This PR adds `std::unsafe::intrinsics::{volatile_load,volatile_store}`, which map to LLVM's `load volatile` and `store volatile` operations correspondingly.
This would fix#11172.
I have addressed several uncertainties with this PR in the line comments.
Right now on linux, an empty executable with LTO still depends on librt becaues
of the clock_gettime function in rust_builtin.o, but this commit moves this
dependency into a rust function which is subject to elimination via LTO.
At the same time, this also drops libstd's dependency on librt on unices that
are not OSX because the library is only used by extra::time (and now the
dependency is listed in that module instead).
Right now on linux, an empty executable with LTO still depends on librt becaues
of the clock_gettime function in rust_builtin.o, but this commit moves this
dependency into a rust function which is subject to elimination via LTO.
At the same time, this also drops libstd's dependency on librt on unices that
are not OSX because the library is only used by extra::time (and now the
dependency is listed in that module instead).
The old `rtio-processes` run-pass test is now moved into libstd's `io::process` module, and all process and TCP tests are now run with `iotest!` (both a native and a green version are tested).
All TCP networking on windows is provided by `ws2_32` which is apparently very similar to unix networking (hurray!).
Move the tests into libstd, use the `iotest!` macro to test both native and uv
bindings, and use the cloexec trick to figure out when the child process fails
in exec.
This patch changes `result::collect` (and adds a new `option::collect`) from creating a `~[T]` to take an `Iterator`. This makes the function much more flexible, and may replace the need for #10989.
This patch is a little more complicated than it needs to be because of #11084. Once that is fixed we can replace the `CollectIterator` with a `Scan` iterator.
It also fixes a test warning.
This commit uniforms the short title of modules provided by libstd,
in order to make their roles more explicit when glancing at the index.
Signed-off-by: Luca Bruno <lucab@debian.org>
* vec::raw::to_ptr is gone
* Pausible => Pausable
* Removing @
* Calling the main task "<main>"
* Removing unused imports
* Removing unused mut
* Bringing some libextra tests up to date
* Allowing compiletest to work at stage0
* Fixing the bootstrap-from-c rmake tests
* assert => rtassert in a few cases
* printing to stderr instead of stdout in fail!()
This test also had a race condition in using the cvar/lock, so I fixed that up
as well. The race originated from one half trying to destroy the lock when
another half was using it.
These functions are all unnecessary now, and they only have meaning in the M:N
context. Removing these functions uncovered a bug in the librustuv timer
bindings, but it was fairly easy to cover (and the test is already committed).
These cannot be completely removed just yet due to their usage in the WaitQueue
of extra::sync, and until the mutex in libextra is rewritten it will not be
possible to remove the deferred sends for channels.
This is a very real problem with cvars on normal systems, and all of channels
will not work if spurious wakeups are accepted. This problem is just solved with
a synchronized flag (accessed in the cvar's lock) to see whether a signal()
actually happened or whether it's spurious.
There was a race in the code previously where schedulers would *immediately*
shut down after spawning the main task (because the global task count would
still be 0). This fixes the logic by blocking the sched pool task in receving on
a port instead of spawning a task into the pool to receive on a port.
The modifications necessary were to have a "simple task" running by the time the
code is executing, but this is a simple enough thing to implement and I forsee
this being necessary to have implemented in the future anyway.
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
This allows creation of different sched pools with different io factories.
Namely, this will be used to test the basic I/O loop in the green crate. This
can also be used to override the global default.
This will prevent a deadlock when a task spins in a try_recv when using channel
communication routines is a clear location for a M:N scheduling to happen.
The scheduler pool now has a much more simplified interface. There is now a
clear distinction between creating the pool and then interacting the pool. When
a pool is created, all schedulers are not active, and only later if a spawn is
done does activity occur.
There are four operations that you can do on a pool:
1. Create a new pool. The only argument to this function is the configuration
for the scheduler pool. Currently the only configuration parameter is the
number of threads to initially spawn.
2. Spawn a task into this pool. This takes a procedure and task configuration
options and spawns a new task into the pool of schedulers.
3. Spawn a new scheduler into the pool. This will return a handle on which to
communicate with the scheduler in order to do something like a pinned task.
4. Shut down the scheduler pool. This will consume the scheduler pool, request
all of the schedulers to shut down, and then wait on all the scheduler
threads. Currently this will block the invoking OS thread, but I plan on
making 'Thread::join' not a thread-blocking call.
These operations can be used to encode all current usage of M:N schedulers, as
well as providing a simple interface through which a pool can be modified. There
is currently no way to remove a scheduler from a pool of scheduler, as there's
no way to guarantee that a scheduler has exited. This may be added in the
future, however (as necessary).
All tests except for the homing tests are now working again with the
librustuv/libgreen refactoring. The homing-related tests are currently commented
out and now placed in the rustuv::homing module.
I plan on refactoring scheduler pool spawning in order to enable more homing
tests in a future commit.
In the compiled version of local_ptr (that with #[thread_local]), the take()
funciton didn't zero-out the previous pointer, allowing for multiple takes (with
fewer runtime assertions being tripped).
This extracts everything related to green scheduling from libstd and introduces
a new libgreen crate. This mostly involves deleting most of std::rt and moving
it to libgreen.
Along with the movement of code, this commit rearchitects many functions in the
scheduler in order to adapt to the fact that Local::take now *only* works on a
Task, not a scheduler. This mostly just involved threading the current green
task through in a few locations, but there were one or two spots where things
got hairy.
There are a few repercussions of this commit:
* tube/rc have been removed (the runtime implementation of rc)
* There is no longer a "single threaded" spawning mode for tasks. This is now
encompassed by 1:1 scheduling + communication. Convenience methods have been
introduced that are specific to libgreen to assist in the spawning of pools of
schedulers.
This commit introduces a new crate called "native" which will be the crate that
implements the 1:1 runtime of rust. This currently entails having an
implementation of std::rt::Runtime inside of libnative as well as moving all of
the native I/O implementations to libnative.
The current snag is that the start lang item must currently be defined in
libnative in order to start running, but this will change in the future.
Cool fact about this crate, there are no extra features that are enabled.
Note that this commit does not include any makefile support necessary for
building libnative, that's all coming in a later commit.
Like the librustuv refactoring, this refactors std::comm to sever all ties with
the scheduler. This means that the entire `comm::imp` module can be deleted in
favor of implementations outside of libstd.