num: rm wrapping of Float
methods as functions
The `Float` trait methods will be usable as functions via UFCS, and we came to a consensus to remove duplicate functions like this a long time ago. It does still make sense to keep the duplicate functions when the trait methods are static, unless the decision to leave out the in-scope trait name resolution for static methods changes.
This commit is contained in:
parent
e63b2d3077
commit
8ca5caf4d9
@ -332,8 +332,6 @@ sense, they're simple: just keep whatever ownership the data already has. For
|
||||
example:
|
||||
|
||||
~~~rust
|
||||
use std::num::sqrt;
|
||||
|
||||
struct Point {
|
||||
x: f32,
|
||||
y: f32,
|
||||
@ -343,7 +341,7 @@ fn compute_distance(p1: &Point, p2: &Point) -> f32 {
|
||||
let x_d = p1.x - p2.x;
|
||||
let y_d = p1.y - p2.y;
|
||||
|
||||
sqrt(x_d * x_d + y_d * y_d)
|
||||
(x_d * x_d + y_d * y_d).sqrt()
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
@ -826,14 +826,14 @@ Use declarations support a number of convenient shortcuts:
|
||||
An example of `use` declarations:
|
||||
|
||||
~~~~
|
||||
use std::num::sin;
|
||||
use std::iter::range_step;
|
||||
use std::option::{Some, None};
|
||||
|
||||
# fn foo<T>(_: T){}
|
||||
|
||||
fn main() {
|
||||
// Equivalent to 'std::num::sin(1.0);'
|
||||
sin(1.0);
|
||||
// Equivalent to 'std::iter::range_step(0, 10, 2);'
|
||||
range_step(0, 10, 2);
|
||||
|
||||
// Equivalent to 'foo(~[std::option::Some(1.0), std::option::None]);'
|
||||
foo(~[Some(1.0), None]);
|
||||
|
@ -504,13 +504,12 @@ matching in order to bind names to the contents of data types.
|
||||
|
||||
~~~~
|
||||
use std::f64;
|
||||
use std::num::atan;
|
||||
fn angle(vector: (f64, f64)) -> f64 {
|
||||
let pi = f64::consts::PI;
|
||||
match vector {
|
||||
(0.0, y) if y < 0.0 => 1.5 * pi,
|
||||
(0.0, _) => 0.5 * pi,
|
||||
(x, y) => atan(y / x)
|
||||
(x, y) => (y / x).atan()
|
||||
}
|
||||
}
|
||||
~~~~
|
||||
@ -1430,12 +1429,11 @@ bad, but often copies are expensive. So we’d like to define a function
|
||||
that takes the points by pointer. We can use references to do this:
|
||||
|
||||
~~~
|
||||
use std::num::sqrt;
|
||||
# struct Point { x: f64, y: f64 }
|
||||
fn compute_distance(p1: &Point, p2: &Point) -> f64 {
|
||||
let x_d = p1.x - p2.x;
|
||||
let y_d = p1.y - p2.y;
|
||||
sqrt(x_d * x_d + y_d * y_d)
|
||||
(x_d * x_d + y_d * y_d).sqrt()
|
||||
}
|
||||
~~~
|
||||
|
||||
@ -2303,7 +2301,7 @@ impl Shape for Circle {
|
||||
fn new(area: f64) -> Circle { Circle { radius: (area / PI).sqrt() } }
|
||||
}
|
||||
impl Shape for Square {
|
||||
fn new(area: f64) -> Square { Square { length: (area).sqrt() } }
|
||||
fn new(area: f64) -> Square { Square { length: area.sqrt() } }
|
||||
}
|
||||
|
||||
let area = 42.5;
|
||||
|
@ -11,7 +11,6 @@
|
||||
//! The Gamma and derived distributions.
|
||||
|
||||
use std::num::Float;
|
||||
use std::num;
|
||||
use {Rng, Open01};
|
||||
use super::normal::StandardNormal;
|
||||
use super::{IndependentSample, Sample, Exp};
|
||||
@ -114,7 +113,7 @@ impl GammaLargeShape {
|
||||
GammaLargeShape {
|
||||
shape: shape,
|
||||
scale: scale,
|
||||
c: 1. / num::sqrt(9. * d),
|
||||
c: 1. / (9. * d).sqrt(),
|
||||
d: d
|
||||
}
|
||||
}
|
||||
@ -143,7 +142,7 @@ impl IndependentSample<f64> for GammaSmallShape {
|
||||
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
|
||||
let Open01(u) = rng.gen::<Open01<f64>>();
|
||||
|
||||
self.large_shape.ind_sample(rng) * num::powf(u, self.inv_shape)
|
||||
self.large_shape.ind_sample(rng) * u.powf(&self.inv_shape)
|
||||
}
|
||||
}
|
||||
impl IndependentSample<f64> for GammaLargeShape {
|
||||
@ -160,7 +159,7 @@ impl IndependentSample<f64> for GammaLargeShape {
|
||||
|
||||
let x_sqr = x * x;
|
||||
if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
|
||||
num::ln(u) < 0.5 * x_sqr + self.d * (1.0 - v + num::ln(v)) {
|
||||
u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
|
||||
return self.d * v * self.scale
|
||||
}
|
||||
}
|
||||
|
@ -553,79 +553,6 @@ pub trait Float: Signed + Round + Primitive {
|
||||
fn to_radians(&self) -> Self;
|
||||
}
|
||||
|
||||
/// Returns the exponential of the number, minus `1`, `exp(n) - 1`, in a way
|
||||
/// that is accurate even if the number is close to zero.
|
||||
#[inline(always)] pub fn exp_m1<T: Float>(value: T) -> T { value.exp_m1() }
|
||||
/// Returns the natural logarithm of the number plus `1`, `ln(n + 1)`, more
|
||||
/// accurately than if the operations were performed separately.
|
||||
#[inline(always)] pub fn ln_1p<T: Float>(value: T) -> T { value.ln_1p() }
|
||||
/// Fused multiply-add. Computes `(a * b) + c` with only one rounding error.
|
||||
///
|
||||
/// This produces a more accurate result with better performance (on some
|
||||
/// architectures) than a separate multiplication operation followed by an add.
|
||||
#[inline(always)] pub fn mul_add<T: Float>(a: T, b: T, c: T) -> T { a.mul_add(b, c) }
|
||||
|
||||
/// Raise a number to a power.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```rust
|
||||
/// use std::num;
|
||||
///
|
||||
/// let sixteen: f64 = num::powf(2.0, 4.0);
|
||||
/// assert_eq!(sixteen, 16.0);
|
||||
/// ```
|
||||
#[inline(always)] pub fn powf<T: Float>(value: T, n: T) -> T { value.powf(&n) }
|
||||
/// Take the square root of a number.
|
||||
#[inline(always)] pub fn sqrt<T: Float>(value: T) -> T { value.sqrt() }
|
||||
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
||||
#[inline(always)] pub fn rsqrt<T: Float>(value: T) -> T { value.rsqrt() }
|
||||
/// Take the cubic root of a number.
|
||||
#[inline(always)] pub fn cbrt<T: Float>(value: T) -> T { value.cbrt() }
|
||||
/// Calculate the length of the hypotenuse of a right-angle triangle given legs
|
||||
/// of length `x` and `y`.
|
||||
#[inline(always)] pub fn hypot<T: Float>(x: T, y: T) -> T { x.hypot(&y) }
|
||||
/// Sine function.
|
||||
#[inline(always)] pub fn sin<T: Float>(value: T) -> T { value.sin() }
|
||||
/// Cosine function.
|
||||
#[inline(always)] pub fn cos<T: Float>(value: T) -> T { value.cos() }
|
||||
/// Tangent function.
|
||||
#[inline(always)] pub fn tan<T: Float>(value: T) -> T { value.tan() }
|
||||
/// Compute the arcsine of the number.
|
||||
#[inline(always)] pub fn asin<T: Float>(value: T) -> T { value.asin() }
|
||||
/// Compute the arccosine of the number.
|
||||
#[inline(always)] pub fn acos<T: Float>(value: T) -> T { value.acos() }
|
||||
/// Compute the arctangent of the number.
|
||||
#[inline(always)] pub fn atan<T: Float>(value: T) -> T { value.atan() }
|
||||
/// Compute the arctangent with 2 arguments.
|
||||
#[inline(always)] pub fn atan2<T: Float>(x: T, y: T) -> T { x.atan2(&y) }
|
||||
/// Simultaneously computes the sine and cosine of the number.
|
||||
#[inline(always)] pub fn sin_cos<T: Float>(value: T) -> (T, T) { value.sin_cos() }
|
||||
/// Returns `e^(value)`, (the exponential function).
|
||||
#[inline(always)] pub fn exp<T: Float>(value: T) -> T { value.exp() }
|
||||
/// Returns 2 raised to the power of the number, `2^(value)`.
|
||||
#[inline(always)] pub fn exp2<T: Float>(value: T) -> T { value.exp2() }
|
||||
/// Returns the natural logarithm of the number.
|
||||
#[inline(always)] pub fn ln<T: Float>(value: T) -> T { value.ln() }
|
||||
/// Returns the logarithm of the number with respect to an arbitrary base.
|
||||
#[inline(always)] pub fn log<T: Float>(value: T, base: T) -> T { value.log(&base) }
|
||||
/// Returns the base 2 logarithm of the number.
|
||||
#[inline(always)] pub fn log2<T: Float>(value: T) -> T { value.log2() }
|
||||
/// Returns the base 10 logarithm of the number.
|
||||
#[inline(always)] pub fn log10<T: Float>(value: T) -> T { value.log10() }
|
||||
/// Hyperbolic sine function.
|
||||
#[inline(always)] pub fn sinh<T: Float>(value: T) -> T { value.sinh() }
|
||||
/// Hyperbolic cosine function.
|
||||
#[inline(always)] pub fn cosh<T: Float>(value: T) -> T { value.cosh() }
|
||||
/// Hyperbolic tangent function.
|
||||
#[inline(always)] pub fn tanh<T: Float>(value: T) -> T { value.tanh() }
|
||||
/// Inverse hyperbolic sine function.
|
||||
#[inline(always)] pub fn asinh<T: Float>(value: T) -> T { value.asinh() }
|
||||
/// Inverse hyperbolic cosine function.
|
||||
#[inline(always)] pub fn acosh<T: Float>(value: T) -> T { value.acosh() }
|
||||
/// Inverse hyperbolic tangent function.
|
||||
#[inline(always)] pub fn atanh<T: Float>(value: T) -> T { value.atanh() }
|
||||
|
||||
/// A generic trait for converting a value to a number.
|
||||
pub trait ToPrimitive {
|
||||
/// Converts the value of `self` to an `int`.
|
||||
|
Loading…
x
Reference in New Issue
Block a user