rust/src/libsyntax/attr.rs

501 lines
16 KiB
Rust
Raw Normal View History

Deprecate the rev_iter pattern in all places where a DoubleEndedIterator is provided (everywhere but treemap) This commit deprecates rev_iter, mut_rev_iter, move_rev_iter everywhere (except treemap) and also deprecates related functions like rsplit, rev_components, and rev_str_components. In every case, these functions can be replaced with the non-reversed form followed by a call to .rev(). To make this more concrete, a translation table for all functional changes necessary follows: * container.rev_iter() -> container.iter().rev() * container.mut_rev_iter() -> container.mut_iter().rev() * container.move_rev_iter() -> container.move_iter().rev() * sliceorstr.rsplit(sep) -> sliceorstr.split(sep).rev() * path.rev_components() -> path.components().rev() * path.rev_str_components() -> path.str_components().rev() In terms of the type system, this change also deprecates any specialized reversed iterator types (except in treemap), opting instead to use Rev directly if any type annotations are needed. However, since methods directly returning reversed iterators are now discouraged, the need for such annotations should be small. However, in those cases, the general pattern for conversion is to take whatever follows Rev in the original reversed name and surround it with Rev<>: * RevComponents<'a> -> Rev<Components<'a>> * RevStrComponents<'a> -> Rev<StrComponents<'a>> * RevItems<'a, T> -> Rev<Items<'a, T>> * etc. The reasoning behind this change is that it makes the standard API much simpler without reducing readability, performance, or power. The presence of functions such as rev_iter adds more boilerplate code to libraries (all of which simply call .iter().rev()), clutters up the documentation, and only helps code by saving two characters. Additionally, the numerous type synonyms that were used to make the type signatures look nice like RevItems add even more boilerplate and clutter up the docs even more. With this change, all that cruft goes away. [breaking-change]
2014-04-20 23:59:12 -05:00
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Functions dealing with attributes and meta items
use ast;
use ast::{Attribute, Attribute_, MetaItem, MetaWord, MetaNameValue, MetaList};
use codemap::{Span, Spanned, spanned, dummy_spanned};
use codemap::BytePos;
use diagnostic::SpanHandler;
use parse::comments::{doc_comment_style, strip_doc_comment_decoration};
use parse::token::InternedString;
use parse::token;
2013-12-28 11:16:48 -06:00
use crateid::CrateId;
use collections::HashSet;
pub trait AttrMetaMethods {
// This could be changed to `fn check_name(&self, name: InternedString) ->
// bool` which would facilitate a side table recording which
// attributes/meta items are used/unused.
/// Retrieve the name of the meta item, e.g. foo in #[foo],
/// #[foo="bar"] and #[foo(bar)]
fn name(&self) -> InternedString;
/**
* Gets the string value if self is a MetaNameValue variant
* containing a string, otherwise None.
*/
fn value_str(&self) -> Option<InternedString>;
/// Gets a list of inner meta items from a list MetaItem type.
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]>;
/**
* If the meta item is a name-value type with a string value then returns
* a tuple containing the name and string value, otherwise `None`
*/
fn name_str_pair(&self) -> Option<(InternedString,InternedString)>;
}
impl AttrMetaMethods for Attribute {
fn name(&self) -> InternedString { self.meta().name() }
fn value_str(&self) -> Option<InternedString> {
self.meta().value_str()
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]> {
self.node.value.meta_item_list()
}
fn name_str_pair(&self) -> Option<(InternedString,InternedString)> {
self.meta().name_str_pair()
}
}
impl AttrMetaMethods for MetaItem {
fn name(&self) -> InternedString {
match self.node {
MetaWord(ref n) => (*n).clone(),
MetaNameValue(ref n, _) => (*n).clone(),
MetaList(ref n, _) => (*n).clone(),
}
}
fn value_str(&self) -> Option<InternedString> {
match self.node {
MetaNameValue(_, ref v) => {
match v.node {
ast::LitStr(ref s, _) => Some((*s).clone()),
_ => None,
}
},
_ => None
}
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]> {
match self.node {
MetaList(_, ref l) => Some(l.as_slice()),
_ => None
}
}
fn name_str_pair(&self) -> Option<(InternedString,InternedString)> {
self.value_str().map(|s| (self.name(), s))
}
}
// Annoying, but required to get test_cfg to work
impl AttrMetaMethods for @MetaItem {
fn name(&self) -> InternedString { (**self).name() }
fn value_str(&self) -> Option<InternedString> { (**self).value_str() }
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]> {
(**self).meta_item_list()
}
fn name_str_pair(&self) -> Option<(InternedString,InternedString)> {
(**self).name_str_pair()
}
}
pub trait AttributeMethods {
fn meta(&self) -> @MetaItem;
fn desugar_doc(&self) -> Attribute;
}
impl AttributeMethods for Attribute {
/// Extract the MetaItem from inside this Attribute.
fn meta(&self) -> @MetaItem {
self.node.value
}
/// Convert self to a normal #[doc="foo"] comment, if it is a
/// comment like `///` or `/** */`. (Returns self unchanged for
/// non-sugared doc attributes.)
fn desugar_doc(&self) -> Attribute {
if self.node.is_sugared_doc {
let comment = self.value_str().unwrap();
let meta = mk_name_value_item_str(
InternedString::new("doc"),
token::intern_and_get_ident(strip_doc_comment_decoration(
comment.get())));
mk_attr(meta)
} else {
*self
}
}
}
/* Constructors */
pub fn mk_name_value_item_str(name: InternedString, value: InternedString)
-> @MetaItem {
let value_lit = dummy_spanned(ast::LitStr(value, ast::CookedStr));
mk_name_value_item(name, value_lit)
}
pub fn mk_name_value_item(name: InternedString, value: ast::Lit)
-> @MetaItem {
@dummy_spanned(MetaNameValue(name, value))
}
pub fn mk_list_item(name: InternedString, items: Vec<@MetaItem> ) -> @MetaItem {
@dummy_spanned(MetaList(name, items))
}
pub fn mk_word_item(name: InternedString) -> @MetaItem {
@dummy_spanned(MetaWord(name))
}
pub fn mk_attr(item: @MetaItem) -> Attribute {
dummy_spanned(Attribute_ {
style: ast::AttrInner,
value: item,
is_sugared_doc: false,
})
}
pub fn mk_sugared_doc_attr(text: InternedString, lo: BytePos, hi: BytePos)
-> Attribute {
let style = doc_comment_style(text.get());
let lit = spanned(lo, hi, ast::LitStr(text, ast::CookedStr));
let attr = Attribute_ {
style: style,
value: @spanned(lo, hi, MetaNameValue(InternedString::new("doc"),
lit)),
is_sugared_doc: true
};
spanned(lo, hi, attr)
}
/* Searching */
/// Check if `needle` occurs in `haystack` by a structural
/// comparison. This is slightly subtle, and relies on ignoring the
/// span included in the `==` comparison a plain MetaItem.
pub fn contains(haystack: &[@ast::MetaItem],
needle: @ast::MetaItem) -> bool {
debug!("attr::contains (name={})", needle.name());
haystack.iter().any(|item| {
debug!(" testing: {}", item.name());
item.node == needle.node
})
}
pub fn contains_name<AM: AttrMetaMethods>(metas: &[AM], name: &str) -> bool {
debug!("attr::contains_name (name={})", name);
metas.iter().any(|item| {
debug!(" testing: {}", item.name());
item.name().equiv(&name)
})
}
pub fn first_attr_value_str_by_name(attrs: &[Attribute], name: &str)
-> Option<InternedString> {
attrs.iter()
.find(|at| at.name().equiv(&name))
.and_then(|at| at.value_str())
}
pub fn last_meta_item_value_str_by_name(items: &[@MetaItem], name: &str)
-> Option<InternedString> {
Deprecate the rev_iter pattern in all places where a DoubleEndedIterator is provided (everywhere but treemap) This commit deprecates rev_iter, mut_rev_iter, move_rev_iter everywhere (except treemap) and also deprecates related functions like rsplit, rev_components, and rev_str_components. In every case, these functions can be replaced with the non-reversed form followed by a call to .rev(). To make this more concrete, a translation table for all functional changes necessary follows: * container.rev_iter() -> container.iter().rev() * container.mut_rev_iter() -> container.mut_iter().rev() * container.move_rev_iter() -> container.move_iter().rev() * sliceorstr.rsplit(sep) -> sliceorstr.split(sep).rev() * path.rev_components() -> path.components().rev() * path.rev_str_components() -> path.str_components().rev() In terms of the type system, this change also deprecates any specialized reversed iterator types (except in treemap), opting instead to use Rev directly if any type annotations are needed. However, since methods directly returning reversed iterators are now discouraged, the need for such annotations should be small. However, in those cases, the general pattern for conversion is to take whatever follows Rev in the original reversed name and surround it with Rev<>: * RevComponents<'a> -> Rev<Components<'a>> * RevStrComponents<'a> -> Rev<StrComponents<'a>> * RevItems<'a, T> -> Rev<Items<'a, T>> * etc. The reasoning behind this change is that it makes the standard API much simpler without reducing readability, performance, or power. The presence of functions such as rev_iter adds more boilerplate code to libraries (all of which simply call .iter().rev()), clutters up the documentation, and only helps code by saving two characters. Additionally, the numerous type synonyms that were used to make the type signatures look nice like RevItems add even more boilerplate and clutter up the docs even more. With this change, all that cruft goes away. [breaking-change]
2014-04-20 23:59:12 -05:00
items.iter()
.rev()
.find(|mi| mi.name().equiv(&name))
.and_then(|i| i.value_str())
}
/* Higher-level applications */
pub fn sort_meta_items(items: &[@MetaItem]) -> Vec<@MetaItem> {
// This is sort of stupid here, but we need to sort by
// human-readable strings.
let mut v = items.iter()
.map(|&mi| (mi.name(), mi))
.collect::<Vec<(InternedString, @MetaItem)> >();
v.sort_by(|&(ref a, _), &(ref b, _)| a.cmp(b));
// There doesn't seem to be a more optimal way to do this
v.move_iter().map(|(_, m)| {
match m.node {
MetaList(ref n, ref mis) => {
@Spanned {
node: MetaList((*n).clone(),
sort_meta_items(mis.as_slice())),
.. /*bad*/ (*m).clone()
}
}
_ => m
}
}).collect()
}
/**
* From a list of crate attributes get only the meta_items that affect crate
* linkage
*/
pub fn find_linkage_metas(attrs: &[Attribute]) -> Vec<@MetaItem> {
let mut result = Vec::new();
for attr in attrs.iter().filter(|at| at.name().equiv(&("link"))) {
match attr.meta().node {
MetaList(_, ref items) => result.push_all(items.as_slice()),
_ => ()
}
}
result
}
2013-12-27 18:14:01 -06:00
pub fn find_crateid(attrs: &[Attribute]) -> Option<CrateId> {
2013-12-17 15:40:33 -06:00
match first_attr_value_str_by_name(attrs, "crate_id") {
None => None,
Some(id) => from_str::<CrateId>(id.get()),
}
}
#[deriving(Eq)]
pub enum InlineAttr {
InlineNone,
InlineHint,
InlineAlways,
InlineNever,
}
/// True if something like #[inline] is found in the list of attrs.
pub fn find_inline_attr(attrs: &[Attribute]) -> InlineAttr {
// FIXME (#2809)---validate the usage of #[inline] and #[inline]
attrs.iter().fold(InlineNone, |ia,attr| {
2012-08-06 14:34:08 -05:00
match attr.node.value.node {
MetaWord(ref n) if n.equiv(&("inline")) => InlineHint,
MetaList(ref n, ref items) if n.equiv(&("inline")) => {
if contains_name(items.as_slice(), "always") {
InlineAlways
} else if contains_name(items.as_slice(), "never") {
InlineNever
} else {
InlineHint
}
}
2012-08-03 21:59:04 -05:00
_ => ia
}
})
}
/// Tests if any `cfg(...)` meta items in `metas` match `cfg`. e.g.
///
/// test_cfg(`[foo="a", bar]`, `[cfg(foo), cfg(bar)]`) == true
/// test_cfg(`[foo="a", bar]`, `[cfg(not(bar))]`) == false
/// test_cfg(`[foo="a", bar]`, `[cfg(bar, foo="a")]`) == true
/// test_cfg(`[foo="a", bar]`, `[cfg(bar, foo="b")]`) == false
pub fn test_cfg<AM: AttrMetaMethods, It: Iterator<AM>>
(cfg: &[@MetaItem], mut metas: It) -> bool {
// having no #[cfg(...)] attributes counts as matching.
let mut no_cfgs = true;
// this would be much nicer as a chain of iterator adaptors, but
// this doesn't work.
let some_cfg_matches = metas.any(|mi| {
debug!("testing name: {}", mi.name());
if mi.name().equiv(&("cfg")) { // it is a #[cfg()] attribute
debug!("is cfg");
no_cfgs = false;
// only #[cfg(...)] ones are understood.
match mi.meta_item_list() {
Some(cfg_meta) => {
debug!("is cfg(...)");
cfg_meta.iter().all(|cfg_mi| {
debug!("cfg({}[...])", cfg_mi.name());
match cfg_mi.node {
ast::MetaList(ref s, ref not_cfgs)
if s.equiv(&("not")) => {
debug!("not!");
// inside #[cfg(not(...))], so these need to all
// not match.
!not_cfgs.iter().all(|mi| {
debug!("cfg(not({}[...]))", mi.name());
contains(cfg, *mi)
})
}
_ => contains(cfg, *cfg_mi)
}
})
}
None => false
}
} else {
false
}
});
debug!("test_cfg (no_cfgs={}, some_cfg_matches={})", no_cfgs, some_cfg_matches);
no_cfgs || some_cfg_matches
}
/// Represents the #[deprecated="foo"] (etc) attributes.
pub struct Stability {
pub level: StabilityLevel,
pub text: Option<InternedString>
}
/// The available stability levels.
#[deriving(Eq,Ord,Clone,Show)]
pub enum StabilityLevel {
Deprecated,
Experimental,
Unstable,
Stable,
Frozen,
Locked
}
/// Find the first stability attribute. `None` if none exists.
pub fn find_stability<AM: AttrMetaMethods, It: Iterator<AM>>(mut metas: It)
-> Option<Stability> {
for m in metas {
let level = match m.name().get() {
"deprecated" => Deprecated,
"experimental" => Experimental,
"unstable" => Unstable,
"stable" => Stable,
"frozen" => Frozen,
"locked" => Locked,
_ => continue // not a stability level
};
return Some(Stability {
level: level,
text: m.value_str()
});
}
None
}
2014-03-16 13:56:24 -05:00
pub fn require_unique_names(diagnostic: &SpanHandler, metas: &[@MetaItem]) {
let mut set = HashSet::new();
for meta in metas.iter() {
let name = meta.name();
if !set.insert(name.clone()) {
diagnostic.span_fatal(meta.span,
2013-09-27 23:01:58 -05:00
format!("duplicate meta item `{}`", name));
}
}
}
/**
* Fold this over attributes to parse #[repr(...)] forms.
*
* Valid repr contents: any of the primitive integral type names (see
* `int_type_of_word`, below) to specify the discriminant type; and `C`, to use
* the same discriminant size that the corresponding C enum would. These are
* not allowed on univariant or zero-variant enums, which have no discriminant.
*
* If a discriminant type is so specified, then the discriminant will be
* present (before fields, if any) with that type; reprensentation
* optimizations which would remove it will not be done.
*/
2014-03-16 13:56:24 -05:00
pub fn find_repr_attr(diagnostic: &SpanHandler, attr: @ast::MetaItem, acc: ReprAttr)
-> ReprAttr {
let mut acc = acc;
match attr.node {
ast::MetaList(ref s, ref items) if s.equiv(&("repr")) => {
for item in items.iter() {
match item.node {
ast::MetaWord(ref word) => {
let hint = match word.get() {
// Can't use "extern" because it's not a lexical identifier.
"C" => ReprExtern,
_ => match int_type_of_word(word.get()) {
Some(ity) => ReprInt(item.span, ity),
None => {
// Not a word we recognize
diagnostic.span_err(item.span,
"unrecognized representation hint");
ReprAny
}
}
};
if hint != ReprAny {
if acc == ReprAny {
acc = hint;
} else if acc != hint {
diagnostic.span_warn(item.span,
"conflicting representation hint ignored")
}
}
}
// Not a word:
_ => diagnostic.span_err(item.span, "unrecognized representation hint")
}
}
}
// Not a "repr" hint: ignore.
_ => { }
}
2014-03-16 13:56:24 -05:00
acc
}
fn int_type_of_word(s: &str) -> Option<IntType> {
match s {
"i8" => Some(SignedInt(ast::TyI8)),
"u8" => Some(UnsignedInt(ast::TyU8)),
"i16" => Some(SignedInt(ast::TyI16)),
"u16" => Some(UnsignedInt(ast::TyU16)),
"i32" => Some(SignedInt(ast::TyI32)),
"u32" => Some(UnsignedInt(ast::TyU32)),
"i64" => Some(SignedInt(ast::TyI64)),
"u64" => Some(UnsignedInt(ast::TyU64)),
"int" => Some(SignedInt(ast::TyI)),
"uint" => Some(UnsignedInt(ast::TyU)),
_ => None
}
}
#[deriving(Eq, Show)]
pub enum ReprAttr {
ReprAny,
ReprInt(Span, IntType),
ReprExtern
}
2013-06-02 15:03:35 -05:00
impl ReprAttr {
pub fn is_ffi_safe(&self) -> bool {
match *self {
ReprAny => false,
ReprInt(_sp, ity) => ity.is_ffi_safe(),
ReprExtern => true
}
}
}
#[deriving(Eq, Show)]
pub enum IntType {
SignedInt(ast::IntTy),
UnsignedInt(ast::UintTy)
}
impl IntType {
#[inline]
pub fn is_signed(self) -> bool {
match self {
2013-11-28 14:22:53 -06:00
SignedInt(..) => true,
UnsignedInt(..) => false
}
}
2013-06-02 15:03:35 -05:00
fn is_ffi_safe(self) -> bool {
match self {
SignedInt(ast::TyI8) | UnsignedInt(ast::TyU8) |
SignedInt(ast::TyI16) | UnsignedInt(ast::TyU16) |
SignedInt(ast::TyI32) | UnsignedInt(ast::TyU32) |
SignedInt(ast::TyI64) | UnsignedInt(ast::TyU64) => true,
2013-06-02 15:03:35 -05:00
_ => false
}
}
}