Work on #13287
This is not ready for a merge yet, but I wanted to get some eyes on what I have done so far.
As of right now, all references in the text to managed boxes or pointers are removed. Code associated with those specific sections of text have likewise been altered. I also removed all references to managed closures.
There is a small change I would like to add to the work done in 3137cd5, on the new lines 1495 and 1496, I would like to change those values to 10 and 20. I did the same in a later change on lines 1596 and 1508.
There are still bits of sample code that use managed pointers and the sigil @. Those are next on my list to remove, but I wanted to have the outstanding changes reviewed first. The uses of @ in the code samples are a bit more embedded, and I will need to be more careful changing them as to not change the purpose of the code examples.
I ensured that make check still passes, although I'm not sure if that actually tests the code in tutorial.md.
One issues I ran into, and tried to avoid, was that `tutorial.md` is formatted with a nice column limit. I was unsure how this was enforced, so wherever I edited a line, I did my best to keep edits on the line they previously existed on. As such, the plain text of `tutorial.md` looks a bit strange as I've left it, and I will clean that up as suggested. The rendered markdown output should not be affected.
Closes#13285 (rustc: Stop using LLVMGetSectionName)
Closes#13280 (std: override clone_from for Vec.)
Closes#13277 (serialize: add a few missing pubs to base64)
Closes#13275 (Add and remove some ignore-win32 flags)
Closes#13273 (Removed managed boxes from libarena.)
Closes#13270 (Minor copy-editing for the tutorial)
Closes#13267 (fix Option<~ZeroSizeType>)
Closes#13265 (Update emacs mode to support new `#![inner(attribute)]` syntax.)
Closes#13263 (syntax: Remove AbiSet, use one Abi)
Note: "different to" is not exactly incorrect, but "different from" is more
commonly accepted in both US and Commonwealth English, and also more
consistent with other usage within this tutorial.
The `Float` trait methods will be usable as functions via UFCS, and
we came to a consensus to remove duplicate functions like this a long
time ago.
It does still make sense to keep the duplicate functions when the trait
methods are static, unless the decision to leave out the in-scope trait
name resolution for static methods changes.
The `Float` trait methods will be usable as functions via UFCS, and
we came to a consensus to remove duplicate functions like this a long
time ago.
It does still make sense to keep the duplicate functions when the trait
methods are static, unless the decision to leave out the in-scope trait
name resolution for static methods changes.
* Include tip given by Leo Testard in mailing list about labeled `break`
and `continue`:
https://mail.mozilla.org/pipermail/rust-dev/2014-March/009145.html
* cross-reference named lifetimes in tutorial -> lifetimes guide
* Broke named lifetimes section into two sub-sections.
* Added mention of `'static` lifetime.
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
This is meant to be compiling a crate, but the crate_id attribute seems
to be upsetting it if the attribute is actually on the crate. I.e. this
makes this test compile by putting the crate_id attribute on a function
and so it's ignored. Such a hack. :(
The changes are basically just because rustdoc runs tests/rendering on
more snippets by default (i.e. everything without a `notrust` tag), and
not anything significant.
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.
In updating existing code, there were a few error cases that I encountered:
* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
I don't think this is much of a regression though because {:?} on paths looks
awful (it's a byte array).
Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
Refactoring examples on implementation of generics for linked list.
Fixing typo of 'Note's for coherancy.
Adding internal links inside the tutorial example with traits,
generics etc...
- "Lending an immutable pointer" might be confusing. It was not discussed why borrowed pointers are immutable in the first place.
- Make it clear that the borrowed pointers are immutable even if the variable was declared with `mut`.
- Make it clear that we cannot even assign anything to the variable while its value is being borrowed.
tutorial: change "--" to an em-dash.
tutorial: change instances of "--" to em-dash.
- "Lending an immutable pointer" might be confusing. It was not discussed why borrowed pointers are immutable in the first place.
- Make it clear that the borrowed pointers are immutable even if the variable was declared with `mut`.
- Make it clear that we cannot even assign anything to the variable while its value is being borrowed.
tutorial: change "--" to an em-dash.
tutorial: change instances of "--" to em-dash.
This commit changes the ToStr trait to:
impl<T: fmt::Show> ToStr for T {
fn to_str(&self) -> ~str { format!("{}", *self) }
}
The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.
Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.
Closes#8242Closes#9806
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
I just started learning Rust and the absence of an explanation of the for-loop in the beginning really bugged me about the tutorial. Hence I simply added these lines, where I would have expected them. I know that there is something later on in the section on traits. However, this simple iteration scheme feels like something that you should be aware of right away.