(Big performance change) Do not run lints that cannot emit
Before this change, adding a lint was a difficult matter because it always had some overhead involved. This was because all lints would run, no matter their default level, or if the user had `#![allow]`ed them. This PR changes that. This change would improve both the Rust lint infrastructure and Clippy, but Clippy will see the most benefit, as it has about 900 registered lints (and growing!)
So yeah, with this little patch we filter all lints pre-linting, and remove any lint that is either:
- Manually `#![allow]`ed in the whole crate,
- Allowed in the command line, or
- Not manually enabled with `#[warn]` or similar, and its default level is `Allow`
As some lints **need** to run, this PR also adds **loadbearing lints**. On a lint declaration, you can use the ``@eval_always` = true` marker to label it as loadbearing. A loadbearing lint will never be filtered (it will always run)
Fixes#106983
Effects cleanup
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
r? compiler-errors
- removed extra bits from predicates queries that are no longer needed in the new system
- removed the need for `non_erasable_generics` to take in tcx and DefId, removed unused arguments in callers
Const stability checks v2
The const stability system has served us well ever since `const fn` were first stabilized. It's main feature is that it enforces *recursive* validity -- a stable const fn cannot internally make use of unstable const features without an explicit marker in the form of `#[rustc_allow_const_fn_unstable]`. This is done to make sure that we don't accidentally expose unstable const features on stable in a way that would be hard to take back. As part of this, it is enforced that a `#[rustc_const_stable]` can only call `#[rustc_const_stable]` functions. However, some problems have been coming up with increased usage:
- It is baffling that we have to mark private or even unstable functions as `#[rustc_const_stable]` when they are used as helpers in regular stable `const fn`, and often people will rather add `#[rustc_allow_const_fn_unstable]` instead which was not our intention.
- The system has several gaping holes: a private `const fn` without stability attributes whose inherited stability (walking up parent modules) is `#[stable]` is allowed to call *arbitrary* unstable const operations, but can itself be called from stable `const fn`. Similarly, `#[allow_internal_unstable]` on a macro completely bypasses the recursive nature of the check.
Fundamentally, the problem is that we have *three* disjoint categories of functions, and not enough attributes to distinguish them:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
Functions in the first two categories cannot use unstable const features and they can only call functions from the first two categories.
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, all the holes mentioned above have been closed. There's still one potential hole that is hard to avoid, which is when MIR building automatically inserts calls to a particular function in stable functions -- which happens in the panic machinery. Those need to be manually marked `#[rustc_const_stable_indirect]` to be sure they follow recursive const stability. But that's a fairly rare and special case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be constified simply by marking it as `const fn`, and it will then be const-callable from stable `const fn` and subject to recursive const stability requirements. If it is publicly reachable (which implies it cannot be unmarked), it will be const-unstable under the same feature gate. Only if the function ever becomes `#[stable]` does it need a `#[rustc_const_unstable]` or `#[rustc_const_stable]` marker to decide if this should also imply const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to use unstable const lang features (including intrinsics), or (b) `#[stable]` functions that are not yet intended to be const-stable. Adding `#[rustc_const_stable]` is only needed for functions that are actually meant to be directly callable from stable const code. `#[rustc_const_stable_indirect]` is used to mark intrinsics as const-callable and for `#[rustc_const_unstable]` functions that are actually called from other, exposed-on-stable `const fn`. No other attributes are required.
Also see the updated dev-guide at https://github.com/rust-lang/rustc-dev-guide/pull/2098.
I think in the future we may want to tweak this further, so that in the hopefully common case where a public function's const-stability just exactly mirrors its regular stability, we never have to add any attribute. But right now, once the function is stable this requires `#[rustc_const_stable]`.
### Open question
There is one point I could see we might want to do differently, and that is putting `#[rustc_const_unstable]` functions (but not intrinsics) in category 2 by default, and requiring an extra attribute for `#[rustc_const_not_exposed_on_stable]` or so. This would require a bunch of extra annotations, but would have the advantage that turning a `#[rustc_const_unstable]` into `#[rustc_const_stable]` will never change the way the function is const-checked. Currently, we often discover in the const stabilization PR that a function needs some other unstable const things, and then we rush to quickly deal with that. In this alternative universe, we'd work towards getting rid of the `rustc_const_not_exposed_on_stable` before stabilization, and once that is done stabilization becomes a trivial matter. `#[rustc_const_stable_indirect]` would then only be used for intrinsics.
I think I like this idea, but might want to do it in a follow-up PR, as it will need a whole bunch of annotations in the standard library. Also, we probably want to convert all const intrinsics to the "new" form (`#[rustc_intrinsic]` instead of an `extern` block) before doing this to avoid having to deal with two different ways of declaring intrinsics.
Cc `@rust-lang/wg-const-eval` `@rust-lang/libs-api`
Part of https://github.com/rust-lang/rust/issues/129815 (but not finished since this is not yet sufficient to safely let us expose `const fn` from hashbrown)
Fixes https://github.com/rust-lang/rust/issues/131073 by making it so that const-stable functions are always stable
try-job: test-various
Then we can rename the _raw functions to drop their suffix, and instead
explicitly use is_stable_const_fn for the few cases where that is really what
you want.
Pass Ident by reference in ast Visitor
`MutVisitor`'s version of `visit_ident` passes around `&Ident`, but `Visitor` copies `Ident`. This PR changes that
r? `@petrochenkov`
related to #128974
terminology: #[feature] *enables* a feature (instead of "declaring" or "activating" it)
Mostly, we currently call a feature that has a corresponding `#[feature(name)]` attribute in the current crate a "declared" feature. I think that is confusing as it does not align with what "declaring" usually means. Furthermore, we *also* refer to `#[stable]`/`#[unstable]` as *declaring* a feature (e.g. in [these diagnostics](f25e5abea2/compiler/rustc_passes/messages.ftl (L297-L301))), which aligns better with what "declaring" usually means. To make things worse, the functions `tcx.features().active(...)` and `tcx.features().declared(...)` both exist and they are doing almost the same thing (testing whether a corresponding `#[feature(name)]` exists) except that `active` would ICE if the feature is not an unstable lang feature. On top of this, the callback when a feature is activated/declared is called `set_enabled`, and many comments also talk about "enabling" a feature.
So really, our terminology is just a mess.
I would suggest we use "declaring a feature" for saying that something is/was guarded by a feature (e.g. `#[stable]`/`#[unstable]`), and "enabling a feature" for `#[feature(name)]`. This PR implements that.
make unsupported_calling_conventions a hard error
This has been a future-compat lint (not shown in dependencies) since Rust 1.55, released 3 years ago. Hopefully that was enough time so this can be made a hard error now. Given that long timeframe, I think it's justified to skip the "show in dependencies" stage. There were [not many crates hitting this](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) even when the lint was originally added.
This should get cratered, and I assume then it needs a t-compiler FCP. (t-compiler because this looks entirely like an implementation oversight -- for the vast majority of ABIs, we already have a hard error, but some were initially missed, and we are finally fixing that.)
Fixes https://github.com/rust-lang/rust/pull/87678
Rollup of 4 pull requests
Successful merges:
- #126588 (Added more scenarios where comma to be removed in the function arg)
- #131728 (bootstrap: extract builder cargo to its own module)
- #131968 (Rip out old effects var handling code from traits)
- #131981 (Remove the `BoundConstness::NotConst` variant)
r? `@ghost`
`@rustbot` modify labels: rollup
Before this change, adding a lint was a difficult matter
because it always had some overhead involved. This was
because all lints would run, no matter their default level,
or if the user had #![allow]ed them. This PR changes that
Remove `GenKillAnalysis`
There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.
r? `@tmiasko`
Rollup of 9 pull requests
Successful merges:
- #122670 (Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode)
- #131095 (Use environment variables instead of command line arguments for merged doctests)
- #131339 (Expand set_ptr_value / with_metadata_of docs)
- #131652 (Move polarity into `PolyTraitRef` rather than storing it on the side)
- #131675 (Update lint message for ABI not supported)
- #131681 (Fix up-to-date checking for run-make tests)
- #131702 (Suppress import errors for traits that couldve applied for method lookup error)
- #131703 (Resolved python deprecation warning in publish_toolstate.py)
- #131710 (Remove `'apostrophes'` from `rustc_parse_format`)
r? `@ghost`
`@rustbot` modify labels: rollup
Add `&pin (mut|const) T` type position sugar
This adds parser support for `&pin mut T` and `&pin const T` references. These are desugared to `Pin<&mut T>` and `Pin<&T>` in the AST lowering phases.
This PR currently includes #130526 since that one is in the commit queue. Only the most recent commits (bd450027eb4a94b814a7dd9c0fa29102e6361149 and following) are new.
Tracking:
- #130494
r? `@compiler-errors`
Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
Don't warn on proc macro generated code in `needless_return`
Fixes#13458Fixes#13457Fixes#13467Fixes#13479Fixes#13481Fixes#13526Fixes#13486
The fix is unfortunately a little more convoluted than just simply adding a `is_from_proc_macro`. That check *does* fix the issue, however it also introduces a bunch of false negatives in the tests, specifically when the returned expression is in a different syntax context, e.g. `return format!(..)`.
The proc macro check builds up a start and end pattern based on the HIR nodes and compares it to a snippet of the span, however that would currently fail for `return format!(..)` because we would have the patterns `("return", <something inside of the format macro>)`, which doesn't compare equal. So we now return an empty string pattern for when it's in a different syntax context.
"Hide whitespace" helps a bit for reviewing the proc macro detection change
changelog: none
Make opaque types regular HIR nodes
Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.
I haven't gone through all the test changes yet, so there may be a few surprises.
Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023Fixes#129099Fixes#125843Fixes#119716Fixes#121422