Emit warning when named arguments are used positionally in format
Addresses Issue 98466 by emitting an error if a named argument
is used like a position argument (i.e. the name is not used in
the string to be formatted).
Fixes rust-lang#98466
Implement `for<>` lifetime binder for closures
This PR implements RFC 3216 ([TI](https://github.com/rust-lang/rust/issues/97362)) and allows code like the following:
```rust
let _f = for<'a, 'b> |a: &'a A, b: &'b B| -> &'b C { b.c(a) };
// ^^^^^^^^^^^--- new!
```
cc ``@Aaron1011`` ``@cjgillot``
Addresses Issue 98466 by emitting a warning if a named argument
is used like a position argument (i.e. the name is not used in
the string to be formatted).
Fixes rust-lang#98466
Make lowering a query
Split from https://github.com/rust-lang/rust/pull/88186.
This PR refactors the relationship between lowering and the resolver outputs in order to make lowering itself a query.
In a first part, lowering is changed to avoid modifying resolver outputs, by maintaining its own data structures for creating new `NodeId`s and so.
Then, the `TyCtxt` is modified to allow creating new `LocalDefId`s from inside it. This is done by:
- enclosing `Definitions` in a lock, so as to allow modification;
- creating a query `register_def` whose purpose is to declare a `LocalDefId` to the query system.
See `TyCtxt::create_def` and `TyCtxt::iter_local_def_id` for more detailed explanations of the design.
Finishing touches for `#[expect]` (RFC 2383)
This PR adds documentation and some functionality to rustc's lint passes, to manually fulfill expectations. This is needed for some lints in Clippy. Hopefully, it should be one of the last things before we can move forward with stabilizing this feature.
As part of this PR, I've also updated `clippy::duplicate_mod` to showcase how this new functionality can be used and to ensure that it works correctly.
---
changelog: [`duplicate_mod`]: Fixed lint attribute interaction
r? `@wesleywiser`
cc: https://github.com/rust-lang/rust/issues/97660, https://github.com/rust-lang/rust/issues/85549
And I guess that's it. Here have a magical unicorn 🦄
macros: `LintDiagnostic` derive
- Move `LintDiagnosticBuilder` into `rustc_errors` so that a diagnostic derive can refer to it.
- Introduce a `DecorateLint` trait, which is equivalent to `SessionDiagnostic` or `AddToDiagnostic` but for lints. Necessary without making more changes to the lint infrastructure as `DecorateLint` takes a `LintDiagnosticBuilder` and re-uses all of the existing logic for determining what type of diagnostic a lint should be emitted as (e.g. error/warning).
- Various refactorings of the diagnostic derive machinery (extracting `build_field_mapping` helper and moving `sess` field out of the `DiagnosticDeriveBuilder`).
- Introduce a `LintDiagnostic` derive macro that works almost exactly like the `SessionDiagnostic` derive macro except that it derives a `DecorateLint` implementation instead. A new derive is necessary for this because `SessionDiagnostic` is intended for when the generated code creates the diagnostic. `AddToDiagnostic` could have been used but it would have required more changes to the lint machinery.
~~At time of opening this pull request, ignore all of the commits from #98624, it's just the last few commits that are new.~~
r? `@oli-obk`
`SessionDiagnostic` isn't suitable for use on lints as whether or not it
creates an error or a warning is decided at compile-time by the macro,
whereas lints decide this at runtime based on the location of the lint
being reported (as it will depend on the user's `allow`/`deny`
attributes, etc). Re-using most of the machinery for
`SessionDiagnostic`, this macro introduces a `LintDiagnostic` derive
which implements a `DecorateLint` trait, taking a
`LintDiagnosticBuilder` and adding to the lint according to the
diagnostic struct.
lints: mostly translatable diagnostics
As lints are created slightly differently than other diagnostics, intended to try make them translatable first and then look into the applicability of diagnostic structs but ended up just making most of the diagnostics in the crate translatable (which will still be useful if I do make a lot of them structs later anyway).
r? ``@compiler-errors``
Accept `DiagnosticMessage` in `LintDiagnosticBuilder::build` so that
lints can be built with translatable diagnostic messages.
Signed-off-by: David Wood <david.wood@huawei.com>
translation: lint fix + more migration
- Unfortunately, the diagnostic lints are very broken and trigger much more often than they should. This PR corrects the conditional which checks if the function call being made is to a diagnostic function so that it returns in every intended case.
- The `rustc_lint_diagnostics` attribute is used by the diagnostic translation/struct migration lints to identify calls where non-translatable diagnostics or diagnostics outwith impls are being created. Any function used in creating a diagnostic should be annotated with this attribute so this PR adds the attribute to many more functions.
- Port the diagnostics from the `rustc_privacy` crate and enable the lints for that crate.
r? ``@compiler-errors``
Unfortunately, the diagnostic lints are very broken and trigger much
more often than they should. Correct the conditional which checks if the
function call being made is to a diagnostic function so that it returns
in every intended case.
Signed-off-by: David Wood <david.wood@huawei.com>
Support lint expectations for `--force-warn` lints (RFC 2383)
Rustc has a `--force-warn` flag, which overrides lint level attributes and forces the diagnostics to always be warn. This means, that for lint expectations, the diagnostic can't be suppressed as usual. This also means that the expectation would not be fulfilled, even if a lint had been triggered in the expected scope.
This PR now also tracks the expectation ID in the `ForceWarn` level. I've also made some minor adjustments, to possibly catch more bugs and make the whole implementation more robust.
This will probably conflict with https://github.com/rust-lang/rust/pull/97718. That PR should ideally be reviewed and merged first. The conflict itself will be trivial to fix.
---
r? `@wesleywiser`
cc: `@flip1995` since you've helped with the initial review and also discussed this topic with me. 🙃
Follow-up of: https://github.com/rust-lang/rust/pull/87835
Issue: https://github.com/rust-lang/rust/issues/85549
Yeah, and that's it.
The `MissingDoc` lint has quadratic behaviour when processing doc comments.
This is a problem for large doc comments (e.g. 1000+ lines) when
`deny(missing_code)` is enabled.
A 1000-line doc comment using `//!` comments is represented as 1000 attributes
on an item. The lint machinery iterates over each attribute with
`visit_attribute`. `MissingDoc`'s impl of that function calls
`with_lint_attrs`, which calls `enter_attrs`, which iterates over all 1000
attributes looking for a `doc(hidden)` attribute. I.e. for every attribute we
iterate over all the other attributes.
The fix is simple: don't call `with_lint_attrs` on attributes. This makes
sense: `with_lint_attrs` is intended to iterate over the attributes on a
language fragment like a statement or expression, but it doesn't need to
be called on attributes themselves.
lint: add diagnostic translation migration lints
Introduce allow-by-default lints for checking whether diagnostics are written in
`SessionDiagnostic` or `AddSubdiagnostic` impls and whether diagnostics are translatable. These lints can be denied for modules once they are fully migrated to impls and translation.
These lints are intended to be temporary - once all diagnostics have been changed then we can just change the APIs we have and that will enforce these constraints thereafter.
r? `````@oli-obk`````
And likewise for the `Const::val` method.
Because its type is called `ConstKind`. Also `val` is a confusing name
because `ConstKind` is an enum with seven variants, one of which is
called `Value`. Also, this gives consistency with `TyS` and `PredicateS`
which have `kind` fields.
The commit also renames a few `Const` variables from `val` to `c`, to
avoid confusion with the `ConstKind::Value` variant.
Remove unnecessary `to_string` and `String::new`
73fa217bc1 changed the type of the `suggestion` argument to `impl ToString`. This patch removes unnecessary `to_string` and `String::new`.
cc: `````@davidtwco`````
This is done so that we can check the noisiness of this lint in a Crater
run. Note that when I built the compiler, I actually encountered lots of
places where this lint will trigger and fail compilation, so I had to
also set `RUSTFLAGS_NOT_BOOSTRAP` to `-A let_underscore_drop` when
compiling to prevent that.
Introduce allow-by-default lints for checking whether diagnostics are
written in `SessionDiagnostic`/`AddSubdiagnostic` impls and whether
diagnostics are translatable. These lints can be denied for modules once
they are fully migrated to impls and translation.
Signed-off-by: David Wood <david.wood@huawei.com>
This commit makes type folding more like the way chalk does it.
Currently, `TypeFoldable` has `fold_with` and `super_fold_with` methods.
- `fold_with` is the standard entry point, and defaults to calling
`super_fold_with`.
- `super_fold_with` does the actual work of traversing a type.
- For a few types of interest (`Ty`, `Region`, etc.) `fold_with` instead
calls into a `TypeFolder`, which can then call back into
`super_fold_with`.
With the new approach, `TypeFoldable` has `fold_with` and
`TypeSuperFoldable` has `super_fold_with`.
- `fold_with` is still the standard entry point, *and* it does the
actual work of traversing a type, for all types except types of
interest.
- `super_fold_with` is only implemented for the types of interest.
Benefits of the new model.
- I find it easier to understand. The distinction between types of
interest and other types is clearer, and `super_fold_with` doesn't
exist for most types.
- With the current model is easy to get confused and implement a
`super_fold_with` method that should be left defaulted. (Some of the
precursor commits fixed such cases.)
- With the current model it's easy to call `super_fold_with` within
`TypeFolder` impls where `fold_with` should be called. The new
approach makes this mistake impossible, and this commit fixes a number
of such cases.
- It's potentially faster, because it avoids the `fold_with` ->
`super_fold_with` call in all cases except types of interest. A lot of
the time the compile would inline those away, but not necessarily
always.
Remove migrate borrowck mode
Closes#58781Closes#43234
# Stabilization proposal
This PR proposes the stabilization of `#![feature(nll)]` and the removal of `-Z borrowck`. Current borrow checking behavior of item bodies is currently done by first infering regions *lexically* and reporting any errors during HIR type checking. If there *are* any errors, then MIR borrowck (NLL) never occurs. If there *aren't* any errors, then MIR borrowck happens and any errors there would be reported. This PR removes the lexical region check of item bodies entirely and only uses MIR borrowck. Because MIR borrowck could never *not* be run for a compiled program, this should not break any programs. It does, however, change diagnostics significantly and allows a slightly larger set of programs to compile.
Tracking issue: #43234
RFC: https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md
Version: 1.63 (2022-06-30 => beta, 2022-08-11 => stable).
## Motivation
Over time, the Rust borrow checker has become "smarter" and thus allowed more programs to compile. There have been three different implementations: AST borrowck, MIR borrowck, and polonius (well, in progress). Additionally, there is the "lexical region resolver", which (roughly) solves the constraints generated through HIR typeck. It is not a full borrow checker, but does emit some errors.
The AST borrowck was the original implementation of the borrow checker and was part of the initially stabilized Rust 1.0. In mid 2017, work began to implement the current MIR borrow checker and that effort ompleted by the end of 2017, for the most part. During 2018, efforts were made to migrate away from the AST borrow checker to the MIR borrow checker - eventually culminating into "migrate" mode - where HIR typeck with lexical region resolving following by MIR borrow checking - being active by default in the 2018 edition.
In early 2019, migrate mode was turned on by default in the 2015 edition as well, but with MIR borrowck errors emitted as warnings. By late 2019, these warnings were upgraded to full errors. This was followed by the complete removal of the AST borrow checker.
In the period since, various errors emitted by the MIR borrow checker have been improved to the point that they are mostly the same or better than those emitted by the lexical region resolver.
While there do remain some degradations in errors (tracked under the [NLL-diagnostics tag](https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3ANLL-diagnostics), those are sufficiently small and rare enough that increased flexibility of MIR borrow check-only is now a worthwhile tradeoff.
## What is stabilized
As said previously, this does not fundamentally change the landscape of accepted programs. However, there are a [few](https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3ANLL-fixed-by-NLL) cases where programs can compile under `feature(nll)`, but not otherwise.
There are two notable patterns that are "fixed" by this stabilization. First, the `scoped_threads` feature, which is a continutation of a pre-1.0 API, can sometimes emit a [weird lifetime error](https://github.com/rust-lang/rust/issues/95527) without NLL. Second, actually seen in the standard library. In the `Extend` impl for `HashMap`, there is an implied bound of `K: 'a` that is available with NLL on but not without - this is utilized in the impl.
As mentioned before, there are a large number of diagnostic differences. Most of them are better, but some are worse. None are serious or happen often enough to need to block this PR. The biggest change is the loss of error code for a number of lifetime errors in favor of more general "lifetime may not live long enough" error. While this may *seem* bad, the former error codes were just attempts to somewhat-arbitrarily bin together lifetime errors of the same type; however, on paper, they end up being roughly the same with roughly the same kinds of solutions.
## What isn't stabilized
This PR does not completely remove the lexical region resolver. In the future, it may be possible to remove that (while still keeping HIR typeck) or to remove it together with HIR typeck.
## Tests
Many test outputs get updated by this PR. However, there are number of tests specifically geared towards NLL under `src/test/ui/nll`
## History
* On 2017-07-14, [tracking issue opened](https://github.com/rust-lang/rust/issues/43234)
* On 2017-07-20, [initial empty MIR pass added](https://github.com/rust-lang/rust/pull/43271)
* On 2017-08-29, [RFC opened](https://github.com/rust-lang/rfcs/pull/2094)
* On 2017-11-16, [Integrate MIR type-checker with NLL](https://github.com/rust-lang/rust/pull/45825)
* On 2017-12-20, [NLL feature complete](https://github.com/rust-lang/rust/pull/46862)
* On 2018-07-07, [Don't run AST borrowck on mir mode](https://github.com/rust-lang/rust/pull/52083)
* On 2018-07-27, [Add migrate mode](https://github.com/rust-lang/rust/pull/52681)
* On 2019-04-22, [Enable migrate mode on 2015 edition](https://github.com/rust-lang/rust/pull/59114)
* On 2019-08-26, [Don't downgrade errors on 2015 edition](https://github.com/rust-lang/rust/pull/64221)
* On 2019-08-27, [Remove AST borrowck](https://github.com/rust-lang/rust/pull/64790)
Using diagnostic items avoids having to update the paths if the guard
types ever get moved around for some reason. Additionally, it also greatly
simplifies the `is_sync_lock` check.
If the type has a trivial Drop implementation, then it is probably irrelevant
that the type was dropped immediately, since nothing important
happens on drop. Hence, we can bail out early instead of doing some
expensive checks.
This commit uses `span_suggestion_verbose` to add what specific code
changes can be done as suggested by the lint--in this case, either binding
the expression to an unused variable or using `std::mem::drop` to drop
the value explicitly.
These lints are very noisy and are allow-by-default in clippy anyways.
Hence, setting them to allow-by-default here makes more sense than
warning constantly on these cases.
Similar to `let_underscore_drop`, this lint checks for statements similar
to `let _ = foo`, where `foo` is a lock guard. These types of let
statements are especially problematic because the lock gets released
immediately, instead of at the end of the scope. This behavior is almost
always the wrong thing.
This lint checks for statements similar to `let _ = foo`, where `foo` is
a type that implements `Drop`. These types of let statements cause the
expression in them to be dropped immediately, instead of at the end of
the scope. Such behavior can be surprizing, especially if you are
relying on the value to be dropped at the end of the scope. Instead, the
binding should be an underscore prefixed name (like `_unused`) or the
value should explicitly be passed to `std::mem::drop()` if the value
really should be dropped immediately.
Make weird name lints trigger behind cfg_attr
The weird name lints (`unknown_lints`, `renamed_and_removed_lints`), the lints that lint the linting, were previously not firing for lint level declarations behind `cfg_attr`, as they were only running before expansion.
Now, this will give a `unknown_lints` warning:
```Rust
#[cfg_attr(all(), allow(this_lint_does_not_exist))]
fn foo() {}
```
Lint level declarations behind a `cfg_attr` whose condition is not applying are still ignored. So this still won't give a warning:
```Rust
#[cfg_attr(any(), allow(this_lint_does_not_exist))]
fn foo() {}
```
Furthermore, this PR also makes the weird name lints respect level delcarations for *them* that were hidden by `cfg_attr`, making them consistent to other lints. So this will now not issue a warning:
```Rust
#[cfg_attr(all(), allow(unknown_lints))]
mod foo {
#[allow(does_not_exist)]
fn foo() {
}
}
```
Fixes#97094
Previously, we were emitting weird name lints (for renamed or unknown lints)
before expansion, most importantly before cfg expansion.
This meant that the weird name lints would not fire
for lint attributes hidden inside cfg_attr. The same applied
for lint level specifications of those lints.
By moving the lints for the lint names to the post-expansion
phase, these issues are resolved.
Add a query for checking whether a function is an intrinsic.
work towards #93145
This will reduce churn when we add more ways to declare intrinsics
r? `@scottmcm`
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Implement a lint to warn about unused macro rules
This implements a new lint to warn about unused macro rules (arms/matchers), similar to the `unused_macros` lint added by #41907 that warns about entire macros.
```rust
macro_rules! unused_empty {
(hello) => { println!("Hello, world!") };
() => { println!("empty") }; //~ ERROR: 1st rule of macro `unused_empty` is never used
}
fn main() {
unused_empty!(hello);
}
```
Builds upon #96149 and #96156.
Fixes#73576
Do not lint on explicit outlives requirements from external macros.
The current implementation of the list rightfully skipped where predicates from external macros.
However, if the where predicate came from the current macro but the bounds were from an external macro, the lint still fired.
Closes https://github.com/rust-lang/rust/issues/96640
Support tool lints with the `#[expect]` attribute (RFC 2383)
This PR fixes the ICE https://github.com/rust-lang/rust/issues/94953 by making the assert for converted expectation IDs conditional.
Additionally, it moves the lint expectation check into a separate query to support rustdoc and other tools. On the way, I've also added some tests to ensure that the attribute works for Clippy and rustdoc lints.
The number of changes comes from the long test file. This may look like a monster PR, this may smell like a monster PR and this may be a monster PR, but it's a harmless monster. 🦕
---
Closes: https://github.com/rust-lang/rust/issues/94953
cc: https://github.com/rust-lang/rust/issues/85549
r? `@wesleywiser`
cc: `@rust-lang/rustdoc`
Track if a where bound comes from a impl Trait desugar
With https://github.com/rust-lang/rust/pull/93803 `impl Trait` function arguments get desugared to hidden where bounds. However, Clippy needs to know if a bound was originally a `impl Trait` or an actual bound. This adds a field to the `WhereBoundPredicate` struct to keep track of this information during AST->HIR lowering.
r? `@cjgillot`
cc `@estebank` (as the reviewer of #93803)
With #93803 `impl Trait` function arguments get desugared to hidden
where bounds. However, Clippy needs to know if a bound was originally a
impl Trait or an actual bound. This adds a field to the
`WhereBoundPredicate` struct to keep track of this information during
HIR lowering.
Remove mutable_borrow_reservation_conflict lint and allow the code pattern
This was the only breaking issue with the NLL stabilization PR. Lang team decided to go ahead and allow this.
r? `@nikomatsakis`
Closes#59159Closes#56254
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
Change `span_suggestion` (and variants) to take `impl ToString` rather
than `String` for the suggested code, as this simplifies the
requirements on the diagnostic derive.
Signed-off-by: David Wood <david.wood@huawei.com>
Remove `--extern-location` and all associated code
`--extern-location` was an experiment to investigate the best way to
generate useful diagnostics for unused dependency warnings by enabling a
build system to identify the corresponding build config.
While I did successfully use this, I've since been convinced the
alternative `--json unused-externs` mechanism is the way to go, and
there's no point in having two mechanisms with basically the same
functionality.
This effectively reverts https://github.com/rust-lang/rust/pull/72603
`--extern-location` was an experiment to investigate the best way to
generate useful diagnostics for unused dependency warnings by enabling a
build system to identify the corresponding build config.
While I did successfully use this, I've since been convinced the
alternative `--json unused-externs` mechanism is the way to go, and
there's no point in having two mechanisms with basically the same
functionality.
This effectively reverts https://github.com/rust-lang/rust/pull/72603
Let CTFE to handle partially uninitialized unions without marking the entire value as uninitialized.
follow up to #94411
To fix https://github.com/rust-lang/rust/issues/69488 and by extension fix https://github.com/rust-lang/rust/issues/94371, we should stop treating types like `MaybeUninit<usize>` as something that the `Scalar` type in the interpreter engine can represent. So we add a new field to `abi::Primitive` that records whether the primitive is nested in a union
cc `@RalfJung`
r? `@ghost`
This commit updates the signatures of all diagnostic functions to accept
types that can be converted into a `DiagnosticMessage`. This enables
existing diagnostic calls to continue to work as before and Fluent
identifiers to be provided. The `SessionDiagnostic` derive just
generates normal diagnostic calls, so these APIs had to be modified to
accept Fluent identifiers.
In addition, loading of the "fallback" Fluent bundle, which contains the
built-in English messages, has been implemented.
Each diagnostic now has "arguments" which correspond to variables in the
Fluent messages (necessary to render a Fluent message) but no API for
adding arguments has been added yet. Therefore, diagnostics (that do not
require interpolation) can be converted to use Fluent identifiers and
will be output as before.
`MultiSpan` contains labels, which are more complicated with the
introduction of diagnostic translation and will use types from
`rustc_errors` - however, `rustc_errors` depends on `rustc_span` so
`rustc_span` cannot use types like `DiagnosticMessage` without
dependency cycles. Introduce a new `rustc_error_messages` crate that can
contain `DiagnosticMessage` and `MultiSpan`.
Signed-off-by: David Wood <david.wood@huawei.com>
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
fix typos
Rework of #94603 which got closed as I was trying to unmerge and repush. This is a subset of changes from the original pr as I sed'd whatever typos I remembered from the original PR
thanks to `@cuishuang` for the original PR
Improve `expect` impl and handle `#[expect(unfulfilled_lint_expectations)]` (RFC 2383)
This PR updates unstable `ExpectationIds` in stashed diagnostics and adds some asserts to ensure that the stored expectations are really empty in the end. Additionally, it handles the `#[expect(unfulfilled_lint_expectations)]` case.
According to the [Errors and lints docs](https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels) the `error` level should only be used _"when the compiler detects a problem that makes it unable to compile the program"_. As this isn't the case with `#[expect(unfulfilled_lint_expectations)]` I decided to only create a warning. To avoid adding a new lint only for this case, I simply emit a `unfulfilled_lint_expectations` diagnostic with an additional note.
---
r? `@wesleywiser` I'm requesting a review from you since you reviewed the previous PR https://github.com/rust-lang/rust/pull/87835. You are welcome to reassign it if you're busy 🙃
rfc: [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html)
tracking issue: https://github.com/rust-lang/rust/issues/85549
cc: `@flip1995` In case you're also interested in this :)
Improve `AdtDef` interning.
This commit makes `AdtDef` use `Interned`. Much of the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
r? `@fee1-dead`
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
This also affects the `non_exhaustive_omitted_patterns` and
`must_not_suspend` lints as they are not stable. This also changes the
diagnostic level to pull from `unknown_lints` instead of always being
allow or deny.
This change causes unstable lints to be ignored if the `unknown_lints`
lint is allowed. To achieve this, it also changes lints to apply as soon
as they are processed. Previously, lints in the same set were processed
as a batch and then all simultaneously applied.
Implementation of https://github.com/rust-lang/compiler-team/issues/469
Generalize `get_nullable_type` to allow types where null is all-ones.
Generalize get_nullable_type to accept types that have an all-ones bit
pattern as their sentry "null" value.
This will allow [`OwnedFd`], [`BorrowedFd`], [`OwnedSocket`], and
[`BorrowedSocket`] to be marked with
`#[rustc_nonnull_optimization_guaranteed]`, which will allow
`Option<OwnedFd>`, `Option<BorrowedFd>`, `Option<OwnedSocket>`, and
`Option<BorrowedSocket>` to be used in FFI declarations, as described
in the [I/O safety RFC].
For example, it will allow a function like `open` on Unix and `WSASocketW`
on Windows to be declared using `Option<OwnedFd>` and `Option<OwnedSocket>`
return types, respectively.
The actual change to add `#[rustc_nonnull_optimization_guaranteed]`
to the abovementioned types will be a separate PR, as it'll depend on
having this patch in the stage0 compiler.
Also, update the diagnostics to mention that "niche optimizations" are
used in libstd as well as libcore, as `rustc_layout_scalar_valid_range_start`
and `rustc_layout_scalar_valid_range_end` are already in use in libstd.
[`OwnedFd`]: c9dc44be24/library/std/src/os/fd/owned.rs (L49)
[`BorrowedFd`]: c9dc44be24/library/std/src/os/fd/owned.rs (L29)
[`OwnedSocket`]: c9dc44be24/library/std/src/os/windows/io/socket.rs (L51)
[`BorrowedSocket`]: c9dc44be24/library/std/src/os/windows/io/socket.rs (L29)
[I/O safety RFC]: https://github.com/rust-lang/rfcs/blob/master/text/3128-io-safety.md#ownedfd-and-borrowedfdfd-1
Emit `unused_attributes` if a level attr only has a reason
Fixes a comment from `compiler/rustc_lint/src/levels.rs`. Lint level attributes that only contain a reason will also trigger the `unused_attribute` lint. The lint now also checks for the `expect` lint level.
That's it, have a great rest of the day for everyone reasoning this 🙃
cc: #55112
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Generalize get_nullable_type to accept types that have an all-ones bit
pattern as their sentry "null" value.
This will allow [`OwnedFd`], [`BorrowedFd`], [`OwnedSocket`], and
[`BorrowedSocket`] to be marked with
`#[rustc_nonnull_optimization_guaranteed]`, which will allow
`Option<OwnedFd>`, `Option<BorrowedFd>`, `Option<OwnedSocket>`, and
`Option<BorrowedSocket>` to be used in FFI declarations, as described
in the [I/O safety RFC].
For example, it will allow a function like `open` on Unix and `WSASocketW`
on Windows to be declared using `Option<OwnedFd>` and `Option<OwnedSocket>`
return types, respectively.
The actual change to add `#[rustc_nonnull_optimization_guaranteed]`
to the abovementioned types will be a separate PR, as it'll depend on
having this patch in the stage0 compiler.
Also, update the diagnostics to mention that "niche optimizations" are
used in libstd as well as libcore, as `rustc_layout_scalar_valid_range_start`
and `rustc_layout_scalar_valid_range_end` are already in use in libstd.
[`OwnedFd`]: c9dc44be24/library/std/src/os/fd/owned.rs (L49)
[`BorrowedFd`]: c9dc44be24/library/std/src/os/fd/owned.rs (L29)
[`OwnedSocket`]: c9dc44be24/library/std/src/os/windows/io/socket.rs (L51)
[`BorrowedSocket`]: c9dc44be24/library/std/src/os/windows/io/socket.rs (L29)
[I/O safety RFC]: https://github.com/rust-lang/rfcs/blob/master/text/3128-io-safety.md#ownedfd-and-borrowedfdfd-1
Implementation of the `expect` attribute (RFC 2383)
This is an implementation of the `expect` attribute as described in [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html). The attribute allows the suppression of lint message by expecting them. Unfulfilled lint expectations (meaning no expected lint was caught) will emit the `unfulfilled_lint_expectations` lint at the `expect` attribute.
### Example
#### input
```rs
// required feature flag
#![feature(lint_reasons)]
#[expect(unused_mut)] // Will warn about an unfulfilled expectation
#[expect(unused_variables)] // Will be fulfilled by x
fn main() {
let x = 0;
}
```
#### output
```txt
warning: this lint expectation is unfulfilled
--> $DIR/trigger_lint.rs:3:1
|
LL | #[expect(unused_mut)] // Will warn about an unfulfilled expectation
| ^^^^^^^^^^
|
= note: `#[warn(unfulfilled_lint_expectations)]` on by default
```
### Implementation
This implementation introduces `Expect` as a new lint level for diagnostics, which have been expected. All lint expectations marked via the `expect` attribute are collected in the [`LintLevelsBuilder`] and assigned an ID that is stored in the new lint level. The `LintLevelsBuilder` stores all found expectations and the data needed to emit the `unfulfilled_lint_expectations` in the [`LintLevelsMap`] which is the result of the [`lint_levels()`] query.
The [`rustc_errors::HandlerInner`] is the central error handler in rustc and handles the emission of all diagnostics. Lint message with the level `Expect` are suppressed during this emission, while the expectation ID is stored in a set which marks them as fulfilled. The last step is then so simply check if all expectations collected by the [`LintLevelsBuilder`] in the [`LintLevelsMap`] have been marked as fulfilled in the [`rustc_errors::HandlerInner`]. Otherwise, a new lint message will be emitted.
The implementation of the `LintExpectationId` required some special handling to make it stable between sessions. Lints can be emitted during [`EarlyLintPass`]es. At this stage, it's not possible to create a stable identifier. The level instead stores an unstable identifier, which is later converted to a stable `LintExpectationId`.
### Followup TO-DOs
All open TO-DOs have been marked with `FIXME` comments in the code. This is the combined list of them:
* [ ] The current implementation doesn't cover cases where the `unfulfilled_lint_expectations` lint is actually expected by another `expect` attribute.
* This should be easily possible, but I wanted to get some feedback before putting more work into this.
* This could also be done in a new PR to not add to much more code to this one
* [ ] Update unstable documentation to reflect this change.
* [ ] Update unstable expectation ids in [`HandlerInner::stashed_diagnostics`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html#structfield.stashed_diagnostics)
### Open questions
I also have a few open questions where I would like to get feedback on:
1. The RFC discussion included a suggestion to change the `expect` attribute to something else. (Initiated by `@Ixrec` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378424091), suggestion from `@scottmcm` to use `#[should_lint(...)]` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378648877)). No real conclusion was drawn on that point from my understanding. Is this still open for discussion, or was this discarded with the merge of the RFC?
2. How should the expect attribute deal with the new `force-warn` lint level?
---
This approach was inspired by a discussion with `@LeSeulArtichaut.`
RFC tracking issue: #54503
Mentoring/Implementation issue: #85549
[`LintLevelsBuilder`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/levels/struct.LintLevelsBuilder.html
[`LintLevelsMap`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/struct.LintLevelMap.html
[`lint_levels()`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.lint_levels
[`rustc_errors::HandlerInner`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html
[`EarlyLintPass`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/trait.EarlyLintPass.html
* Add UI tests with macros for the `expect` attribute (RFC-2383)
* Addressed review comments - mostly UI test updates (RFC-2383)
* Documented lint level attribute on macro not working bug (RFC-2383)
See `rust#87391`
Document that pre-expansion lint passes are softly deprecated
The pre-expansion lint pass has been softly deprecated since https://github.com/rust-lang/rust/pull/69838. Every once in a while I see someone mention it as a possibility, only get the feedback that it's deprecated. This PR officially documents that the method is soft deprecated to have a single point of truth for it.
That's it. Have a great rest of the day 🙃
---
* See [rust#69838](https://github.com/rust-lang/rust/pull/69838)
* See [rust-clippy#5518](https://github.com/rust-lang/rust-clippy/pull/5518)
Initiate the inner usage of `let_chains`
The intention here is create a strong and robust foundation for a possible future stabilization so please, do not let the lack of any external tool support prevent the merge of this PR. Besides, `let_chains` is useful by itself.
cc #53667
Rollup of 4 pull requests
Successful merges:
- #93850 (Don't ICE when an extern static is too big for the current architecture)
- #94154 (Wire up unstable rustc --check-cfg to rustdoc)
- #94353 (Fix debug_assert in unused lint pass)
- #94366 (Add missing item to release notes)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
This fixes a debug assertion in the unused lint pass. As a side effect,
this also improves the span generated for tuples in the
`unused_must_use` lint.
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
Improve `--check-cfg` implementation
This pull-request is a mix of improvements regarding the `--check-cfg` implementation:
- Simpler internal representation (usage of `Option` instead of separate bool)
- Add --check-cfg to the unstable book (based on the RFC)
- Improved diagnostics:
* List possible values when the value is unexpected
* Suggest if possible a name or value that is similar
- Add more tests (well known names, mix of combinations, ...)
r? ```@petrochenkov```
Move ty::print methods to Drop-based scope guards
Primary goal is reducing codegen of the TLS access for each closure, which shaves ~3 seconds of bootstrap time over rustc as a whole.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
Lazy type-alias-impl-trait
Previously opaque types were processed by
1. replacing all mentions of them with inference variables
2. memorizing these inference variables in a side-table
3. at the end of typeck, resolve the inference variables in the side table and use the resolved type as the hidden type of the opaque type
This worked okayish for `impl Trait` in return position, but required lots of roundabout type inference hacks and processing.
This PR instead stops this process of replacing opaque types with inference variables, and just keeps the opaque types around.
Whenever an opaque type `O` is compared with another type `T`, we make the comparison succeed and record `T` as the hidden type. If `O` is compared to `U` while there is a recorded hidden type for it, we grab the recorded type (`T`) and compare that against `U`. This makes implementing
* https://github.com/rust-lang/rfcs/pull/2515
much simpler (previous attempts on the inference based scheme were very prone to ICEs and general misbehaviour that was not explainable except by random implementation defined oddities).
r? `@nikomatsakis`
fixes#93411fixes#88236
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
Add note suggesting that predicate may be satisfied, but is not `const`
Not sure if we should be printing this in addition to, or perhaps _instead_ of the help message:
```
help: the trait `~const Add` is not implemented for `NonConstAdd`
```
Also added `ParamEnv::is_const` and `PolyTraitPredicate::is_const_if_const` and, in a separate commit, used those in other places instead of `== hir::Constness::Const`, etc.
r? ````@fee1-dead````
Add links to the reference and rust by example for asm! docs and lints
These were previously removed in #91728 due to broken links.
cc ``@ehuss`` since this updates the rust-by-example submodule
Clarify the `usage-of-qualified-ty` error message.
I found this message confusing when I encountered it. This commit makes
it clearer that you have to import the unqualified type yourself.
r? `@lcnr`