auto merge of : thestinger/rust/num, r=cmr

The `Float` trait methods will be usable as functions via UFCS, and
we came to a consensus to remove duplicate functions like this a long
time ago.

It does still make sense to keep the duplicate functions when the trait
methods are static, unless the decision to leave out the in-scope trait
name resolution for static methods changes.
This commit is contained in:
bors 2014-04-01 13:26:49 -07:00
commit 1217cfb9e7
9 changed files with 136 additions and 293 deletions

@ -332,8 +332,6 @@ sense, they're simple: just keep whatever ownership the data already has. For
example:
~~~rust
use std::num::sqrt;
struct Point {
x: f32,
y: f32,
@ -343,7 +341,7 @@ fn compute_distance(p1: &Point, p2: &Point) -> f32 {
let x_d = p1.x - p2.x;
let y_d = p1.y - p2.y;
sqrt(x_d * x_d + y_d * y_d)
(x_d * x_d + y_d * y_d).sqrt()
}
fn main() {

@ -826,14 +826,14 @@ Use declarations support a number of convenient shortcuts:
An example of `use` declarations:
~~~~
use std::num::sin;
use std::iter::range_step;
use std::option::{Some, None};
# fn foo<T>(_: T){}
fn main() {
// Equivalent to 'std::num::sin(1.0);'
sin(1.0);
// Equivalent to 'std::iter::range_step(0, 10, 2);'
range_step(0, 10, 2);
// Equivalent to 'foo(~[std::option::Some(1.0), std::option::None]);'
foo(~[Some(1.0), None]);

@ -504,13 +504,12 @@ matching in order to bind names to the contents of data types.
~~~~
use std::f64;
use std::num::atan;
fn angle(vector: (f64, f64)) -> f64 {
let pi = f64::consts::PI;
match vector {
(0.0, y) if y < 0.0 => 1.5 * pi,
(0.0, _) => 0.5 * pi,
(x, y) => atan(y / x)
(x, y) => (y / x).atan()
}
}
~~~~
@ -1430,12 +1429,11 @@ bad, but often copies are expensive. So wed like to define a function
that takes the points by pointer. We can use references to do this:
~~~
use std::num::sqrt;
# struct Point { x: f64, y: f64 }
fn compute_distance(p1: &Point, p2: &Point) -> f64 {
let x_d = p1.x - p2.x;
let y_d = p1.y - p2.y;
sqrt(x_d * x_d + y_d * y_d)
(x_d * x_d + y_d * y_d).sqrt()
}
~~~
@ -2303,7 +2301,7 @@ impl Shape for Circle {
fn new(area: f64) -> Circle { Circle { radius: (area / PI).sqrt() } }
}
impl Shape for Square {
fn new(area: f64) -> Square { Square { length: (area).sqrt() } }
fn new(area: f64) -> Square { Square { length: area.sqrt() } }
}
let area = 42.5;

@ -11,7 +11,6 @@
//! The Gamma and derived distributions.
use std::num::Float;
use std::num;
use {Rng, Open01};
use super::normal::StandardNormal;
use super::{IndependentSample, Sample, Exp};
@ -114,7 +113,7 @@ impl GammaLargeShape {
GammaLargeShape {
shape: shape,
scale: scale,
c: 1. / num::sqrt(9. * d),
c: 1. / (9. * d).sqrt(),
d: d
}
}
@ -143,7 +142,7 @@ impl IndependentSample<f64> for GammaSmallShape {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let Open01(u) = rng.gen::<Open01<f64>>();
self.large_shape.ind_sample(rng) * num::powf(u, self.inv_shape)
self.large_shape.ind_sample(rng) * u.powf(&self.inv_shape)
}
}
impl IndependentSample<f64> for GammaLargeShape {
@ -160,7 +159,7 @@ impl IndependentSample<f64> for GammaLargeShape {
let x_sqr = x * x;
if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
num::ln(u) < 0.5 * x_sqr + self.d * (1.0 - v + num::ln(v)) {
u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
return self.d * v * self.scale
}
}

@ -206,8 +206,6 @@ pub mod raw;
/* For internal use, not exported */
mod unicode;
#[path = "num/cmath.rs"]
mod cmath;
// FIXME #7809: This shouldn't be pub, and it should be reexported under 'unstable'
// but name resolution doesn't work without it being pub.

@ -1,151 +0,0 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_doc)]
#![allow(dead_code)]
//! Bindings for the C math library (for basic mathematic functions)
// Function names are almost identical to C's libmath, a few have been
// renamed, grep for "rename:"
pub mod c_double {
use libc::{c_double, c_int};
#[link_name = "m"]
extern {
// Alphabetically sorted by link_name
pub fn acos(n: c_double) -> c_double;
pub fn asin(n: c_double) -> c_double;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn cbrt(n: c_double) -> c_double;
pub fn cosh(n: c_double) -> c_double;
pub fn erf(n: c_double) -> c_double;
pub fn erfc(n: c_double) -> c_double;
// rename: for consistency with underscore usage elsewhere
#[link_name="expm1"]
pub fn exp_m1(n: c_double) -> c_double;
// rename: for clarity and consistency with add/sub/mul/div
#[link_name="fdim"]
pub fn abs_sub(a: c_double, b: c_double) -> c_double;
#[link_name="fmax"]
pub fn fmax(a: c_double, b: c_double) -> c_double;
#[link_name="fmin"]
pub fn fmin(a: c_double, b: c_double) -> c_double;
#[link_name="nextafter"]
pub fn next_after(x: c_double, y: c_double) -> c_double;
pub fn frexp(n: c_double, value: &mut c_int) -> c_double;
pub fn hypot(x: c_double, y: c_double) -> c_double;
pub fn ldexp(x: c_double, n: c_int) -> c_double;
#[cfg(unix)]
#[link_name="lgamma_r"]
pub fn lgamma(n: c_double, sign: &mut c_int) -> c_double;
#[cfg(windows)]
#[link_name="__lgamma_r"]
pub fn lgamma(n: c_double, sign: &mut c_int) -> c_double;
// renamed: "logb" /often/ is confused for log2 by beginners
#[link_name="logb"]
pub fn log_radix(n: c_double) -> c_double;
// renamed: to be consitent with log as ln
#[link_name="log1p"]
pub fn ln_1p(n: c_double) -> c_double;
#[link_name="ilogb"]
pub fn ilog_radix(n: c_double) -> c_int;
pub fn modf(n: c_double, iptr: &mut c_double) -> c_double;
// rename: for consistency with logradix
#[link_name="scalbn"]
pub fn ldexp_radix(n: c_double, i: c_int) -> c_double;
pub fn sinh(n: c_double) -> c_double;
pub fn tan(n: c_double) -> c_double;
pub fn tanh(n: c_double) -> c_double;
pub fn tgamma(n: c_double) -> c_double;
// These are commonly only available for doubles
pub fn j0(n: c_double) -> c_double;
pub fn j1(n: c_double) -> c_double;
pub fn jn(i: c_int, n: c_double) -> c_double;
pub fn y0(n: c_double) -> c_double;
pub fn y1(n: c_double) -> c_double;
pub fn yn(i: c_int, n: c_double) -> c_double;
}
}
pub mod c_float {
use libc::{c_float, c_int};
#[link_name = "m"]
extern {
// Alphabetically sorted by link_name
#[link_name="acosf"]
pub fn acos(n: c_float) -> c_float;
#[link_name="asinf"]
pub fn asin(n: c_float) -> c_float;
#[link_name="atanf"]
pub fn atan(n: c_float) -> c_float;
#[link_name="atan2f"]
pub fn atan2(a: c_float, b: c_float) -> c_float;
#[link_name="cbrtf"]
pub fn cbrt(n: c_float) -> c_float;
#[link_name="coshf"]
pub fn cosh(n: c_float) -> c_float;
#[link_name="erff"]
pub fn erf(n: c_float) -> c_float;
#[link_name="erfcf"]
pub fn erfc(n: c_float) -> c_float;
#[link_name="expm1f"]
pub fn exp_m1(n: c_float) -> c_float;
#[link_name="fdimf"]
pub fn abs_sub(a: c_float, b: c_float) -> c_float;
#[link_name="frexpf"]
pub fn frexp(n: c_float, value: &mut c_int) -> c_float;
#[link_name="fmaxf"]
pub fn fmax(a: c_float, b: c_float) -> c_float;
#[link_name="fminf"]
pub fn fmin(a: c_float, b: c_float) -> c_float;
#[link_name="nextafterf"]
pub fn next_after(x: c_float, y: c_float) -> c_float;
#[link_name="hypotf"]
pub fn hypot(x: c_float, y: c_float) -> c_float;
#[link_name="ldexpf"]
pub fn ldexp(x: c_float, n: c_int) -> c_float;
#[cfg(unix)]
#[link_name="lgammaf_r"]
pub fn lgamma(n: c_float, sign: &mut c_int) -> c_float;
#[cfg(windows)]
#[link_name="__lgammaf_r"]
pub fn lgamma(n: c_float, sign: &mut c_int) -> c_float;
#[link_name="logbf"]
pub fn log_radix(n: c_float) -> c_float;
#[link_name="log1pf"]
pub fn ln_1p(n: c_float) -> c_float;
#[link_name="ilogbf"]
pub fn ilog_radix(n: c_float) -> c_int;
#[link_name="modff"]
pub fn modf(n: c_float, iptr: &mut c_float) -> c_float;
#[link_name="scalbnf"]
pub fn ldexp_radix(n: c_float, i: c_int) -> c_float;
#[link_name="sinhf"]
pub fn sinh(n: c_float) -> c_float;
#[link_name="tanf"]
pub fn tan(n: c_float) -> c_float;
#[link_name="tanhf"]
pub fn tanh(n: c_float) -> c_float;
#[link_name="tgammaf"]
pub fn tgamma(n: c_float) -> c_float;
}
}

@ -14,7 +14,6 @@
use prelude::*;
use cmath;
use default::Default;
use from_str::FromStr;
use libc::{c_float, c_int};
@ -23,6 +22,46 @@ use num::{Zero, One, Bounded, strconv};
use num;
use intrinsics;
#[allow(dead_code)]
mod cmath {
use libc::{c_float, c_int};
#[link_name = "m"]
extern {
pub fn acosf(n: c_float) -> c_float;
pub fn asinf(n: c_float) -> c_float;
pub fn atanf(n: c_float) -> c_float;
pub fn atan2f(a: c_float, b: c_float) -> c_float;
pub fn cbrtf(n: c_float) -> c_float;
pub fn coshf(n: c_float) -> c_float;
pub fn erff(n: c_float) -> c_float;
pub fn erfcf(n: c_float) -> c_float;
pub fn expm1f(n: c_float) -> c_float;
pub fn fdimf(a: c_float, b: c_float) -> c_float;
pub fn frexpf(n: c_float, value: &mut c_int) -> c_float;
pub fn fmaxf(a: c_float, b: c_float) -> c_float;
pub fn fminf(a: c_float, b: c_float) -> c_float;
pub fn nextafterf(x: c_float, y: c_float) -> c_float;
pub fn hypotf(x: c_float, y: c_float) -> c_float;
pub fn ldexpf(x: c_float, n: c_int) -> c_float;
pub fn logbf(n: c_float) -> c_float;
pub fn log1pf(n: c_float) -> c_float;
pub fn ilogbf(n: c_float) -> c_int;
pub fn modff(n: c_float, iptr: &mut c_float) -> c_float;
pub fn sinhf(n: c_float) -> c_float;
pub fn tanf(n: c_float) -> c_float;
pub fn tanhf(n: c_float) -> c_float;
pub fn tgammaf(n: c_float) -> c_float;
#[cfg(unix)]
pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float;
#[cfg(windows)]
#[link_name="__lgammaf_r"]
pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float;
}
}
macro_rules! delegate(
(
$(
@ -66,29 +105,22 @@ delegate!(
fn nearbyint(n: f32) -> f32 = intrinsics::nearbyintf32,
fn round(n: f32) -> f32 = intrinsics::roundf32,
// cmath
fn acos(n: c_float) -> c_float = cmath::c_float::acos,
fn asin(n: c_float) -> c_float = cmath::c_float::asin,
fn atan(n: c_float) -> c_float = cmath::c_float::atan,
fn atan2(a: c_float, b: c_float) -> c_float = cmath::c_float::atan2,
fn cbrt(n: c_float) -> c_float = cmath::c_float::cbrt,
fn cosh(n: c_float) -> c_float = cmath::c_float::cosh,
// fn erf(n: c_float) -> c_float = cmath::c_float::erf,
// fn erfc(n: c_float) -> c_float = cmath::c_float::erfc,
fn exp_m1(n: c_float) -> c_float = cmath::c_float::exp_m1,
fn abs_sub(a: c_float, b: c_float) -> c_float = cmath::c_float::abs_sub,
fn next_after(x: c_float, y: c_float) -> c_float = cmath::c_float::next_after,
fn frexp(n: c_float, value: &mut c_int) -> c_float = cmath::c_float::frexp,
fn hypot(x: c_float, y: c_float) -> c_float = cmath::c_float::hypot,
fn ldexp(x: c_float, n: c_int) -> c_float = cmath::c_float::ldexp,
// fn log_radix(n: c_float) -> c_float = cmath::c_float::log_radix,
fn ln_1p(n: c_float) -> c_float = cmath::c_float::ln_1p,
// fn ilog_radix(n: c_float) -> c_int = cmath::c_float::ilog_radix,
// fn modf(n: c_float, iptr: &mut c_float) -> c_float = cmath::c_float::modf,
// fn ldexp_radix(n: c_float, i: c_int) -> c_float = cmath::c_float::ldexp_radix,
fn sinh(n: c_float) -> c_float = cmath::c_float::sinh,
fn tan(n: c_float) -> c_float = cmath::c_float::tan,
fn tanh(n: c_float) -> c_float = cmath::c_float::tanh
fn acos(n: c_float) -> c_float = cmath::acosf,
fn asin(n: c_float) -> c_float = cmath::asinf,
fn atan(n: c_float) -> c_float = cmath::atanf,
fn atan2(a: c_float, b: c_float) -> c_float = cmath::atan2f,
fn cbrt(n: c_float) -> c_float = cmath::cbrtf,
fn cosh(n: c_float) -> c_float = cmath::coshf,
fn exp_m1(n: c_float) -> c_float = cmath::expm1f,
fn abs_sub(a: c_float, b: c_float) -> c_float = cmath::fdimf,
fn next_after(x: c_float, y: c_float) -> c_float = cmath::nextafterf,
fn frexp(n: c_float, value: &mut c_int) -> c_float = cmath::frexpf,
fn hypot(x: c_float, y: c_float) -> c_float = cmath::hypotf,
fn ldexp(x: c_float, n: c_int) -> c_float = cmath::ldexpf,
fn ln_1p(n: c_float) -> c_float = cmath::log1pf,
fn sinh(n: c_float) -> c_float = cmath::sinhf,
fn tan(n: c_float) -> c_float = cmath::tanf,
fn tanh(n: c_float) -> c_float = cmath::tanhf
)
// FIXME(#11621): These constants should be deprecated once CTFE is implemented
@ -308,12 +340,12 @@ impl Primitive for f32 {}
impl Float for f32 {
#[inline]
fn max(self, other: f32) -> f32 {
unsafe { cmath::c_float::fmax(self, other) }
unsafe { cmath::fmaxf(self, other) }
}
#[inline]
fn min(self, other: f32) -> f32 {
unsafe { cmath::c_float::fmin(self, other) }
unsafe { cmath::fminf(self, other) }
}
#[inline]

@ -14,7 +14,6 @@
use prelude::*;
use cmath;
use default::Default;
use from_str::FromStr;
use libc::{c_double, c_int};
@ -23,6 +22,56 @@ use num::{Zero, One, Bounded, strconv};
use num;
use intrinsics;
#[allow(dead_code)]
mod cmath {
use libc::{c_double, c_int};
#[link_name = "m"]
extern {
pub fn acos(n: c_double) -> c_double;
pub fn asin(n: c_double) -> c_double;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn cbrt(n: c_double) -> c_double;
pub fn cosh(n: c_double) -> c_double;
pub fn erf(n: c_double) -> c_double;
pub fn erfc(n: c_double) -> c_double;
pub fn expm1(n: c_double) -> c_double;
pub fn fdim(a: c_double, b: c_double) -> c_double;
pub fn fmax(a: c_double, b: c_double) -> c_double;
pub fn fmin(a: c_double, b: c_double) -> c_double;
pub fn nextafter(x: c_double, y: c_double) -> c_double;
pub fn frexp(n: c_double, value: &mut c_int) -> c_double;
pub fn hypot(x: c_double, y: c_double) -> c_double;
pub fn ldexp(x: c_double, n: c_int) -> c_double;
pub fn logb(n: c_double) -> c_double;
pub fn log1p(n: c_double) -> c_double;
pub fn ilogb(n: c_double) -> c_int;
pub fn modf(n: c_double, iptr: &mut c_double) -> c_double;
pub fn sinh(n: c_double) -> c_double;
pub fn tan(n: c_double) -> c_double;
pub fn tanh(n: c_double) -> c_double;
pub fn tgamma(n: c_double) -> c_double;
// These are commonly only available for doubles
pub fn j0(n: c_double) -> c_double;
pub fn j1(n: c_double) -> c_double;
pub fn jn(i: c_int, n: c_double) -> c_double;
pub fn y0(n: c_double) -> c_double;
pub fn y1(n: c_double) -> c_double;
pub fn yn(i: c_int, n: c_double) -> c_double;
#[cfg(unix)]
pub fn lgamma_r(n: c_double, sign: &mut c_int) -> c_double;
#[cfg(windows)]
#[link_name="__lgamma_r"]
pub fn lgamma_r(n: c_double, sign: &mut c_int) -> c_double;
}
}
macro_rules! delegate(
(
$(
@ -66,29 +115,22 @@ delegate!(
fn nearbyint(n: f64) -> f64 = intrinsics::nearbyintf64,
fn round(n: f64) -> f64 = intrinsics::roundf64,
// cmath
fn acos(n: c_double) -> c_double = cmath::c_double::acos,
fn asin(n: c_double) -> c_double = cmath::c_double::asin,
fn atan(n: c_double) -> c_double = cmath::c_double::atan,
fn atan2(a: c_double, b: c_double) -> c_double = cmath::c_double::atan2,
fn cbrt(n: c_double) -> c_double = cmath::c_double::cbrt,
fn cosh(n: c_double) -> c_double = cmath::c_double::cosh,
// fn erf(n: c_double) -> c_double = cmath::c_double::erf,
// fn erfc(n: c_double) -> c_double = cmath::c_double::erfc,
fn exp_m1(n: c_double) -> c_double = cmath::c_double::exp_m1,
fn abs_sub(a: c_double, b: c_double) -> c_double = cmath::c_double::abs_sub,
fn next_after(x: c_double, y: c_double) -> c_double = cmath::c_double::next_after,
fn frexp(n: c_double, value: &mut c_int) -> c_double = cmath::c_double::frexp,
fn hypot(x: c_double, y: c_double) -> c_double = cmath::c_double::hypot,
fn ldexp(x: c_double, n: c_int) -> c_double = cmath::c_double::ldexp,
// fn log_radix(n: c_double) -> c_double = cmath::c_double::log_radix,
fn ln_1p(n: c_double) -> c_double = cmath::c_double::ln_1p,
// fn ilog_radix(n: c_double) -> c_int = cmath::c_double::ilog_radix,
// fn modf(n: c_double, iptr: &mut c_double) -> c_double = cmath::c_double::modf,
// fn ldexp_radix(n: c_double, i: c_int) -> c_double = cmath::c_double::ldexp_radix,
fn sinh(n: c_double) -> c_double = cmath::c_double::sinh,
fn tan(n: c_double) -> c_double = cmath::c_double::tan,
fn tanh(n: c_double) -> c_double = cmath::c_double::tanh
fn acos(n: c_double) -> c_double = cmath::acos,
fn asin(n: c_double) -> c_double = cmath::asin,
fn atan(n: c_double) -> c_double = cmath::atan,
fn atan2(a: c_double, b: c_double) -> c_double = cmath::atan2,
fn cbrt(n: c_double) -> c_double = cmath::cbrt,
fn cosh(n: c_double) -> c_double = cmath::cosh,
fn exp_m1(n: c_double) -> c_double = cmath::expm1,
fn abs_sub(a: c_double, b: c_double) -> c_double = cmath::fdim,
fn next_after(x: c_double, y: c_double) -> c_double = cmath::nextafter,
fn frexp(n: c_double, value: &mut c_int) -> c_double = cmath::frexp,
fn hypot(x: c_double, y: c_double) -> c_double = cmath::hypot,
fn ldexp(x: c_double, n: c_int) -> c_double = cmath::ldexp,
fn ln_1p(n: c_double) -> c_double = cmath::log1p,
fn sinh(n: c_double) -> c_double = cmath::sinh,
fn tan(n: c_double) -> c_double = cmath::tan,
fn tanh(n: c_double) -> c_double = cmath::tanh
)
// FIXME (#1433): obtain these in a different way
@ -307,12 +349,12 @@ impl Primitive for f64 {}
impl Float for f64 {
#[inline]
fn max(self, other: f64) -> f64 {
unsafe { cmath::c_double::fmax(self, other) }
unsafe { cmath::fmax(self, other) }
}
#[inline]
fn min(self, other: f64) -> f64 {
unsafe { cmath::c_double::fmin(self, other) }
unsafe { cmath::fmin(self, other) }
}
#[inline]

@ -553,79 +553,6 @@ pub trait Float: Signed + Round + Primitive {
fn to_radians(&self) -> Self;
}
/// Returns the exponential of the number, minus `1`, `exp(n) - 1`, in a way
/// that is accurate even if the number is close to zero.
#[inline(always)] pub fn exp_m1<T: Float>(value: T) -> T { value.exp_m1() }
/// Returns the natural logarithm of the number plus `1`, `ln(n + 1)`, more
/// accurately than if the operations were performed separately.
#[inline(always)] pub fn ln_1p<T: Float>(value: T) -> T { value.ln_1p() }
/// Fused multiply-add. Computes `(a * b) + c` with only one rounding error.
///
/// This produces a more accurate result with better performance (on some
/// architectures) than a separate multiplication operation followed by an add.
#[inline(always)] pub fn mul_add<T: Float>(a: T, b: T, c: T) -> T { a.mul_add(b, c) }
/// Raise a number to a power.
///
/// # Example
///
/// ```rust
/// use std::num;
///
/// let sixteen: f64 = num::powf(2.0, 4.0);
/// assert_eq!(sixteen, 16.0);
/// ```
#[inline(always)] pub fn powf<T: Float>(value: T, n: T) -> T { value.powf(&n) }
/// Take the square root of a number.
#[inline(always)] pub fn sqrt<T: Float>(value: T) -> T { value.sqrt() }
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
#[inline(always)] pub fn rsqrt<T: Float>(value: T) -> T { value.rsqrt() }
/// Take the cubic root of a number.
#[inline(always)] pub fn cbrt<T: Float>(value: T) -> T { value.cbrt() }
/// Calculate the length of the hypotenuse of a right-angle triangle given legs
/// of length `x` and `y`.
#[inline(always)] pub fn hypot<T: Float>(x: T, y: T) -> T { x.hypot(&y) }
/// Sine function.
#[inline(always)] pub fn sin<T: Float>(value: T) -> T { value.sin() }
/// Cosine function.
#[inline(always)] pub fn cos<T: Float>(value: T) -> T { value.cos() }
/// Tangent function.
#[inline(always)] pub fn tan<T: Float>(value: T) -> T { value.tan() }
/// Compute the arcsine of the number.
#[inline(always)] pub fn asin<T: Float>(value: T) -> T { value.asin() }
/// Compute the arccosine of the number.
#[inline(always)] pub fn acos<T: Float>(value: T) -> T { value.acos() }
/// Compute the arctangent of the number.
#[inline(always)] pub fn atan<T: Float>(value: T) -> T { value.atan() }
/// Compute the arctangent with 2 arguments.
#[inline(always)] pub fn atan2<T: Float>(x: T, y: T) -> T { x.atan2(&y) }
/// Simultaneously computes the sine and cosine of the number.
#[inline(always)] pub fn sin_cos<T: Float>(value: T) -> (T, T) { value.sin_cos() }
/// Returns `e^(value)`, (the exponential function).
#[inline(always)] pub fn exp<T: Float>(value: T) -> T { value.exp() }
/// Returns 2 raised to the power of the number, `2^(value)`.
#[inline(always)] pub fn exp2<T: Float>(value: T) -> T { value.exp2() }
/// Returns the natural logarithm of the number.
#[inline(always)] pub fn ln<T: Float>(value: T) -> T { value.ln() }
/// Returns the logarithm of the number with respect to an arbitrary base.
#[inline(always)] pub fn log<T: Float>(value: T, base: T) -> T { value.log(&base) }
/// Returns the base 2 logarithm of the number.
#[inline(always)] pub fn log2<T: Float>(value: T) -> T { value.log2() }
/// Returns the base 10 logarithm of the number.
#[inline(always)] pub fn log10<T: Float>(value: T) -> T { value.log10() }
/// Hyperbolic sine function.
#[inline(always)] pub fn sinh<T: Float>(value: T) -> T { value.sinh() }
/// Hyperbolic cosine function.
#[inline(always)] pub fn cosh<T: Float>(value: T) -> T { value.cosh() }
/// Hyperbolic tangent function.
#[inline(always)] pub fn tanh<T: Float>(value: T) -> T { value.tanh() }
/// Inverse hyperbolic sine function.
#[inline(always)] pub fn asinh<T: Float>(value: T) -> T { value.asinh() }
/// Inverse hyperbolic cosine function.
#[inline(always)] pub fn acosh<T: Float>(value: T) -> T { value.acosh() }
/// Inverse hyperbolic tangent function.
#[inline(always)] pub fn atanh<T: Float>(value: T) -> T { value.atanh() }
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
/// Converts the value of `self` to an `int`.