followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
This commit is an implementation of [RFC 240][rfc] when applied to the standard
library. It primarily deprecates the entirety of `string::raw`, `vec::raw`,
`slice::raw`, and `str::raw` in favor of associated functions, methods, and
other free functions. The detailed renaming is:
* slice::raw::buf_as_slice => slice::with_raw_buf
* slice::raw::mut_buf_as_slice => slice::with_raw_mut_buf
* slice::shift_ptr => deprecated with no replacement
* slice::pop_ptr => deprecated with no replacement
* str::raw::from_utf8 => str::from_utf8_unchecked
* str::raw::c_str_to_static_slice => str::from_c_str
* str::raw::slice_bytes => deprecated for slice_unchecked (slight semantic diff)
* str::raw::slice_unchecked => str.slice_unchecked
* string::raw::from_parts => String::from_raw_parts
* string::raw::from_buf_len => String::from_raw_buf_len
* string::raw::from_buf => String::from_raw_buf
* string::raw::from_utf8 => String::from_utf8_unchecked
* vec::raw::from_buf => Vec::from_raw_buf
All previous functions exist in their `#[deprecated]` form, and the deprecation
messages indicate how to migrate to the newer variants.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0240-unsafe-api-location.md
[breaking-change]
Closes#17863
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
This uses a bitwise mask to ensure that there's no bounds checking for
the array accesses when generating the next random number. This isn't
costless, but the single instruction is nothing compared to the branch.
A `debug_assert` for "bounds check" is preserved to ensure that
refactoring doesn't accidentally break it (i.e. create values of `cnt`
that are out of bounds with the masking causing it to silently wrap-
around).
Before:
test test::rand_isaac ... bench: 990 ns/iter (+/- 24) = 808 MB/s
test test::rand_isaac64 ... bench: 614 ns/iter (+/- 25) = 1302 MB/s
After:
test test::rand_isaac ... bench: 877 ns/iter (+/- 134) = 912 MB/s
test test::rand_isaac64 ... bench: 470 ns/iter (+/- 30) = 1702 MB/s
(It also removes the unsafe code in Isaac64Rng.next_u64, with a *gain*
in performance; today is a good day.)
floating point numbers for real.
This will break code that looks like:
let mut x = 0;
while ... {
x += 1;
}
println!("{}", x);
Change that code to:
let mut x = 0i;
while ... {
x += 1;
}
println!("{}", x);
Closes#15201.
[breaking-change]
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
This commit shuffles around some of the `rand` code, along with some
reorganization. The new state of the world is as follows:
* The librand crate now only depends on libcore. This interface is experimental.
* The standard library has a new module, `std::rand`. This interface will
eventually become stable.
Unfortunately, this entailed more of a breaking change than just shuffling some
names around. The following breaking changes were made to the rand library:
* Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which
will return an infinite stream of random values. Previous behavior can be
regained with `rng.gen_iter().take(n).collect()`
* Rng::gen_ascii_str() was removed. This has been replaced with
Rng::gen_ascii_chars() which will return an infinite stream of random ascii
characters. Similarly to gen_iter(), previous behavior can be emulated with
`rng.gen_ascii_chars().take(n).collect()`
* {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all
relied on being able to use an OSRng for seeding, but this is no longer
available in librand (where these types are defined). To retain the same
functionality, these types now implement the `Rand` trait so they can be
generated with a random seed from another random number generator. This allows
the stdlib to use an OSRng to create seeded instances of these RNGs.
* Rand implementations for `Box<T>` and `@T` were removed. These seemed to be
pretty rare in the codebase, and it allows for librand to not depend on
liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not
supported. If this is undesirable, librand can depend on liballoc and regain
these implementations.
* The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`,
but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice
structure now has a lifetime associated with it.
* The `sample` method on `Rng` has been moved to a top-level function in the
`rand` module due to its dependence on `Vec`.
cc #13851
[breaking-change]
move errno -> IoError converter into std, bubble up OSRng errors
Also adds a general errno -> `~str` converter to `std::os`, and makes the failure messages for the things using `OSRng` (e.g. (transitively) the task-local RNG, meaning hashmap initialisation failures aren't such a black box).
The various ...Rng::new() methods can hit IO errors from the OSRng they use,
and it seems sensible to expose them at a higher level. Unfortunately, writing
e.g. `StdRng::new().unwrap()` gives a much poorer error message than if it
failed internally, but this is a problem with all `IoResult`s.
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.