rust/src/libcore/cmp.rs

416 lines
13 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Defines the `Ord` and `Eq` comparison traits.
//!
//! This module defines both `Ord` and `Eq` traits which are used by the
//! compiler to implement comparison operators. Rust programs may implement
//!`Ord` to overload the `<`, `<=`, `>`, and `>=` operators, and may implement
//! `Eq` to overload the `==` and `!=` operators.
//!
//! For example, to define a type with a customized definition for the Eq
//! operators, you could do the following:
//!
//! ```rust
//! // Our type.
//! struct SketchyNum {
//! num : int
//! }
//!
//! // Our implementation of `Eq` to support `==` and `!=`.
//! impl Eq for SketchyNum {
2014-04-20 23:49:39 -05:00
//! // Our custom eq allows numbers which are near each other to be equal! :D
//! fn eq(&self, other: &SketchyNum) -> bool {
//! (self.num - other.num).abs() < 5
//! }
//! }
//!
//! // Now these binary operators will work when applied!
//! assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
//! assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
//! ```
pub use PartialEq = cmp::Eq;
pub use PartialOrd = cmp::Ord;
/// Trait for values that can be compared for equality and inequality.
///
/// This trait allows partial equality, where types can be unordered instead of
/// strictly equal or unequal. For example, with the built-in floating-point
/// types `a == b` and `a != b` will both evaluate to false if either `a` or
/// `b` is NaN (cf. IEEE 754-2008 section 5.11).
///
/// Eq only requires the `eq` method to be implemented; `ne` is its negation by
/// default.
///
/// Eventually, this will be implemented by default for types that implement
/// `TotalEq`.
#[lang="eq"]
pub trait Eq {
/// This method tests for `self` and `other` values to be equal, and is used by `==`.
fn eq(&self, other: &Self) -> bool;
2013-08-30 21:02:24 -05:00
/// This method tests for `!=`.
2013-08-30 21:02:24 -05:00
#[inline]
fn ne(&self, other: &Self) -> bool { !self.eq(other) }
}
/// Trait for equality comparisons which are [equivalence relations](
/// https://en.wikipedia.org/wiki/Equivalence_relation).
///
/// This means, that in addition to `a == b` and `a != b` being strict
/// inverses, the equality must be (for all `a`, `b` and `c`):
///
/// - reflexive: `a == a`;
/// - symmetric: `a == b` implies `b == a`; and
/// - transitive: `a == b` and `b == c` implies `a == c`.
pub trait TotalEq: Eq {
// FIXME #13101: this method is used solely by #[deriving] to
// assert that every component of a type implements #[deriving]
// itself, the current deriving infrastructure means doing this
// assertion without using a method on this trait is nearly
// impossible.
//
// This should never be implemented by hand.
#[doc(hidden)]
#[inline(always)]
fn assert_receiver_is_total_eq(&self) {}
}
/// An ordering is, e.g, a result of a comparison between two values.
#[deriving(Clone, Eq, Show)]
pub enum Ordering {
/// An ordering where a compared value is less [than another].
Less = -1,
/// An ordering where a compared value is equal [to another].
Equal = 0,
/// An ordering where a compared value is greater [than another].
Greater = 1
}
2013-03-01 21:07:12 -06:00
/// Trait for types that form a [total order](
/// https://en.wikipedia.org/wiki/Total_order).
///
/// An order is a total order if it is (for all `a`, `b` and `c`):
///
/// - total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is
/// true; and
/// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for
/// both `==` and `>`.
pub trait TotalOrd: TotalEq + Ord {
/// This method returns an ordering between `self` and `other` values.
///
/// By convention, `self.cmp(&other)` returns the ordering matching
/// the expression `self <operator> other` if true. For example:
///
/// ```
/// assert_eq!( 5u.cmp(&10), Less); // because 5 < 10
/// assert_eq!(10u.cmp(&5), Greater); // because 10 > 5
/// assert_eq!( 5u.cmp(&5), Equal); // because 5 == 5
/// ```
fn cmp(&self, other: &Self) -> Ordering;
2013-03-01 21:07:12 -06:00
}
impl TotalEq for Ordering {}
impl TotalOrd for Ordering {
#[inline]
fn cmp(&self, other: &Ordering) -> Ordering {
(*self as int).cmp(&(*other as int))
}
}
impl Ord for Ordering {
#[inline]
fn lt(&self, other: &Ordering) -> bool { (*self as int) < (*other as int) }
}
/// Combine orderings, lexically.
///
/// For example for a type `(int, int)`, two comparisons could be done.
/// If the first ordering is different, the first ordering is all that must be returned.
/// If the first ordering is equal, then second ordering is returned.
#[inline]
pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering {
match o1 {
Equal => o2,
_ => o1
}
}
/// Trait for values that can be compared for a sort-order.
///
/// Ord only requires implementation of the `lt` method,
/// with the others generated from default implementations.
///
/// However it remains possible to implement the others separately,
/// for compatibility with floating-point NaN semantics
/// (cf. IEEE 754-2008 section 5.11).
#[lang="ord"]
pub trait Ord: Eq {
/// This method tests less than (for `self` and `other`) and is used by the `<` operator.
fn lt(&self, other: &Self) -> bool;
/// This method tests less than or equal to (`<=`).
#[inline]
fn le(&self, other: &Self) -> bool { !other.lt(self) }
/// This method tests greater than (`>`).
#[inline]
fn gt(&self, other: &Self) -> bool { other.lt(self) }
/// This method tests greater than or equal to (`>=`).
#[inline]
fn ge(&self, other: &Self) -> bool { !self.lt(other) }
2012-08-27 17:44:12 -05:00
}
/// The equivalence relation. Two values may be equivalent even if they are
/// of different types. The most common use case for this relation is
/// container types; e.g. it is often desirable to be able to use `&str`
/// values to look up entries in a container with `String` keys.
pub trait Equiv<T> {
/// Implement this function to decide equivalent values.
fn equiv(&self, other: &T) -> bool;
}
/// Compare and return the minimum of two values.
#[inline]
pub fn min<T: TotalOrd>(v1: T, v2: T) -> T {
if v1 < v2 { v1 } else { v2 }
}
/// Compare and return the maximum of two values.
#[inline]
pub fn max<T: TotalOrd>(v1: T, v2: T) -> T {
if v1 > v2 { v1 } else { v2 }
}
2013-03-01 21:07:12 -06:00
// Implementation of Eq, TotalEq, Ord and TotalOrd for primitive types
#[cfg(not(test))]
mod impls {
use cmp::{Ord, TotalOrd, Eq, TotalEq, Ordering, Less, Greater, Equal};
macro_rules! eq_impl(
($($t:ty)*) => ($(
impl Eq for $t {
#[inline]
fn eq(&self, other: &$t) -> bool { (*self) == (*other) }
#[inline]
fn ne(&self, other: &$t) -> bool { (*self) != (*other) }
}
)*)
)
2014-05-12 23:02:27 -05:00
impl Eq for () {
#[inline]
fn eq(&self, _other: &()) -> bool { true }
#[inline]
fn ne(&self, _other: &()) -> bool { false }
}
eq_impl!(bool char uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
macro_rules! totaleq_impl(
($($t:ty)*) => ($(
impl TotalEq for $t {}
)*)
)
totaleq_impl!(() bool char uint u8 u16 u32 u64 int i8 i16 i32 i64)
macro_rules! ord_impl(
($($t:ty)*) => ($(
impl Ord for $t {
#[inline]
fn lt(&self, other: &$t) -> bool { (*self) < (*other) }
#[inline]
fn le(&self, other: &$t) -> bool { (*self) <= (*other) }
#[inline]
fn ge(&self, other: &$t) -> bool { (*self) >= (*other) }
#[inline]
fn gt(&self, other: &$t) -> bool { (*self) > (*other) }
}
)*)
)
2014-05-12 23:02:27 -05:00
impl Ord for () {
#[inline]
fn lt(&self, _other: &()) -> bool { false }
}
impl Ord for bool {
#[inline]
fn lt(&self, other: &bool) -> bool {
(*self as u8) < (*other as u8)
}
}
ord_impl!(char uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
macro_rules! totalord_impl(
($($t:ty)*) => ($(
impl TotalOrd for $t {
#[inline]
fn cmp(&self, other: &$t) -> Ordering {
if *self < *other { Less }
else if *self > *other { Greater }
else { Equal }
}
}
)*)
)
2014-05-12 23:02:27 -05:00
impl TotalOrd for () {
#[inline]
fn cmp(&self, _other: &()) -> Ordering { Equal }
}
impl TotalOrd for bool {
#[inline]
fn cmp(&self, other: &bool) -> Ordering {
(*self as u8).cmp(&(*other as u8))
}
}
totalord_impl!(char uint u8 u16 u32 u64 int i8 i16 i32 i64)
// & pointers
impl<'a, T: Eq> Eq for &'a T {
#[inline]
fn eq(&self, other: & &'a T) -> bool { *(*self) == *(*other) }
#[inline]
fn ne(&self, other: & &'a T) -> bool { *(*self) != *(*other) }
}
impl<'a, T: Ord> Ord for &'a T {
#[inline]
fn lt(&self, other: & &'a T) -> bool { *(*self) < *(*other) }
#[inline]
fn le(&self, other: & &'a T) -> bool { *(*self) <= *(*other) }
#[inline]
fn ge(&self, other: & &'a T) -> bool { *(*self) >= *(*other) }
#[inline]
fn gt(&self, other: & &'a T) -> bool { *(*self) > *(*other) }
}
impl<'a, T: TotalOrd> TotalOrd for &'a T {
#[inline]
fn cmp(&self, other: & &'a T) -> Ordering { (**self).cmp(*other) }
}
impl<'a, T: TotalEq> TotalEq for &'a T {}
// &mut pointers
impl<'a, T: Eq> Eq for &'a mut T {
#[inline]
fn eq(&self, other: &&'a mut T) -> bool { **self == *(*other) }
#[inline]
fn ne(&self, other: &&'a mut T) -> bool { **self != *(*other) }
}
impl<'a, T: Ord> Ord for &'a mut T {
#[inline]
fn lt(&self, other: &&'a mut T) -> bool { **self < **other }
#[inline]
fn le(&self, other: &&'a mut T) -> bool { **self <= **other }
#[inline]
fn ge(&self, other: &&'a mut T) -> bool { **self >= **other }
#[inline]
fn gt(&self, other: &&'a mut T) -> bool { **self > **other }
}
impl<'a, T: TotalOrd> TotalOrd for &'a mut T {
#[inline]
fn cmp(&self, other: &&'a mut T) -> Ordering { (**self).cmp(*other) }
}
impl<'a, T: TotalEq> TotalEq for &'a mut T {}
// @ pointers
impl<T:Eq> Eq for @T {
#[inline]
fn eq(&self, other: &@T) -> bool { *(*self) == *(*other) }
#[inline]
fn ne(&self, other: &@T) -> bool { *(*self) != *(*other) }
}
impl<T:Ord> Ord for @T {
#[inline]
fn lt(&self, other: &@T) -> bool { *(*self) < *(*other) }
#[inline]
fn le(&self, other: &@T) -> bool { *(*self) <= *(*other) }
#[inline]
fn ge(&self, other: &@T) -> bool { *(*self) >= *(*other) }
#[inline]
fn gt(&self, other: &@T) -> bool { *(*self) > *(*other) }
}
impl<T: TotalOrd> TotalOrd for @T {
#[inline]
fn cmp(&self, other: &@T) -> Ordering { (**self).cmp(*other) }
}
impl<T: TotalEq> TotalEq for @T {}
}
2013-03-01 21:07:12 -06:00
#[cfg(test)]
mod test {
use super::lexical_ordering;
2013-03-01 21:07:12 -06:00
#[test]
2013-03-27 14:20:44 -05:00
fn test_int_totalord() {
assert_eq!(5u.cmp(&10), Less);
assert_eq!(10u.cmp(&5), Greater);
assert_eq!(5u.cmp(&5), Equal);
assert_eq!((-5u).cmp(&12), Less);
assert_eq!(12u.cmp(-5), Greater);
2013-03-01 21:07:12 -06:00
}
2013-03-27 14:20:44 -05:00
#[test]
fn test_mut_int_totalord() {
assert_eq!((&mut 5u).cmp(&10), Less);
assert_eq!((&mut 10u).cmp(&5), Greater);
assert_eq!((&mut 5u).cmp(&5), Equal);
assert_eq!((&mut -5u).cmp(&12), Less);
assert_eq!((&mut 12u).cmp(-5), Greater);
}
#[test]
fn test_ordering_order() {
assert!(Less < Equal);
assert_eq!(Greater.cmp(&Less), Greater);
}
#[test]
fn test_lexical_ordering() {
fn t(o1: Ordering, o2: Ordering, e: Ordering) {
assert_eq!(lexical_ordering(o1, o2), e);
}
let xs = [Less, Equal, Greater];
for &o in xs.iter() {
t(Less, o, Less);
t(Equal, o, o);
t(Greater, o, Greater);
}
}
#[test]
fn test_user_defined_eq() {
// Our type.
struct SketchyNum {
num : int
}
// Our implementation of `Eq` to support `==` and `!=`.
impl Eq for SketchyNum {
2014-04-20 23:49:39 -05:00
// Our custom eq allows numbers which are near each other to be equal! :D
fn eq(&self, other: &SketchyNum) -> bool {
(self.num - other.num).abs() < 5
}
}
// Now these binary operators will work when applied!
assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
}
2013-03-01 21:07:12 -06:00
}