// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Defines the `Ord` and `Eq` comparison traits. //! //! This module defines both `Ord` and `Eq` traits which are used by the //! compiler to implement comparison operators. Rust programs may implement //!`Ord` to overload the `<`, `<=`, `>`, and `>=` operators, and may implement //! `Eq` to overload the `==` and `!=` operators. //! //! For example, to define a type with a customized definition for the Eq //! operators, you could do the following: //! //! ```rust //! // Our type. //! struct SketchyNum { //! num : int //! } //! //! // Our implementation of `Eq` to support `==` and `!=`. //! impl Eq for SketchyNum { //! // Our custom eq allows numbers which are near each other to be equal! :D //! fn eq(&self, other: &SketchyNum) -> bool { //! (self.num - other.num).abs() < 5 //! } //! } //! //! // Now these binary operators will work when applied! //! assert!(SketchyNum {num: 37} == SketchyNum {num: 34}); //! assert!(SketchyNum {num: 25} != SketchyNum {num: 57}); //! ``` pub use PartialEq = cmp::Eq; pub use PartialOrd = cmp::Ord; /// Trait for values that can be compared for equality and inequality. /// /// This trait allows partial equality, where types can be unordered instead of /// strictly equal or unequal. For example, with the built-in floating-point /// types `a == b` and `a != b` will both evaluate to false if either `a` or /// `b` is NaN (cf. IEEE 754-2008 section 5.11). /// /// Eq only requires the `eq` method to be implemented; `ne` is its negation by /// default. /// /// Eventually, this will be implemented by default for types that implement /// `TotalEq`. #[lang="eq"] pub trait Eq { /// This method tests for `self` and `other` values to be equal, and is used by `==`. fn eq(&self, other: &Self) -> bool; /// This method tests for `!=`. #[inline] fn ne(&self, other: &Self) -> bool { !self.eq(other) } } /// Trait for equality comparisons which are [equivalence relations]( /// https://en.wikipedia.org/wiki/Equivalence_relation). /// /// This means, that in addition to `a == b` and `a != b` being strict /// inverses, the equality must be (for all `a`, `b` and `c`): /// /// - reflexive: `a == a`; /// - symmetric: `a == b` implies `b == a`; and /// - transitive: `a == b` and `b == c` implies `a == c`. pub trait TotalEq: Eq { // FIXME #13101: this method is used solely by #[deriving] to // assert that every component of a type implements #[deriving] // itself, the current deriving infrastructure means doing this // assertion without using a method on this trait is nearly // impossible. // // This should never be implemented by hand. #[doc(hidden)] #[inline(always)] fn assert_receiver_is_total_eq(&self) {} } /// An ordering is, e.g, a result of a comparison between two values. #[deriving(Clone, Eq, Show)] pub enum Ordering { /// An ordering where a compared value is less [than another]. Less = -1, /// An ordering where a compared value is equal [to another]. Equal = 0, /// An ordering where a compared value is greater [than another]. Greater = 1 } /// Trait for types that form a [total order]( /// https://en.wikipedia.org/wiki/Total_order). /// /// An order is a total order if it is (for all `a`, `b` and `c`): /// /// - total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is /// true; and /// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for /// both `==` and `>`. pub trait TotalOrd: TotalEq + Ord { /// This method returns an ordering between `self` and `other` values. /// /// By convention, `self.cmp(&other)` returns the ordering matching /// the expression `self other` if true. For example: /// /// ``` /// assert_eq!( 5u.cmp(&10), Less); // because 5 < 10 /// assert_eq!(10u.cmp(&5), Greater); // because 10 > 5 /// assert_eq!( 5u.cmp(&5), Equal); // because 5 == 5 /// ``` fn cmp(&self, other: &Self) -> Ordering; } impl TotalEq for Ordering {} impl TotalOrd for Ordering { #[inline] fn cmp(&self, other: &Ordering) -> Ordering { (*self as int).cmp(&(*other as int)) } } impl Ord for Ordering { #[inline] fn lt(&self, other: &Ordering) -> bool { (*self as int) < (*other as int) } } /// Combine orderings, lexically. /// /// For example for a type `(int, int)`, two comparisons could be done. /// If the first ordering is different, the first ordering is all that must be returned. /// If the first ordering is equal, then second ordering is returned. #[inline] pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering { match o1 { Equal => o2, _ => o1 } } /// Trait for values that can be compared for a sort-order. /// /// Ord only requires implementation of the `lt` method, /// with the others generated from default implementations. /// /// However it remains possible to implement the others separately, /// for compatibility with floating-point NaN semantics /// (cf. IEEE 754-2008 section 5.11). #[lang="ord"] pub trait Ord: Eq { /// This method tests less than (for `self` and `other`) and is used by the `<` operator. fn lt(&self, other: &Self) -> bool; /// This method tests less than or equal to (`<=`). #[inline] fn le(&self, other: &Self) -> bool { !other.lt(self) } /// This method tests greater than (`>`). #[inline] fn gt(&self, other: &Self) -> bool { other.lt(self) } /// This method tests greater than or equal to (`>=`). #[inline] fn ge(&self, other: &Self) -> bool { !self.lt(other) } } /// The equivalence relation. Two values may be equivalent even if they are /// of different types. The most common use case for this relation is /// container types; e.g. it is often desirable to be able to use `&str` /// values to look up entries in a container with `String` keys. pub trait Equiv { /// Implement this function to decide equivalent values. fn equiv(&self, other: &T) -> bool; } /// Compare and return the minimum of two values. #[inline] pub fn min(v1: T, v2: T) -> T { if v1 < v2 { v1 } else { v2 } } /// Compare and return the maximum of two values. #[inline] pub fn max(v1: T, v2: T) -> T { if v1 > v2 { v1 } else { v2 } } // Implementation of Eq, TotalEq, Ord and TotalOrd for primitive types #[cfg(not(test))] mod impls { use cmp::{Ord, TotalOrd, Eq, TotalEq, Ordering, Less, Greater, Equal}; macro_rules! eq_impl( ($($t:ty)*) => ($( impl Eq for $t { #[inline] fn eq(&self, other: &$t) -> bool { (*self) == (*other) } #[inline] fn ne(&self, other: &$t) -> bool { (*self) != (*other) } } )*) ) impl Eq for () { #[inline] fn eq(&self, _other: &()) -> bool { true } #[inline] fn ne(&self, _other: &()) -> bool { false } } eq_impl!(bool char uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64) macro_rules! totaleq_impl( ($($t:ty)*) => ($( impl TotalEq for $t {} )*) ) totaleq_impl!(() bool char uint u8 u16 u32 u64 int i8 i16 i32 i64) macro_rules! ord_impl( ($($t:ty)*) => ($( impl Ord for $t { #[inline] fn lt(&self, other: &$t) -> bool { (*self) < (*other) } #[inline] fn le(&self, other: &$t) -> bool { (*self) <= (*other) } #[inline] fn ge(&self, other: &$t) -> bool { (*self) >= (*other) } #[inline] fn gt(&self, other: &$t) -> bool { (*self) > (*other) } } )*) ) impl Ord for () { #[inline] fn lt(&self, _other: &()) -> bool { false } } impl Ord for bool { #[inline] fn lt(&self, other: &bool) -> bool { (*self as u8) < (*other as u8) } } ord_impl!(char uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64) macro_rules! totalord_impl( ($($t:ty)*) => ($( impl TotalOrd for $t { #[inline] fn cmp(&self, other: &$t) -> Ordering { if *self < *other { Less } else if *self > *other { Greater } else { Equal } } } )*) ) impl TotalOrd for () { #[inline] fn cmp(&self, _other: &()) -> Ordering { Equal } } impl TotalOrd for bool { #[inline] fn cmp(&self, other: &bool) -> Ordering { (*self as u8).cmp(&(*other as u8)) } } totalord_impl!(char uint u8 u16 u32 u64 int i8 i16 i32 i64) // & pointers impl<'a, T: Eq> Eq for &'a T { #[inline] fn eq(&self, other: & &'a T) -> bool { *(*self) == *(*other) } #[inline] fn ne(&self, other: & &'a T) -> bool { *(*self) != *(*other) } } impl<'a, T: Ord> Ord for &'a T { #[inline] fn lt(&self, other: & &'a T) -> bool { *(*self) < *(*other) } #[inline] fn le(&self, other: & &'a T) -> bool { *(*self) <= *(*other) } #[inline] fn ge(&self, other: & &'a T) -> bool { *(*self) >= *(*other) } #[inline] fn gt(&self, other: & &'a T) -> bool { *(*self) > *(*other) } } impl<'a, T: TotalOrd> TotalOrd for &'a T { #[inline] fn cmp(&self, other: & &'a T) -> Ordering { (**self).cmp(*other) } } impl<'a, T: TotalEq> TotalEq for &'a T {} // &mut pointers impl<'a, T: Eq> Eq for &'a mut T { #[inline] fn eq(&self, other: &&'a mut T) -> bool { **self == *(*other) } #[inline] fn ne(&self, other: &&'a mut T) -> bool { **self != *(*other) } } impl<'a, T: Ord> Ord for &'a mut T { #[inline] fn lt(&self, other: &&'a mut T) -> bool { **self < **other } #[inline] fn le(&self, other: &&'a mut T) -> bool { **self <= **other } #[inline] fn ge(&self, other: &&'a mut T) -> bool { **self >= **other } #[inline] fn gt(&self, other: &&'a mut T) -> bool { **self > **other } } impl<'a, T: TotalOrd> TotalOrd for &'a mut T { #[inline] fn cmp(&self, other: &&'a mut T) -> Ordering { (**self).cmp(*other) } } impl<'a, T: TotalEq> TotalEq for &'a mut T {} // @ pointers impl Eq for @T { #[inline] fn eq(&self, other: &@T) -> bool { *(*self) == *(*other) } #[inline] fn ne(&self, other: &@T) -> bool { *(*self) != *(*other) } } impl Ord for @T { #[inline] fn lt(&self, other: &@T) -> bool { *(*self) < *(*other) } #[inline] fn le(&self, other: &@T) -> bool { *(*self) <= *(*other) } #[inline] fn ge(&self, other: &@T) -> bool { *(*self) >= *(*other) } #[inline] fn gt(&self, other: &@T) -> bool { *(*self) > *(*other) } } impl TotalOrd for @T { #[inline] fn cmp(&self, other: &@T) -> Ordering { (**self).cmp(*other) } } impl TotalEq for @T {} } #[cfg(test)] mod test { use super::lexical_ordering; #[test] fn test_int_totalord() { assert_eq!(5u.cmp(&10), Less); assert_eq!(10u.cmp(&5), Greater); assert_eq!(5u.cmp(&5), Equal); assert_eq!((-5u).cmp(&12), Less); assert_eq!(12u.cmp(-5), Greater); } #[test] fn test_mut_int_totalord() { assert_eq!((&mut 5u).cmp(&10), Less); assert_eq!((&mut 10u).cmp(&5), Greater); assert_eq!((&mut 5u).cmp(&5), Equal); assert_eq!((&mut -5u).cmp(&12), Less); assert_eq!((&mut 12u).cmp(-5), Greater); } #[test] fn test_ordering_order() { assert!(Less < Equal); assert_eq!(Greater.cmp(&Less), Greater); } #[test] fn test_lexical_ordering() { fn t(o1: Ordering, o2: Ordering, e: Ordering) { assert_eq!(lexical_ordering(o1, o2), e); } let xs = [Less, Equal, Greater]; for &o in xs.iter() { t(Less, o, Less); t(Equal, o, o); t(Greater, o, Greater); } } #[test] fn test_user_defined_eq() { // Our type. struct SketchyNum { num : int } // Our implementation of `Eq` to support `==` and `!=`. impl Eq for SketchyNum { // Our custom eq allows numbers which are near each other to be equal! :D fn eq(&self, other: &SketchyNum) -> bool { (self.num - other.num).abs() < 5 } } // Now these binary operators will work when applied! assert!(SketchyNum {num: 37} == SketchyNum {num: 34}); assert!(SketchyNum {num: 25} != SketchyNum {num: 57}); } }