rust/src/librand/isaac.rs
2014-12-19 10:43:24 -05:00

598 lines
20 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ISAAC random number generator.
use core::prelude::*;
use core::slice;
use core::iter::{range_step, repeat};
use {Rng, SeedableRng, Rand};
const RAND_SIZE_LEN: u32 = 8;
const RAND_SIZE: u32 = 1 << (RAND_SIZE_LEN as uint);
const RAND_SIZE_UINT: uint = 1 << (RAND_SIZE_LEN as uint);
/// A random number generator that uses the ISAAC algorithm[1].
///
/// The ISAAC algorithm is generally accepted as suitable for
/// cryptographic purposes, but this implementation has not be
/// verified as such. Prefer a generator like `OsRng` that defers to
/// the operating system for cases that need high security.
///
/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number
/// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html)
#[deriving(Copy)]
pub struct IsaacRng {
cnt: u32,
rsl: [u32, ..RAND_SIZE_UINT],
mem: [u32, ..RAND_SIZE_UINT],
a: u32,
b: u32,
c: u32
}
static EMPTY: IsaacRng = IsaacRng {
cnt: 0,
rsl: [0, ..RAND_SIZE_UINT],
mem: [0, ..RAND_SIZE_UINT],
a: 0, b: 0, c: 0
};
impl IsaacRng {
/// Create an ISAAC random number generator using the default
/// fixed seed.
pub fn new_unseeded() -> IsaacRng {
let mut rng = EMPTY;
rng.init(false);
rng
}
/// Initialises `self`. If `use_rsl` is true, then use the current value
/// of `rsl` as a seed, otherwise construct one algorithmically (not
/// randomly).
fn init(&mut self, use_rsl: bool) {
let mut a = 0x9e3779b9;
let mut b = a;
let mut c = a;
let mut d = a;
let mut e = a;
let mut f = a;
let mut g = a;
let mut h = a;
macro_rules! mix(
() => {{
a^=b<<11; d+=a; b+=c;
b^=c>>2; e+=b; c+=d;
c^=d<<8; f+=c; d+=e;
d^=e>>16; g+=d; e+=f;
e^=f<<10; h+=e; f+=g;
f^=g>>4; a+=f; g+=h;
g^=h<<8; b+=g; h+=a;
h^=a>>9; c+=h; a+=b;
}}
);
for _ in range(0u, 4) {
mix!();
}
if use_rsl {
macro_rules! memloop (
($arr:expr) => {{
for i in range_step(0, RAND_SIZE as uint, 8) {
a+=$arr[i ]; b+=$arr[i+1];
c+=$arr[i+2]; d+=$arr[i+3];
e+=$arr[i+4]; f+=$arr[i+5];
g+=$arr[i+6]; h+=$arr[i+7];
mix!();
self.mem[i ]=a; self.mem[i+1]=b;
self.mem[i+2]=c; self.mem[i+3]=d;
self.mem[i+4]=e; self.mem[i+5]=f;
self.mem[i+6]=g; self.mem[i+7]=h;
}
}}
);
memloop!(self.rsl);
memloop!(self.mem);
} else {
for i in range_step(0, RAND_SIZE as uint, 8) {
mix!();
self.mem[i ]=a; self.mem[i+1]=b;
self.mem[i+2]=c; self.mem[i+3]=d;
self.mem[i+4]=e; self.mem[i+5]=f;
self.mem[i+6]=g; self.mem[i+7]=h;
}
}
self.isaac();
}
/// Refills the output buffer (`self.rsl`)
#[inline]
#[allow(unsigned_negation)]
fn isaac(&mut self) {
self.c += 1;
// abbreviations
let mut a = self.a;
let mut b = self.b + self.c;
static MIDPOINT: uint = (RAND_SIZE / 2) as uint;
macro_rules! ind (($x:expr) => {
self.mem[(($x >> 2) as uint & ((RAND_SIZE - 1) as uint))]
});
let r = [(0, MIDPOINT), (MIDPOINT, 0)];
for &(mr_offset, m2_offset) in r.iter() {
macro_rules! rngstepp(
($j:expr, $shift:expr) => {{
let base = $j;
let mix = a << $shift as uint;
let x = self.mem[base + mr_offset];
a = (a ^ mix) + self.mem[base + m2_offset];
let y = ind!(x) + a + b;
self.mem[base + mr_offset] = y;
b = ind!(y >> RAND_SIZE_LEN as uint) + x;
self.rsl[base + mr_offset] = b;
}}
);
macro_rules! rngstepn(
($j:expr, $shift:expr) => {{
let base = $j;
let mix = a >> $shift as uint;
let x = self.mem[base + mr_offset];
a = (a ^ mix) + self.mem[base + m2_offset];
let y = ind!(x) + a + b;
self.mem[base + mr_offset] = y;
b = ind!(y >> RAND_SIZE_LEN as uint) + x;
self.rsl[base + mr_offset] = b;
}}
);
for i in range_step(0u, MIDPOINT, 4) {
rngstepp!(i + 0, 13);
rngstepn!(i + 1, 6);
rngstepp!(i + 2, 2);
rngstepn!(i + 3, 16);
}
}
self.a = a;
self.b = b;
self.cnt = RAND_SIZE;
}
}
impl Rng for IsaacRng {
#[inline]
fn next_u32(&mut self) -> u32 {
if self.cnt == 0 {
// make some more numbers
self.isaac();
}
self.cnt -= 1;
// self.cnt is at most RAND_SIZE, but that is before the
// subtraction above. We want to index without bounds
// checking, but this could lead to incorrect code if someone
// misrefactors, so we check, sometimes.
//
// (Changes here should be reflected in Isaac64Rng.next_u64.)
debug_assert!(self.cnt < RAND_SIZE);
// (the % is cheaply telling the optimiser that we're always
// in bounds, without unsafe. NB. this is a power of two, so
// it optimises to a bitwise mask).
self.rsl[(self.cnt % RAND_SIZE) as uint]
}
}
impl<'a> SeedableRng<&'a [u32]> for IsaacRng {
fn reseed(&mut self, seed: &'a [u32]) {
// make the seed into [seed[0], seed[1], ..., seed[seed.len()
// - 1], 0, 0, ...], to fill rng.rsl.
let seed_iter = seed.iter().map(|&x| x).chain(repeat(0u32));
for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) {
*rsl_elem = seed_elem;
}
self.cnt = 0;
self.a = 0;
self.b = 0;
self.c = 0;
self.init(true);
}
/// Create an ISAAC random number generator with a seed. This can
/// be any length, although the maximum number of elements used is
/// 256 and any more will be silently ignored. A generator
/// constructed with a given seed will generate the same sequence
/// of values as all other generators constructed with that seed.
fn from_seed(seed: &'a [u32]) -> IsaacRng {
let mut rng = EMPTY;
rng.reseed(seed);
rng
}
}
impl Rand for IsaacRng {
fn rand<R: Rng>(other: &mut R) -> IsaacRng {
let mut ret = EMPTY;
unsafe {
let ptr = ret.rsl.as_mut_ptr() as *mut u8;
let slice = slice::from_raw_mut_buf(&ptr, (RAND_SIZE * 4) as uint);
other.fill_bytes(slice);
}
ret.cnt = 0;
ret.a = 0;
ret.b = 0;
ret.c = 0;
ret.init(true);
return ret;
}
}
const RAND_SIZE_64_LEN: uint = 8;
const RAND_SIZE_64: uint = 1 << RAND_SIZE_64_LEN;
/// A random number generator that uses ISAAC-64[1], the 64-bit
/// variant of the ISAAC algorithm.
///
/// The ISAAC algorithm is generally accepted as suitable for
/// cryptographic purposes, but this implementation has not be
/// verified as such. Prefer a generator like `OsRng` that defers to
/// the operating system for cases that need high security.
///
/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number
/// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html)
#[deriving(Copy)]
pub struct Isaac64Rng {
cnt: uint,
rsl: [u64, .. RAND_SIZE_64],
mem: [u64, .. RAND_SIZE_64],
a: u64,
b: u64,
c: u64,
}
static EMPTY_64: Isaac64Rng = Isaac64Rng {
cnt: 0,
rsl: [0, .. RAND_SIZE_64],
mem: [0, .. RAND_SIZE_64],
a: 0, b: 0, c: 0,
};
impl Isaac64Rng {
/// Create a 64-bit ISAAC random number generator using the
/// default fixed seed.
pub fn new_unseeded() -> Isaac64Rng {
let mut rng = EMPTY_64;
rng.init(false);
rng
}
/// Initialises `self`. If `use_rsl` is true, then use the current value
/// of `rsl` as a seed, otherwise construct one algorithmically (not
/// randomly).
fn init(&mut self, use_rsl: bool) {
macro_rules! init (
($var:ident) => (
let mut $var = 0x9e3779b97f4a7c13;
)
);
init!(a); init!(b); init!(c); init!(d);
init!(e); init!(f); init!(g); init!(h);
macro_rules! mix(
() => {{
a-=e; f^=h>>9; h+=a;
b-=f; g^=a<<9; a+=b;
c-=g; h^=b>>23; b+=c;
d-=h; a^=c<<15; c+=d;
e-=a; b^=d>>14; d+=e;
f-=b; c^=e<<20; e+=f;
g-=c; d^=f>>17; f+=g;
h-=d; e^=g<<14; g+=h;
}}
);
for _ in range(0u, 4) {
mix!();
}
if use_rsl {
macro_rules! memloop (
($arr:expr) => {{
for i in range(0, RAND_SIZE_64 / 8).map(|i| i * 8) {
a+=$arr[i ]; b+=$arr[i+1];
c+=$arr[i+2]; d+=$arr[i+3];
e+=$arr[i+4]; f+=$arr[i+5];
g+=$arr[i+6]; h+=$arr[i+7];
mix!();
self.mem[i ]=a; self.mem[i+1]=b;
self.mem[i+2]=c; self.mem[i+3]=d;
self.mem[i+4]=e; self.mem[i+5]=f;
self.mem[i+6]=g; self.mem[i+7]=h;
}
}}
);
memloop!(self.rsl);
memloop!(self.mem);
} else {
for i in range(0, RAND_SIZE_64 / 8).map(|i| i * 8) {
mix!();
self.mem[i ]=a; self.mem[i+1]=b;
self.mem[i+2]=c; self.mem[i+3]=d;
self.mem[i+4]=e; self.mem[i+5]=f;
self.mem[i+6]=g; self.mem[i+7]=h;
}
}
self.isaac64();
}
/// Refills the output buffer (`self.rsl`)
fn isaac64(&mut self) {
self.c += 1;
// abbreviations
let mut a = self.a;
let mut b = self.b + self.c;
const MIDPOINT: uint = RAND_SIZE_64 / 2;
const MP_VEC: [(uint, uint), .. 2] = [(0,MIDPOINT), (MIDPOINT, 0)];
macro_rules! ind (
($x:expr) => {
*self.mem.unsafe_get(($x as uint >> 3) & (RAND_SIZE_64 - 1))
}
);
for &(mr_offset, m2_offset) in MP_VEC.iter() {
for base in range(0, MIDPOINT / 4).map(|i| i * 4) {
macro_rules! rngstepp(
($j:expr, $shift:expr) => {{
let base = base + $j;
let mix = a ^ (a << $shift as uint);
let mix = if $j == 0 {!mix} else {mix};
unsafe {
let x = *self.mem.unsafe_get(base + mr_offset);
a = mix + *self.mem.unsafe_get(base + m2_offset);
let y = ind!(x) + a + b;
*self.mem.unsafe_mut(base + mr_offset) = y;
b = ind!(y >> RAND_SIZE_64_LEN) + x;
*self.rsl.unsafe_mut(base + mr_offset) = b;
}
}}
);
macro_rules! rngstepn(
($j:expr, $shift:expr) => {{
let base = base + $j;
let mix = a ^ (a >> $shift as uint);
let mix = if $j == 0 {!mix} else {mix};
unsafe {
let x = *self.mem.unsafe_get(base + mr_offset);
a = mix + *self.mem.unsafe_get(base + m2_offset);
let y = ind!(x) + a + b;
*self.mem.unsafe_mut(base + mr_offset) = y;
b = ind!(y >> RAND_SIZE_64_LEN) + x;
*self.rsl.unsafe_mut(base + mr_offset) = b;
}
}}
);
rngstepp!(0u, 21);
rngstepn!(1u, 5);
rngstepp!(2u, 12);
rngstepn!(3u, 33);
}
}
self.a = a;
self.b = b;
self.cnt = RAND_SIZE_64;
}
}
impl Rng for Isaac64Rng {
// FIXME #7771: having next_u32 like this should be unnecessary
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
if self.cnt == 0 {
// make some more numbers
self.isaac64();
}
self.cnt -= 1;
// See corresponding location in IsaacRng.next_u32 for
// explanation.
debug_assert!(self.cnt < RAND_SIZE_64);
self.rsl[(self.cnt % RAND_SIZE_64) as uint]
}
}
impl<'a> SeedableRng<&'a [u64]> for Isaac64Rng {
fn reseed(&mut self, seed: &'a [u64]) {
// make the seed into [seed[0], seed[1], ..., seed[seed.len()
// - 1], 0, 0, ...], to fill rng.rsl.
let seed_iter = seed.iter().map(|&x| x).chain(repeat(0u64));
for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) {
*rsl_elem = seed_elem;
}
self.cnt = 0;
self.a = 0;
self.b = 0;
self.c = 0;
self.init(true);
}
/// Create an ISAAC random number generator with a seed. This can
/// be any length, although the maximum number of elements used is
/// 256 and any more will be silently ignored. A generator
/// constructed with a given seed will generate the same sequence
/// of values as all other generators constructed with that seed.
fn from_seed(seed: &'a [u64]) -> Isaac64Rng {
let mut rng = EMPTY_64;
rng.reseed(seed);
rng
}
}
impl Rand for Isaac64Rng {
fn rand<R: Rng>(other: &mut R) -> Isaac64Rng {
let mut ret = EMPTY_64;
unsafe {
let ptr = ret.rsl.as_mut_ptr() as *mut u8;
let slice = slice::from_raw_mut_buf(&ptr, (RAND_SIZE_64 * 8) as uint);
other.fill_bytes(slice);
}
ret.cnt = 0;
ret.a = 0;
ret.b = 0;
ret.c = 0;
ret.init(true);
return ret;
}
}
#[cfg(test)]
mod test {
use std::prelude::*;
use core::iter::order;
use {Rng, SeedableRng};
use super::{IsaacRng, Isaac64Rng};
#[test]
fn test_rng_32_rand_seeded() {
let s = ::test::rng().gen_iter::<u32>().take(256).collect::<Vec<u32>>();
let mut ra: IsaacRng = SeedableRng::from_seed(s.as_slice());
let mut rb: IsaacRng = SeedableRng::from_seed(s.as_slice());
assert!(order::equals(ra.gen_ascii_chars().take(100),
rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_64_rand_seeded() {
let s = ::test::rng().gen_iter::<u64>().take(256).collect::<Vec<u64>>();
let mut ra: Isaac64Rng = SeedableRng::from_seed(s.as_slice());
let mut rb: Isaac64Rng = SeedableRng::from_seed(s.as_slice());
assert!(order::equals(ra.gen_ascii_chars().take(100),
rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_32_seeded() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: IsaacRng = SeedableRng::from_seed(seed);
let mut rb: IsaacRng = SeedableRng::from_seed(seed);
assert!(order::equals(ra.gen_ascii_chars().take(100),
rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_64_seeded() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: Isaac64Rng = SeedableRng::from_seed(seed);
let mut rb: Isaac64Rng = SeedableRng::from_seed(seed);
assert!(order::equals(ra.gen_ascii_chars().take(100),
rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_32_reseed() {
let s = ::test::rng().gen_iter::<u32>().take(256).collect::<Vec<u32>>();
let mut r: IsaacRng = SeedableRng::from_seed(s.as_slice());
let string1: String = r.gen_ascii_chars().take(100).collect();
r.reseed(s.as_slice());
let string2: String = r.gen_ascii_chars().take(100).collect();
assert_eq!(string1, string2);
}
#[test]
fn test_rng_64_reseed() {
let s = ::test::rng().gen_iter::<u64>().take(256).collect::<Vec<u64>>();
let mut r: Isaac64Rng = SeedableRng::from_seed(s.as_slice());
let string1: String = r.gen_ascii_chars().take(100).collect();
r.reseed(s.as_slice());
let string2: String = r.gen_ascii_chars().take(100).collect();
assert_eq!(string1, string2);
}
#[test]
fn test_rng_32_true_values() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: IsaacRng = SeedableRng::from_seed(seed);
// Regression test that isaac is actually using the above vector
let v = Vec::from_fn(10, |_| ra.next_u32());
assert_eq!(v,
vec!(2558573138, 873787463, 263499565, 2103644246, 3595684709,
4203127393, 264982119, 2765226902, 2737944514, 3900253796));
let seed: &[_] = &[12345, 67890, 54321, 9876];
let mut rb: IsaacRng = SeedableRng::from_seed(seed);
// skip forward to the 10000th number
for _ in range(0u, 10000) { rb.next_u32(); }
let v = Vec::from_fn(10, |_| rb.next_u32());
assert_eq!(v,
vec!(3676831399, 3183332890, 2834741178, 3854698763, 2717568474,
1576568959, 3507990155, 179069555, 141456972, 2478885421));
}
#[test]
fn test_rng_64_true_values() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: Isaac64Rng = SeedableRng::from_seed(seed);
// Regression test that isaac is actually using the above vector
let v = Vec::from_fn(10, |_| ra.next_u64());
assert_eq!(v,
vec!(547121783600835980, 14377643087320773276, 17351601304698403469,
1238879483818134882, 11952566807690396487, 13970131091560099343,
4469761996653280935, 15552757044682284409, 6860251611068737823,
13722198873481261842));
let seed: &[_] = &[12345, 67890, 54321, 9876];
let mut rb: Isaac64Rng = SeedableRng::from_seed(seed);
// skip forward to the 10000th number
for _ in range(0u, 10000) { rb.next_u64(); }
let v = Vec::from_fn(10, |_| rb.next_u64());
assert_eq!(v,
vec!(18143823860592706164, 8491801882678285927, 2699425367717515619,
17196852593171130876, 2606123525235546165, 15790932315217671084,
596345674630742204, 9947027391921273664, 11788097613744130851,
10391409374914919106));
}
}