Document some of the AST nodes
Someone was confused about some of this on Zulip, added some docs
We probably should make sure every last field/variant in the AST/HIR is documented at some point
`@bors` rollup
Remove the `..` from the body, only a few invocations used it and it's
inconsistent with rust syntax.
Use `;` instead of `,` between consts. As the Rust syntax gods inteded.
This removes the `custom` format functionality as its only user was
trivially migrated to using a normal format.
If a new use case for a custom formatting impl pops up, you can add it
back.
Remove `token::Lit` from `ast::MetaItemLit`.
Currently `ast::MetaItemLit` represents the literal kind twice. This PR removes that redundancy. Best reviewed one commit at a time.
r? `@petrochenkov`
It has a single call site in the HIR pretty printer, where the resulting
token lit is immediately converted to a string.
This commit replaces `LitKind::synthesize_token_lit` with a `Display`
impl for `LitKind`, which can be used by the HIR pretty printer.
There are better ways to create the meta items.
- In the rustdoc tests, the commit adds `dummy_meta_item_name_value`,
which matches the existing `dummy_meta_item_word` function and
`dummy_meta_item_list` macro.
- In `types.rs` the commit clones the existing meta item and then
modifies the clone.
Remove useless borrows and derefs
They are nothing more than noise.
<sub>These are not all of them, but my clippy started crashing (stack overflow), so rip :(</sub>
`token::Lit` contains a `kind` field that indicates what kind of literal
it is. `ast::MetaItemLit` currently wraps a `token::Lit` but also has
its own `kind` field. This means that `ast::MetaItemLit` encodes the
literal kind in two different ways.
This commit changes `ast::MetaItemLit` so it no longer wraps
`token::Lit`. It now contains the `symbol` and `suffix` fields from
`token::Lit`, but not the `kind` field, eliminating the redundancy.
This is required to distinguish between cooked and raw byte string
literals in an `ast::LitKind`, without referring to an adjacent
`token::Lit`. It's a prerequisite for the next commit.
Lower them into a single item with multiple resolutions instead.
This also allows to remove additional `NodId`s and `DefId`s related to those additional items.
There is code for converting `Attribute` (syntactic) to `MetaItem`
(semantic). There is also code for the reverse direction. The reverse
direction isn't really necessary; it's currently only used when
generating attributes, e.g. in `derive` code.
This commit adds some new functions for creating `Attributes`s directly,
without involving `MetaItem`s: `mk_attr_word`, `mk_attr_name_value_str`,
`mk_attr_nested_word`, and
`ExtCtxt::attr_{word,name_value_str,nested_word}`.
These new methods replace the old functions for creating `Attribute`s:
`mk_attr_inner`, `mk_attr_outer`, and `ExtCtxt::attribute`. Those
functions took `MetaItem`s as input, and relied on many other functions
that created `MetaItems`, which are also removed: `mk_name_value_item`,
`mk_list_item`, `mk_word_item`, `mk_nested_word_item`,
`{MetaItem,MetaItemKind,NestedMetaItem}::token_trees`,
`MetaItemKind::attr_args`, `MetaItemLit::{from_lit_kind,to_token}`,
`ExtCtxt::meta_word`.
Overall this cuts more than 100 lines of code and makes thing simpler.
`Lit::from_included_bytes` calls `Lit::from_lit_kind`, but the two call
sites only need the resulting `token::Lit`, not the full `ast::Lit`.
This commit changes those call sites to use `LitKind::to_token_lit`,
which means `from_included_bytes` can be removed.
`MacArgs` is an enum with three variants: `Empty`, `Delimited`, and `Eq`. It's
used in two ways:
- For representing attribute macro arguments (e.g. in `AttrItem`), where all
three variants are used.
- For representing function-like macros (e.g. in `MacCall` and `MacroDef`),
where only the `Delimited` variant is used.
In other words, `MacArgs` is used in two quite different places due to them
having partial overlap. I find this makes the code hard to read. It also leads
to various unreachable code paths, and allows invalid values (such as
accidentally using `MacArgs::Empty` in a `MacCall`).
This commit splits `MacArgs` in two:
- `DelimArgs` is a new struct just for the "delimited arguments" case. It is
now used in `MacCall` and `MacroDef`.
- `AttrArgs` is a renaming of the old `MacArgs` enum for the attribute macro
case. Its `Delimited` variant now contains a `DelimArgs`.
Various other related things are renamed as well.
These changes make the code clearer, avoids several unreachable paths, and
disallows the invalid values.
Instead of `ast::Lit`.
Literal lowering now happens at two different times. Expression literals
are lowered when HIR is crated. Attribute literals are lowered during
parsing.
This commit changes the language very slightly. Some programs that used
to not compile now will compile. This is because some invalid literals
that are removed by `cfg` or attribute macros will no longer trigger
errors. See this comment for more details:
https://github.com/rust-lang/rust/pull/102944#issuecomment-1277476773
Recover wrong-cased keywords that start items
(_this pr was inspired by [this tweet](https://twitter.com/Azumanga/status/1552982326409367561)_)
r? `@estebank`
We've talked a bit about this recovery, but I just wanted to make sure that this is the right approach :)
For now I've only added the case insensitive recovery to `use`s, since most other items like `impl` blocks, modules, functions can start with multiple keywords which complicates the matter.
PR #98758 introduced code to avoid redundant assertions in derived code
like this:
```
let _: ::core::clone::AssertParamIsClone<u32>;
let _: ::core::clone::AssertParamIsClone<u32>;
```
But the predicate `is_simple_path` introduced as part of this failed to
account for generic arguments. Therefore the deriving code erroneously
considers types like `Option<bool>` and `Option<f32>` to be the same.
This commit fixes `is_simple_path`.
Fixes#103157.
Remove `TokenStreamBuilder`
`TokenStreamBuilder` is used to combine multiple token streams. It can be removed, leaving the code a little simpler and a little faster.
r? `@Aaron1011`
`TokenStreamBuilder` exists to concatenate multiple `TokenStream`s
together. This commit removes it, and moves the concatenation
functionality directly into `TokenStream`, via two new methods
`push_tree` and `push_stream`. This makes things both simpler and
faster.
`push_tree` is particularly important. `TokenStreamBuilder` only had a
single `push` method, which pushed a stream. But in practice most of the
time we push a single token tree rather than a stream, and `push_tree`
avoids the need to build a token stream with a single entry (which
requires two allocations, one for the `Lrc` and one for the `Vec`).
The main `push_tree` use arises from a change to one of the `ToInternal`
impls in `proc_macro_server.rs`. It now returns a `SmallVec` instead of
a `TokenStream`. This return value is then iterated over by
`concat_trees`, which does `push_tree` on each element. Furthermore, the
use of `SmallVec` avoids more allocations, because there is always only
one or two token trees.
Note: the removed `TokenStreamBuilder::push` method had some code to
deal with a quadratic blowup case from #57735. This commit removes the
code. I tried and failed to reproduce the blowup from that PR, before
and after this change. Various other changes have happened to
`TokenStreamBuilder` in the meantime, so I suspect the original problem
is no longer relevant, though I don't have proof of this. Generally
speaking, repeatedly extending a `Vec` without pre-determining its
capacity is *not* quadratic. It's also incredibly common, within rustc
and many other Rust programs, so if there were performance problems
there you'd think it would show up in other places, too.
Group together more size assertions.
Also add a few more assertions for some relevant token-related types.
And fix an erroneous comment in `rustc_errors`.
r? `@lqd`
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
make `mk_attr_id` part of `ParseSess`
Updates #48685
The current `mk_attr_id` uses the `AtomicU32` type, which is not very efficient and adds a lot of lock contention in a parallel environment.
This PR refers to the task list in #48685, uses `mk_attr_id` as a method of the `AttrIdGenerator` struct, and adds a new field `attr_id_generator` to `ParseSess`.
`AttrIdGenerator` uses the `WorkerLocal`, which has two advantages: 1. `Cell` is more efficient than `AtomicU32`, and does not increase any lock contention. 2. We put the index of the work thread in the first few bits of the generated `AttrId`, so that the `AttrId` generated in different threads can be easily guaranteed to be unique.
cc `@cjgillot`
Initial implementation of dyn*
This PR adds extremely basic and incomplete support for [dyn*](https://smallcultfollowing.com/babysteps//blog/2022/03/29/dyn-can-we-make-dyn-sized/). The goal is to get something in tree behind a flag to make collaboration easier, and also to make sure the implementation so far is not unreasonable. This PR does quite a few things:
* Introduce `dyn_star` feature flag
* Adds parsing for `dyn* Trait` types
* Defines `dyn* Trait` as a sized type
* Adds support for explicit casts, like `42usize as dyn* Debug`
* Including const evaluation of such casts
* Adds codegen for drop glue so things are cleaned up properly when a `dyn* Trait` object goes out of scope
* Adds codegen for method calls, at least for methods that take `&self`
Quite a bit is still missing, but this gives us a starting point. Note that this is never intended to become stable surface syntax for Rust, but rather `dyn*` is planned to be used as an implementation detail for async functions in dyn traits.
Joint work with `@nikomatsakis` and `@compiler-errors.`
r? `@bjorn3`
The primary purpose of this commit is to introduce the
dyn_star flag so we can begin experimenting with implementation.
In order to have something to do in the feature gate test, we also add
parser support for `dyn* Trait` objects. These are currently treated
just like `dyn Trait` objects, but this will change in the future.
Note that for now `dyn* Trait` is experimental syntax to enable
implementing some of the machinery needed for async fn in dyn traits
without fully supporting the feature.
The `visit_path_segment` method of both the AST and HIR visitors has a
`path_span` argument that isn't necessary. This commit removes it.
There are two very small and inconsequential functional changes.
- One call to `NodeCollector::insert` now is passed a path segment
identifier span instead of a full path span. This span is only used in
a panic message printed in the case of an internal compiler bug.
- Likewise, one call to `LifetimeCollectVisitor::record_elided_anchor`
now uses a path segment identifier span instead of a full path span.
This span is used to make some `'_` lifetimes.
`To` is better than `Create` for indicating that this is a non-consuming
conversion, rather than creating something out of nothing.
And the addition of `Attr` is because the current names makes them sound
like they relate to `TokenStream`, but really they relate to
`AttrTokenStream`.
These two type names are long and have long matching prefixes. I find
them hard to read, especially in combinations like
`AttrAnnotatedTokenStream::new(vec![AttrAnnotatedTokenTree::Token(..)])`.
This commit renames them as `AttrToken{Stream,Tree}`.
Suggest removing unnecessary prefix let in patterns
Helps with #101291, though I think `@estebank` probably wants this:
> Finally, I think it'd be nice if we could detect that we don't know for sure and "just" swallow the rest of the expression (find the next ; accounting for nested braces) or the end of the item (easier).
... to be implemented before we close that issue out completely.
`BindingAnnotation` refactor
* `ast::BindingMode` is deleted and replaced with `hir::BindingAnnotation` (which is moved to `ast`)
* `BindingAnnotation` is changed from an enum to a tuple struct e.g. `BindingAnnotation(ByRef::No, Mutability::Mut)`
* Associated constants added for convenience `BindingAnnotation::{NONE, REF, MUT, REF_MUT}`
One goal is to make it more clear that `BindingAnnotation` merely represents syntax `ref mut` and not the actual binding mode. This was especially confusing since we had `ast::BindingMode`->`hir::BindingAnnotation`->`thir::BindingMode`.
I wish there were more symmetry between `ByRef` and `Mutability` (variant) naming (maybe `Mutable::Yes`?), and I also don't love how long the name `BindingAnnotation` is, but this seems like the best compromise. Ideas welcome.
Replace `rustc_data_structures::thin_vec::ThinVec` with `thin_vec::ThinVec`
`rustc_data_structures::thin_vec::ThinVec` looks like this:
```
pub struct ThinVec<T>(Option<Box<Vec<T>>>);
```
It's just a zero word if the vector is empty, but requires two
allocations if it is non-empty. So it's only usable in cases where the
vector is empty most of the time.
This commit removes it in favour of `thin_vec::ThinVec`, which is also
word-sized, but stores the length and capacity in the same allocation as
the elements. It's good in a wider variety of situation, e.g. in enum
variants where the vector is usually/always non-empty.
The commit also:
- Sorts some `Cargo.toml` dependency lists, to make additions easier.
- Sorts some `use` item lists, to make additions easier.
- Changes `clean_trait_ref_with_bindings` to take a
`ThinVec<TypeBinding>` rather than a `&[TypeBinding]`, because this
avoid some unnecessary allocations.
r? `@spastorino`
`rustc_data_structures::thin_vec::ThinVec` looks like this:
```
pub struct ThinVec<T>(Option<Box<Vec<T>>>);
```
It's just a zero word if the vector is empty, but requires two
allocations if it is non-empty. So it's only usable in cases where the
vector is empty most of the time.
This commit removes it in favour of `thin_vec::ThinVec`, which is also
word-sized, but stores the length and capacity in the same allocation as
the elements. It's good in a wider variety of situation, e.g. in enum
variants where the vector is usually/always non-empty.
The commit also:
- Sorts some `Cargo.toml` dependency lists, to make additions easier.
- Sorts some `use` item lists, to make additions easier.
- Changes `clean_trait_ref_with_bindings` to take a
`ThinVec<TypeBinding>` rather than a `&[TypeBinding]`, because this
avoid some unnecessary allocations.
In some places we use `Vec<Attribute>` and some places we use
`ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points
where we have to convert between `Vec` and `ThinVec`.
This commit changes the places that use `Vec<Attribute>` to use
`AttrVec`. A lot of this is mechanical and boring, but there are
some interesting parts:
- It adds a few new methods to `ThinVec`.
- It implements `MapInPlace` for `ThinVec`, and introduces a macro to
avoid the repetition of this trait for `Vec`, `SmallVec`, and
`ThinVec`.
Overall, it makes the code a little nicer, and has little effect on
performance. But it is a precursor to removing
`rustc_data_structures::thin_vec::ThinVec` and replacing it with
`thin_vec::ThinVec`, which is implemented more efficiently.
- Rename `ast::Lit::token` as `ast::Lit::token_lit`, because its type is
`token::Lit`, which is not a token. (This has been confusing me for a
long time.)
reasonable because we have an `ast::token::Lit` inside an `ast::Lit`.
- Rename `LitKind::{from,to}_lit_token` as
`LitKind::{from,to}_token_lit`, to match the above change and
`token::Lit`.
There is some redundancy here, but the extra assertions make it easier
to keep track of relative things, e.g. `ExprKind` is the biggest part
of `Expr`.
Stringify non-shorthand visibility correctly
This makes `stringify!(pub(in crate))` evaluate to `pub(in crate)` rather than `pub(crate)`, matching the behavior before the `crate` shorthand was removed. Further, this changes `stringify!(pub(in super))` to evaluate to `pub(in super)` rather than the current `pub(super)`. If the latter is not desired (it is _technically_ breaking), it can be undone.
Fixes#99981
`@rustbot` label +C-bug +regression-from-stable-to-beta +T-compiler
Rollup of 8 pull requests
Successful merges:
- #99340 (Fix ICE in Definitions::create_def)
- #99629 (Improve `cannot move out of` error message)
- #99864 (bootstrap: don't emit warn about duplicated deps with same/different features if some of sets actually empty)
- #99911 (Remove some uses of `guess_head_span`)
- #99976 (Make Rustdoc exit with correct error code when scraping examples from invalid files)
- #100003 (Improve size assertions.)
- #100012 (Avoid `Ty` to `String` conversions)
- #100020 (better error when python is not found in x - issue #99648)
Failed merges:
- #99994 (Replace `guess_head_span` with `opt_span`)
r? `@ghost`
`@rustbot` modify labels: rollup
- For any file with four or more size assertions, move them into a
separate module (as is already done for `hir.rs`).
- Add some more for AST nodes and THIR nodes.
- Put the `hir.rs` ones in alphabetical order.
From 72 bytes to 12 bytes (on x86-64).
There are two parts to this:
- Changing various source code offsets from 64-bit to 32-bit. This is
not a problem because the rest of rustc also uses 32-bit source code
offsets. This means `Token` is no longer `Copy` but this causes no
problems.
- Removing the `RawStrError` from `LiteralKind`. Raw string literal
invalidity is now indicated by a `None` value within
`RawStr`/`RawByteStr`, and the new `validate_raw_str` function can be
used to re-lex an invalid raw string literal to get the `RawStrError`.
There is one very small change in behaviour. Previously, if a raw string
literal matched both the `InvalidStarter` and `TooManyHashes` cases,
the latter would override the former. This has now changed, because
`raw_double_quoted_string` now uses `?` and so returns immediately upon
detecting the `InvalidStarter` case. I think this is a slight
improvement to report the earlier-detected error, and it explains the
change in the `test_too_many_hashes` test.
The commit also removes a couple of comments that refer to #77629 and
say that the size of these types don't affect performance. These
comments are wrong, though the performance effect is small.
Remove `TreeAndSpacing`.
A `TokenStream` contains a `Lrc<Vec<(TokenTree, Spacing)>>`. But this is
not quite right. `Spacing` makes sense for `TokenTree::Token`, but does
not make sense for `TokenTree::Delimited`, because a
`TokenTree::Delimited` cannot be joined with another `TokenTree`.
This commit fixes this problem, by adding `Spacing` to `TokenTree::Token`,
changing `TokenStream` to contain a `Lrc<Vec<TokenTree>>`, and removing the
`TreeAndSpacing` typedef.
The commit removes these two impls:
- `impl From<TokenTree> for TokenStream`
- `impl From<TokenTree> for TreeAndSpacing`
These were useful, but also resulted in code with many `.into()` calls
that was hard to read, particularly for anyone not highly familiar with
the relevant types. This commit makes some other changes to compensate:
- `TokenTree::token()` becomes `TokenTree::token_{alone,joint}()`.
- `TokenStream::token_{alone,joint}()` are added.
- `TokenStream::delimited` is added.
This results in things like this:
```rust
TokenTree::token(token::Semi, stmt.span).into()
```
changing to this:
```rust
TokenStream::token_alone(token::Semi, stmt.span)
```
This makes the type of the result, and its spacing, clearer.
These changes also simplifies `Cursor` and `CursorRef`, because they no longer
need to distinguish between `next` and `next_with_spacing`.
r? `@petrochenkov`
A `TokenStream` contains a `Lrc<Vec<(TokenTree, Spacing)>>`. But this is
not quite right. `Spacing` makes sense for `TokenTree::Token`, but does
not make sense for `TokenTree::Delimited`, because a
`TokenTree::Delimited` cannot be joined with another `TokenTree`.
This commit fixes this problem, by adding `Spacing` to `TokenTree::Token`,
changing `TokenStream` to contain a `Lrc<Vec<TokenTree>>`, and removing the
`TreeAndSpacing` typedef.
The commit removes these two impls:
- `impl From<TokenTree> for TokenStream`
- `impl From<TokenTree> for TreeAndSpacing`
These were useful, but also resulted in code with many `.into()` calls
that was hard to read, particularly for anyone not highly familiar with
the relevant types. This commit makes some other changes to compensate:
- `TokenTree::token()` becomes `TokenTree::token_{alone,joint}()`.
- `TokenStream::token_{alone,joint}()` are added.
- `TokenStream::delimited` is added.
This results in things like this:
```rust
TokenTree::token(token::Semi, stmt.span).into()
```
changing to this:
```rust
TokenStream::token_alone(token::Semi, stmt.span)
```
This makes the type of the result, and its spacing, clearer.
These changes also simplifies `Cursor` and `CursorRef`, because they no longer
need to distinguish between `next` and `next_with_spacing`.
More derive output improvements
This PR includes:
- Some test improvements.
- Some cosmetic changes to derive output that make the code look more like what a human would write.
- Some more fundamental improvements to `cmp` and `partial_cmp` generation.
r? `@Mark-Simulacrum`
It's common to see repeated assertions like this in derived `clone` and
`eq` methods:
```
let _: ::core::clone::AssertParamIsClone<u32>;
let _: ::core::clone::AssertParamIsClone<u32>;
```
This commit avoids them.
Fixup missing renames from `#[main]` to `#[rustc_main]`
In #84217 `#[main]` was removed and replaced with `#[rustc_main]`. In some places the rename was forgotten, which makes the current code confusing, because at first glance it seems that `#[main]` is still around. Perform the renames also in these places.
I noticed this (after first being confused by it) when working on #97802.
r? `@petrochenkov`
(since you reviewed the other PR)
In fc357039f9 `#[main]` was removed and replaced with `#[rustc_main]`.
In some place the rename was forgotten, which makes the current code
confusing, because at first glance it seems that `#[main]` is still
around. Perform the renames also in these places.
Both functions do some modifying of streams using `make_mut`:
- `push` sometimes glues the first token of the next stream to the last
token of the first stream.
- `build` appends tokens to the first stream.
By doing all of this in the one place, things are simpler. The first
stream can be modified in both ways (if necessary) in the one place, and
any next stream with the first token removed doesn't need to be stored.
It's a weird function: it lets you modify the token stream in the middle
of iteration. There is only one call site, and it is only used for the
rare `ProceduralMasquerade` legacy case.
This avoids the name clash with `rustc_serialize::Encoder` (a trait),
and allows lots qualifiers to be removed and imports to be simplified
(e.g. fewer `as` imports).
(This was previously merged as commit 5 in #94732 and then was reverted
in #97905 because of a perf regression caused by commit 4 in #94732.)
Don't suggest adding `let` in certain `if` conditions
Avoid being too eager to suggest `let` in an `if` condition with an `=`, namely when the LHS of the `=` isn't even valid as a pattern (to a first degree approximation).
This heustic I came up with kinda sucks. Let me know if it needs to be refined.
This avoids the name clash with `rustc_serialize::Encoder` (a trait),
and allows lots qualifiers to be removed and imports to be simplified
(e.g. fewer `as` imports).
There are two impls of the `Encoder` trait: `opaque::Encoder` and
`opaque::FileEncoder`. The former encodes into memory and is infallible, the
latter writes to file and is fallible.
Currently, standard `Result`/`?`/`unwrap` error handling is used, but this is a
bit verbose and has non-trivial cost, which is annoying given how rare failures
are (especially in the infallible `opaque::Encoder` case).
This commit changes how `Encoder` fallibility is handled. All the `emit_*`
methods are now infallible. `opaque::Encoder` requires no great changes for
this. `opaque::FileEncoder` now implements a delayed error handling strategy.
If a failure occurs, it records this via the `res` field, and all subsequent
encoding operations are skipped if `res` indicates an error has occurred. Once
encoding is complete, the new `finish` method is called, which returns a
`Result`. In other words, there is now a single `Result`-producing method
instead of many of them.
This has very little effect on how any file errors are reported if
`opaque::FileEncoder` has any failures.
Much of this commit is boring mechanical changes, removing `Result` return
values and `?` or `unwrap` from expressions. The more interesting parts are as
follows.
- serialize.rs: The `Encoder` trait gains an `Ok` associated type. The
`into_inner` method is changed into `finish`, which returns
`Result<Vec<u8>, !>`.
- opaque.rs: The `FileEncoder` adopts the delayed error handling
strategy. Its `Ok` type is a `usize`, returning the number of bytes
written, replacing previous uses of `FileEncoder::position`.
- Various methods that take an encoder now consume it, rather than being
passed a mutable reference, e.g. `serialize_query_result_cache`.
The change was "Show invisible delimiters (within comments) when pretty
printing". It's useful to show these delimiters, but is a breaking
change for some proc macros.
Fixes#97608.
Permit `asm_const` and `asm_sym` to reference generic params
Related #96557
These constructs will be allowed:
```rust
fn foofoo<const N: usize>() {}
unsafe fn foo<const N: usize>() {
asm!("/* {0} */", const N);
asm!("/* {0} */", const N + 1);
asm!("/* {0} */", sym foofoo::<N>);
}
fn barbar<T>() {}
unsafe fn bar<T>() {
asm!("/* {0} */", const std::mem::size_of::<T>());
asm!("/* {0} */", const std::mem::size_of::<(T, T)>());
asm!("/* {0} */", sym barbar::<T>);
asm!("/* {0} */", sym barbar::<(T, T)>);
}
```
`@Amanieu,` I didn't switch inline asms to use `DefKind::InlineAsm`, as I see little value doing that; given that no type inference is needed, it will only make typecking slower and more complex but will have no real gains. I did switch them to follow the same code path as inline asm during symbol resolution, though.
The `error: unconstrained generic constant` you mentioned in #76001 is due to the fact that `to_const` will actually add a wfness obligation to the constant, which we don't need for `asm_const`, so I have that removed.
`@rustbot` label: +A-inline-assembly +F-asm
Begin fixing all the broken doctests in `compiler/`
Begins to fix#95994.
All of them pass now but 24 of them I've marked with `ignore HELP (<explanation>)` (asking for help) as I'm unsure how to get them to work / if we should leave them as they are.
There are also a few that I marked `ignore` that could maybe be made to work but seem less important.
Each `ignore` has a rough "reason" for ignoring after it parentheses, with
- `(pseudo-rust)` meaning "mostly rust-like but contains foreign syntax"
- `(illustrative)` a somewhat catchall for either a fragment of rust that doesn't stand on its own (like a lone type), or abbreviated rust with ellipses and undeclared types that would get too cluttered if made compile-worthy.
- `(not-rust)` stuff that isn't rust but benefits from the syntax highlighting, like MIR.
- `(internal)` uses `rustc_*` code which would be difficult to make work with the testing setup.
Those reason notes are a bit inconsistently applied and messy though. If that's important I can go through them again and try a more principled approach. When I run `rg '```ignore \(' .` on the repo, there look to be lots of different conventions other people have used for this sort of thing. I could try unifying them all if that would be helpful.
I'm not sure if there was a better existing way to do this but I wrote my own script to help me run all the doctests and wade through the output. If that would be useful to anyone else, I put it here: https://github.com/Elliot-Roberts/rust_doctest_fixing_tool
Overhaul `MacArgs`
Motivation:
- Clarify some code that I found hard to understand.
- Eliminate one use of three places where `TokenKind::Interpolated` values are created.
r? `@petrochenkov`
The value in `MacArgs::Eq` is currently represented as a `Token`.
Because of `TokenKind::Interpolated`, `Token` can be either a token or
an arbitrary AST fragment. In practice, a `MacArgs::Eq` starts out as a
literal or macro call AST fragment, and then is later lowered to a
literal token. But this is very non-obvious. `Token` is a much more
general type than what is needed.
This commit restricts things, by introducing a new type `MacArgsEqKind`
that is either an AST expression (pre-lowering) or an AST literal
(post-lowering). The downside is that the code is a bit more verbose in
a few places. The benefit is that makes it much clearer what the
possibilities are (though also shorter in some other places). Also, it
removes one use of `TokenKind::Interpolated`, taking us a step closer to
removing that variant, which will let us make `Token` impl `Copy` and
remove many "handle Interpolated" code paths in the parser.
Things to note:
- Error messages have improved. Messages like this:
```
unexpected token: `"bug" + "found"`
```
now say "unexpected expression", which makes more sense. Although
arbitrary expressions can exist within tokens thanks to
`TokenKind::Interpolated`, that's not obvious to anyone who doesn't
know compiler internals.
- In `parse_mac_args_common`, we no longer need to collect tokens for
the value expression.
The comment on this function explains that it's a specialized version of
`maybe_whole_expr`. But `maybe_whole_expr` doesn't do anything with
`NtIdent`, so `is_whole_expr` also doesn't need to.
Using an obviously-placeholder syntax. An RFC would still be needed before this could have any chance at stabilization, and it might be removed at any point.
But I'd really like to have it in nightly at least to ensure it works well with try_trait_v2, especially as we refactor the traits.
The two paths are equivalent -- they both end up calling `visit_expr()`.
I have kept the more restrictive path, the one that requires that
`token` be an expression nonterminal. (The next commit will simplify this
function further.)
Add `BoundKind` in `visit_param_bounds` to check questions in bounds
From the FIXME in the impl of `AstValidator`. Better bound checks by adding `BoundCtxt` type parameter to `visit_param_bound`
cc `@ecstatic-morse`
This lets us clone just the parts within a `TokenTree` that need
cloning, rather than the entire thing. This is a surprisingly large
performance win, up to 4% on `async-std-1.10.0`.
Report undeclared lifetimes during late resolution.
First step in https://github.com/rust-lang/rust/pull/91557
We reuse the rib design of the current resolution framework. Specific `LifetimeRib` and `LifetimeRibKind` types are introduced. The most important variant is `LifetimeRibKind::Generics`, which happens each time we encounter something which may introduce generic lifetime parameters. It can be an item or a `for<...>` binder. The `LifetimeBinderKind` specifies how this rib behaves with respect to in-band lifetimes.
r? `@petrochenkov`
Remove last vestiges of skippng ident span hashing
This removes a comment that no longer applies, and properly hashes
the full ident for path segments.
Implement sym operands for global_asm!
Tracking issue: #93333
This PR is pretty much a complete rewrite of `sym` operand support for inline assembly so that the same implementation can be shared by `asm!` and `global_asm!`. The main changes are:
- At the AST level, `sym` is represented as a special `InlineAsmSym` AST node containing a path instead of an `Expr`.
- At the HIR level, `sym` is split into `SymStatic` and `SymFn` depending on whether the path resolves to a static during AST lowering (defaults to `SynFn` if `get_early_res` fails).
- `SymFn` is just an `AnonConst`. It runs through typeck and we just collect the resulting type at the end. An error is emitted if the type is not a `FnDef`.
- `SymStatic` directly holds a path and the `DefId` of the `static` that it is pointing to.
- The representation at the MIR level is mostly unchanged. There is a minor change to THIR where `SymFn` is a constant instead of an expression.
- At the codegen level we need to apply the target's symbol mangling to the result of `tcx.symbol_name()` depending on the target. This is done by calling the LLVM name mangler, which handles all of the details.
- On Mach-O, all symbols have a leading underscore.
- On x86 Windows, different mangling is used for cdecl, stdcall, fastcall and vectorcall.
- No mangling is needed on other platforms.
r? `@nagisa`
cc `@eddyb`
Create (unstable) 2024 edition
[On Zulip](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Deprecating.20macro.20scoping.20shenanigans/near/272860652), there was a small aside regarding creating the 2024 edition now as opposed to later. There was a reasonable amount of support and no stated opposition.
This change creates the 2024 edition in the compiler and creates a prelude for the 2024 edition. There is no current difference between the 2021 and 2024 editions. Cargo and other tools will need to be updated separately, as it's not in the same repository. This change permits the vast majority of work towards the next edition to proceed _now_ instead of waiting until 2024.
For sanity purposes, I've merged the "hello" UI tests into a single file with multiple revisions. Otherwise we'd end up with a file per edition, despite them being essentially identical.
````@rustbot```` label +T-lang +S-waiting-on-review
Not sure on the relevant team, to be honest.
By heap allocating the argument within `NtPath`, `NtVis`, and `NtStmt`.
This slightly reduces cumulative and peak allocation amounts, most
notably on `deep-vector`.
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.