rust/src/libsyntax/attr.rs

460 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Functions dealing with attributes and meta items
2013-06-25 20:25:56 -04:00
use extra;
use ast;
use ast::{Attribute, Attribute_, MetaItem, MetaWord, MetaNameValue, MetaList};
use codemap::{Span, Spanned, spanned, dummy_spanned};
use codemap::BytePos;
use diagnostic::span_handler;
use parse::comments::{doc_comment_style, strip_doc_comment_decoration};
2013-06-24 20:40:33 -04:00
use std::hashmap::HashSet;
pub trait AttrMetaMethods {
// This could be changed to `fn check_name(&self, name: @str) ->
// bool` which would facilitate a side table recording which
// attributes/meta items are used/unused.
/// Retrieve the name of the meta item, e.g. foo in #[foo],
/// #[foo="bar"] and #[foo(bar)]
fn name(&self) -> @str;
/**
* Gets the string value if self is a MetaNameValue variant
* containing a string, otherwise None.
*/
fn value_str(&self) -> Option<@str>;
/// Gets a list of inner meta items from a list MetaItem type.
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]>;
/**
* If the meta item is a name-value type with a string value then returns
* a tuple containing the name and string value, otherwise `None`
*/
fn name_str_pair(&self) -> Option<(@str, @str)>;
}
impl AttrMetaMethods for Attribute {
fn name(&self) -> @str { self.meta().name() }
fn value_str(&self) -> Option<@str> { self.meta().value_str() }
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]> {
self.node.value.meta_item_list()
}
fn name_str_pair(&self) -> Option<(@str, @str)> { self.meta().name_str_pair() }
}
impl AttrMetaMethods for MetaItem {
fn name(&self) -> @str {
match self.node {
MetaWord(n) => n,
MetaNameValue(n, _) => n,
MetaList(n, _) => n
}
}
fn value_str(&self) -> Option<@str> {
match self.node {
MetaNameValue(_, ref v) => {
match v.node {
ast::lit_str(s, _) => Some(s),
_ => None,
}
},
_ => None
}
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]> {
match self.node {
MetaList(_, ref l) => Some(l.as_slice()),
_ => None
}
}
fn name_str_pair(&self) -> Option<(@str, @str)> {
self.value_str().map(|s| (self.name(), s))
}
}
// Annoying, but required to get test_cfg to work
impl AttrMetaMethods for @MetaItem {
fn name(&self) -> @str { (**self).name() }
fn value_str(&self) -> Option<@str> { (**self).value_str() }
fn meta_item_list<'a>(&'a self) -> Option<&'a [@MetaItem]> {
(**self).meta_item_list()
}
fn name_str_pair(&self) -> Option<(@str, @str)> { (**self).name_str_pair() }
}
pub trait AttributeMethods {
fn meta(&self) -> @MetaItem;
fn desugar_doc(&self) -> Attribute;
}
impl AttributeMethods for Attribute {
/// Extract the MetaItem from inside this Attribute.
fn meta(&self) -> @MetaItem {
self.node.value
}
/// Convert self to a normal #[doc="foo"] comment, if it is a
/// comment like `///` or `/** */`. (Returns self unchanged for
/// non-sugared doc attributes.)
fn desugar_doc(&self) -> Attribute {
if self.node.is_sugared_doc {
let comment = self.value_str().unwrap();
let meta = mk_name_value_item_str(@"doc",
strip_doc_comment_decoration(comment).to_managed());
mk_attr(meta)
} else {
*self
}
}
}
/* Constructors */
pub fn mk_name_value_item_str(name: @str, value: @str) -> @MetaItem {
let value_lit = dummy_spanned(ast::lit_str(value, ast::CookedStr));
mk_name_value_item(name, value_lit)
}
pub fn mk_name_value_item(name: @str, value: ast::lit) -> @MetaItem {
@dummy_spanned(MetaNameValue(name, value))
}
pub fn mk_list_item(name: @str, items: ~[@MetaItem]) -> @MetaItem {
@dummy_spanned(MetaList(name, items))
}
pub fn mk_word_item(name: @str) -> @MetaItem {
@dummy_spanned(MetaWord(name))
}
pub fn mk_attr(item: @MetaItem) -> Attribute {
dummy_spanned(Attribute_ {
style: ast::AttrInner,
value: item,
is_sugared_doc: false,
})
}
pub fn mk_sugared_doc_attr(text: @str, lo: BytePos, hi: BytePos) -> Attribute {
let style = doc_comment_style(text);
let lit = spanned(lo, hi, ast::lit_str(text, ast::CookedStr));
let attr = Attribute_ {
style: style,
value: @spanned(lo, hi, MetaNameValue(@"doc", lit)),
is_sugared_doc: true
};
spanned(lo, hi, attr)
}
/* Searching */
/// Check if `needle` occurs in `haystack` by a structural
/// comparison. This is slightly subtle, and relies on ignoring the
/// span included in the `==` comparison a plain MetaItem.
pub fn contains(haystack: &[@ast::MetaItem],
needle: @ast::MetaItem) -> bool {
debug!("attr::contains (name={})", needle.name());
do haystack.iter().any |item| {
debug!(" testing: {}", item.name());
item.node == needle.node
}
}
pub fn contains_name<AM: AttrMetaMethods>(metas: &[AM], name: &str) -> bool {
debug!("attr::contains_name (name={})", name);
do metas.iter().any |item| {
debug!(" testing: {}", item.name());
name == item.name()
}
}
pub fn first_attr_value_str_by_name(attrs: &[Attribute], name: &str)
-> Option<@str> {
attrs.iter()
2013-08-09 20:49:29 -07:00
.find(|at| name == at.name())
.and_then(|at| at.value_str())
}
pub fn last_meta_item_value_str_by_name(items: &[@MetaItem], name: &str)
-> Option<@str> {
items.rev_iter().find(|mi| name == mi.name()).and_then(|i| i.value_str())
}
/* Higher-level applications */
pub fn sort_meta_items(items: &[@MetaItem]) -> ~[@MetaItem] {
// This is sort of stupid here, but we need to sort by
// human-readable strings.
let mut v = items.iter()
.map(|&mi| (mi.name(), mi))
.collect::<~[(@str, @MetaItem)]>();
do extra::sort::quick_sort(v) |&(a, _), &(b, _)| {
a <= b
2013-02-14 20:19:27 -08:00
}
// There doesn't seem to be a more optimal way to do this
do v.move_iter().map |(_, m)| {
match m.node {
MetaList(n, ref mis) => {
@Spanned {
node: MetaList(n, sort_meta_items(*mis)),
.. /*bad*/ (*m).clone()
}
}
_ => m
}
}.collect()
}
/**
* From a list of crate attributes get only the meta_items that affect crate
* linkage
*/
pub fn find_linkage_metas(attrs: &[Attribute]) -> ~[@MetaItem] {
let mut result = ~[];
for attr in attrs.iter().filter(|at| "link" == at.name()) {
match attr.meta().node {
MetaList(_, ref items) => result.push_all(*items),
_ => ()
}
}
result
}
#[deriving(Eq)]
pub enum InlineAttr {
InlineNone,
InlineHint,
InlineAlways,
InlineNever,
}
/// True if something like #[inline] is found in the list of attrs.
pub fn find_inline_attr(attrs: &[Attribute]) -> InlineAttr {
// FIXME (#2809)---validate the usage of #[inline] and #[inline]
do attrs.iter().fold(InlineNone) |ia,attr| {
2012-08-06 12:34:08 -07:00
match attr.node.value.node {
MetaWord(n) if "inline" == n => InlineHint,
MetaList(n, ref items) if "inline" == n => {
if contains_name(*items, "always") {
InlineAlways
} else if contains_name(*items, "never") {
InlineNever
} else {
InlineHint
}
}
2012-08-03 19:59:04 -07:00
_ => ia
}
}
}
/// Tests if any `cfg(...)` meta items in `metas` match `cfg`. e.g.
///
/// test_cfg(`[foo="a", bar]`, `[cfg(foo), cfg(bar)]`) == true
/// test_cfg(`[foo="a", bar]`, `[cfg(not(bar))]`) == false
/// test_cfg(`[foo="a", bar]`, `[cfg(bar, foo="a")]`) == true
/// test_cfg(`[foo="a", bar]`, `[cfg(bar, foo="b")]`) == false
pub fn test_cfg<AM: AttrMetaMethods, It: Iterator<AM>>
(cfg: &[@MetaItem], mut metas: It) -> bool {
// having no #[cfg(...)] attributes counts as matching.
let mut no_cfgs = true;
// this would be much nicer as a chain of iterator adaptors, but
// this doesn't work.
let some_cfg_matches = do metas.any |mi| {
debug!("testing name: {}", mi.name());
if "cfg" == mi.name() { // it is a #[cfg()] attribute
debug!("is cfg");
no_cfgs = false;
// only #[cfg(...)] ones are understood.
match mi.meta_item_list() {
Some(cfg_meta) => {
debug!("is cfg(...)");
do cfg_meta.iter().all |cfg_mi| {
debug!("cfg({}[...])", cfg_mi.name());
match cfg_mi.node {
ast::MetaList(s, ref not_cfgs) if "not" == s => {
debug!("not!");
// inside #[cfg(not(...))], so these need to all
// not match.
not_cfgs.iter().all(|mi| {
debug!("cfg(not({}[...]))", mi.name());
!contains(cfg, *mi)
})
}
_ => contains(cfg, *cfg_mi)
}
}
}
None => false
}
} else {
false
}
};
debug!("test_cfg (no_cfgs={}, some_cfg_matches={})", no_cfgs, some_cfg_matches);
no_cfgs || some_cfg_matches
}
/// Represents the #[deprecated="foo"] (etc) attributes.
pub struct Stability {
level: StabilityLevel,
text: Option<@str>
}
/// The available stability levels.
#[deriving(Eq,Ord,Clone,ToStr)]
pub enum StabilityLevel {
Deprecated,
Experimental,
Unstable,
Stable,
Frozen,
Locked
}
/// Find the first stability attribute. `None` if none exists.
pub fn find_stability<AM: AttrMetaMethods, It: Iterator<AM>>(mut metas: It) -> Option<Stability> {
for m in metas {
let level = match m.name().as_slice() {
"deprecated" => Deprecated,
"experimental" => Experimental,
"unstable" => Unstable,
"stable" => Stable,
"frozen" => Frozen,
"locked" => Locked,
_ => continue // not a stability level
};
return Some(Stability {
level: level,
text: m.value_str()
});
}
None
}
pub fn require_unique_names(diagnostic: @mut span_handler,
metas: &[@MetaItem]) {
let mut set = HashSet::new();
for meta in metas.iter() {
let name = meta.name();
2013-02-14 20:19:27 -08:00
if !set.insert(name) {
diagnostic.span_fatal(meta.span,
2013-09-27 21:01:58 -07:00
format!("duplicate meta item `{}`", name));
}
}
}
/**
* Fold this over attributes to parse #[repr(...)] forms.
*
* Valid repr contents: any of the primitive integral type names (see
* `int_type_of_word`, below) to specify the discriminant type; and `C`, to use
* the same discriminant size that the corresponding C enum would. These are
* not allowed on univariant or zero-variant enums, which have no discriminant.
*
* If a discriminant type is so specified, then the discriminant will be
* present (before fields, if any) with that type; reprensentation
* optimizations which would remove it will not be done.
*/
pub fn find_repr_attr(diagnostic: @mut span_handler, attr: @ast::MetaItem, acc: ReprAttr)
-> ReprAttr {
let mut acc = acc;
match attr.node {
ast::MetaList(s, ref items) if "repr" == s => {
for item in items.iter() {
match item.node {
ast::MetaWord(word) => {
let word: &str = word;
let hint = match word {
// Can't use "extern" because it's not a lexical identifier.
"C" => ReprExtern,
_ => match int_type_of_word(word) {
Some(ity) => ReprInt(item.span, ity),
None => {
// Not a word we recognize
diagnostic.span_err(item.span,
"unrecognized representation hint");
ReprAny
}
}
};
if hint != ReprAny {
if acc == ReprAny {
acc = hint;
} else if acc != hint {
diagnostic.span_warn(item.span,
"conflicting representation hint ignored")
}
}
}
// Not a word:
_ => diagnostic.span_err(item.span, "unrecognized representation hint")
}
}
}
// Not a "repr" hint: ignore.
_ => { }
}
return acc;
}
fn int_type_of_word(s: &str) -> Option<IntType> {
match s {
"i8" => Some(SignedInt(ast::ty_i8)),
"u8" => Some(UnsignedInt(ast::ty_u8)),
"i16" => Some(SignedInt(ast::ty_i16)),
"u16" => Some(UnsignedInt(ast::ty_u16)),
"i32" => Some(SignedInt(ast::ty_i32)),
"u32" => Some(UnsignedInt(ast::ty_u32)),
"i64" => Some(SignedInt(ast::ty_i64)),
"u64" => Some(UnsignedInt(ast::ty_u64)),
"int" => Some(SignedInt(ast::ty_i)),
"uint" => Some(UnsignedInt(ast::ty_u)),
_ => None
}
}
#[deriving(Eq)]
pub enum ReprAttr {
ReprAny,
ReprInt(Span, IntType),
ReprExtern
}
#[deriving(Eq)]
pub enum IntType {
SignedInt(ast::int_ty),
UnsignedInt(ast::uint_ty)
}
impl IntType {
#[inline]
pub fn is_signed(self) -> bool {
match self {
SignedInt(*) => true,
UnsignedInt(*) => false
}
}
}