literally zero overhead compared to passing a reference
Ensure that queries only return Copy types.
This should pervent the perf footgun of returning a result with an expensive `Clone` impl (like a `Vec` of a hash map).
I went for the stupid solution of allocating on an arena everything that was not `Copy`. Some query results could be made Copy easily, but I did not really investigate.
Improve opaque type higher-ranked region error message under NLL
Currently, any higher-ranked region errors involving opaque types
fall back to a generic "higher-ranked subtype error" message when
run under NLL. This PR adds better error message handling for this
case, giving us the same kinds of error messages that we currently
get without NLL:
```
error: implementation of `MyTrait` is not general enough
--> $DIR/opaque-hrtb.rs:12:13
|
LL | fn foo() -> impl for<'a> MyTrait<&'a str> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ implementation of `MyTrait` is not general enough
|
= note: `impl MyTrait<&'2 str>` must implement `MyTrait<&'1 str>`, for any lifetime `'1`...
= note: ...but it actually implements `MyTrait<&'2 str>`, for some specific lifetime `'2`
error: aborting due to previous error
```
To accomplish this, several different refactoring needed to be made:
* We now have a dedicated `InstantiateOpaqueType` struct which
implements `TypeOp`. This is used to invoke `instantiate_opaque_types`
during MIR type checking.
* `TypeOp` is refactored to pass around a `MirBorrowckCtxt`, which is
needed to report opaque type region errors.
* We no longer assume that all `TypeOp`s correspond to canonicalized
queries. This allows us to properly handle opaque type instantiation
(which does not occur in a query) as a `TypeOp`.
A new `ErrorInfo` associated type is used to determine what
additional information is used during higher-ranked region error
handling.
* The body of `try_extract_error_from_fulfill_cx`
has been moved out to a new function `try_extract_error_from_region_constraints`.
This allows us to re-use the same error reporting code between
canonicalized queries (which can extract region constraints directly
from a fresh `InferCtxt`) and opaque type handling (which needs to take
region constraints from the pre-existing `InferCtxt` that we use
throughout MIR borrow checking).
Currently, any higher-ranked region errors involving opaque types
fall back to a generic "higher-ranked subtype error" message when
run under NLL. This PR adds better error message handling for this
case, giving us the same kinds of error messages that we currently
get without NLL:
```
error: implementation of `MyTrait` is not general enough
--> $DIR/opaque-hrtb.rs:12:13
|
LL | fn foo() -> impl for<'a> MyTrait<&'a str> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ implementation of `MyTrait` is not general enough
|
= note: `impl MyTrait<&'2 str>` must implement `MyTrait<&'1 str>`, for any lifetime `'1`...
= note: ...but it actually implements `MyTrait<&'2 str>`, for some specific lifetime `'2`
error: aborting due to previous error
```
To accomplish this, several different refactoring needed to be made:
* We now have a dedicated `InstantiateOpaqueType` struct which
implements `TypeOp`. This is used to invoke `instantiate_opaque_types`
during MIR type checking.
* `TypeOp` is refactored to pass around a `MirBorrowckCtxt`, which is
needed to report opaque type region errors.
* We no longer assume that all `TypeOp`s correspond to canonicalized
queries. This allows us to properly handle opaque type instantiation
(which does not occur in a query) as a `TypeOp`.
A new `ErrorInfo` associated type is used to determine what
additional information is used during higher-ranked region error
handling.
* The body of `try_extract_error_from_fulfill_cx`
has been moved out to a new function `try_extract_error_from_region_constraints`.
This allows us to re-use the same error reporting code between
canonicalized queries (which can extract region constraints directly
from a fresh `InferCtxt`) and opaque type handling (which needs to take
region constraints from the pre-existing `InferCtxt` that we use
throughout MIR borrow checking).
Don't constrain projection predicates with inference vars in GAT substs
cc #91762
Not a fix, but a mitigation to prevent a backwards-compatible hazard where we normalize using a predicate only because it's the only one available, but shouldn't. This would constrain an inference variable which didn't really want. We already do this when selecting a projection candidate, which isn't always correct. But changing that is a problem for a different day.
Also found out that a suggestion for `await`ing a future was using the wrong substs.
r? ``@nikomatsakis``
Add in ValuePair::Term
This adds in an enum when matching on positions which can either be types or consts.
It will default to emitting old special cased error messages for types.
r? `@oli-obk`
cc `@matthiaskrgr`
Fixes#93578
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
Continue work on associated const equality
This actually implements some more complex logic for assigning associated consts to values.
Inside of projection candidates, it now defers to a separate function for either consts or
types. To reduce amount of code, projections are now generic over T, where T is either a Type or
a Const. I can add some comments back later, but this was the fastest way to implement it.
It also now finds the correct type of consts in type_of.
---
The current main TODO is finding the const of the def id for the LeafDef.
Right now it works if the function isn't called, but once you use the trait impl with the bound it fails inside projection.
I was hoping to get some help in getting the `&'tcx ty::Const<'tcx>`, in addition to a bunch of other `todo!()`s which I think may not be hit.
r? `@oli-obk`
Updates #92827
Add note suggesting that predicate may be satisfied, but is not `const`
Not sure if we should be printing this in addition to, or perhaps _instead_ of the help message:
```
help: the trait `~const Add` is not implemented for `NonConstAdd`
```
Also added `ParamEnv::is_const` and `PolyTraitPredicate::is_const_if_const` and, in a separate commit, used those in other places instead of `== hir::Constness::Const`, etc.
r? ````@fee1-dead````
Only traverse attrs once while checking for coherence override attributes
In coherence, while checking for negative impls override attributes: only traverse the `DefId`s' attributes once.
This PR is an easy way to get back some of the small perf loss in #93175