r? @nikomatsakis The typechecker previously passed around a boolean return flag to
indicate whether it saw something with type _|_ (that is, something
it knows at compile-time will definitely diverge) and also had some
manual checks for the `ty_err` pseudo-type that represents a previous
type error. This was because the typing rules implemented by the
typechecker didn't properly propagate _|_ and ty_err. I fixed it.
This also required changing expected error messages in a few tests,
as now we're printing out fewer derived errors -- in fact, at this
point we should print out no derived errors, so report any that
you see (ones that include "[type error]") as bugs.
A slice now always refers to something that returns an borrowed pointer, views don't exist anymore. If you want to have an explictit copy of a slice, use `to_owned()`
The typechecker previously passed around a boolean return flag to
indicate whether it saw something with type _|_ (that is, something
it knows at compile-time will definitely diverge) and also had some
manual checks for the `ty_err` pseudo-type that represents a previous
type error. This was because the typing rules implemented by the
typechecker didn't properly propagate _|_ and ty_err. I fixed it.
This also required changing expected error messages in a few tests,
as now we're printing out fewer derived errors -- in fact, at this
point we should print out no derived errors, so report any that
you see (ones that include "[type error]") as bugs.
This would close#2761. I figured that if you're supplying your own custom message, you probably don't mind the stringification of the condition to not be in the message.
For bootstrapping purposes, this commit does not remove all uses of
the keyword "pure" -- doing so would cause the compiler to no longer
bootstrap due to some syntax extensions ("deriving" in particular).
Instead, it makes the compiler ignore "pure". Post-snapshot, we can
remove "pure" from the language.
There are quite a few (~100) borrow check errors that were essentially
all the result of mutable fields or partial borrows of `@mut`. Per
discussions with Niko I think we want to allow partial borrows of
`@mut` but detect obvious footguns. We should also improve the error
message when `@mut` is erroneously reborrowed.
adjusting a few foreign functions that were declared with by-ref
mode. This also allows us to remove by-val mode in the near future.
With copy mode, though, we have to be careful because Rust will implicitly pass
somethings by pointer but this may not be the C ABI rules. For example, rust
will pass a struct Foo as a Foo*. So I added some code into the adapters to
fix this (though the C ABI rules may put the pointer back, oh well).
This patch also includes a lint mode for the use of by-ref mode
in foreign functions as the semantics of this have changed.
Continuing #5140
For the sake of getting this merged I've disabled debuginfo tests on mac (where running gdb needs root). Please feel free to follow up with further improvements.
r? @graydon
This removes `log` from the language. Because we can't quite implement it as a syntax extension (probably need globals at the least) it simply renames the keyword to `__log` and hides it behind macros.
After this the only way to log is with `debug!`, `info!`, etc. I figure that if there is demand for `log!` we can add it back later.
I am not sure that we ever agreed on this course of action, though I *think* there is consensus that `log` shouldn't be a statement.
This is the first in a series of patches I'm working on to clean up the code related to `deriving`. This patch allows
```
#[deriving_eq]
#[deriving_iter_bytes]
#[deriving_clone]
struct Foo { bar: uint }
```
to be replaced with:
```
#[deriving(Eq, IterBytes, Clone)]
struct Foo { bar: uint }
```
It leaves the old attributes alone for the time being.
Eventually I'd like to incorporate the new closest-match-suggestion infrastructure for mistyped trait names, and also pass the sub-attributes to the deriving code, so that the following will be possible:
```
#[deriving(TotalOrd(qux, bar))]
struct Foo { bar: uint, baz: char, qux: int }
```
This says to derive an `impl` in which the objects' `qux` fields are compared first, followed by `bar`, while `baz` is ignored in the comparison. If no fields are specified explicitly, all fields will be compared in the order they're defined in the `struct`. This might also be useful for `Eq`. Coming soon.