rust/src/thread.rs

760 lines
28 KiB
Rust
Raw Normal View History

//! Implements threads.
use std::cell::RefCell;
use std::collections::hash_map::Entry;
2020-04-07 22:20:41 -05:00
use std::convert::TryFrom;
use std::rc::Rc;
2020-04-30 15:47:12 -05:00
use std::num::TryFromIntError;
2020-05-18 09:28:19 -05:00
use std::time::{Duration, Instant, SystemTime};
use log::trace;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def_id::DefId;
use rustc_index::vec::{Idx, IndexVec};
use crate::sync::SynchronizationState;
use crate::*;
2020-04-16 21:40:02 -05:00
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SchedulingAction {
/// Execute step on the active thread.
ExecuteStep,
2020-04-30 16:07:07 -05:00
/// Execute a timeout callback.
ExecuteTimeoutCallback,
2020-04-16 21:40:02 -05:00
/// Execute destructors of the active thread.
ExecuteDtors,
/// Stop the program.
Stop,
}
2020-05-18 10:18:15 -05:00
/// Timeout callbacks can be created by synchronization primitives to tell the
2020-04-30 16:07:07 -05:00
/// scheduler that they should be called once some period of time passes.
type TimeoutCallback<'mir, 'tcx> =
Box<dyn FnOnce(&mut InterpCx<'mir, 'tcx, Evaluator<'mir, 'tcx>>) -> InterpResult<'tcx> + 'tcx>;
/// A thread identifier.
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ThreadId(u32);
/// The main thread. When it terminates, the whole application terminates.
const MAIN_THREAD: ThreadId = ThreadId(0);
2020-04-26 17:52:45 -05:00
impl ThreadId {
2020-04-29 15:16:22 -05:00
pub fn to_u32(self) -> u32 {
self.0
2020-04-26 17:52:45 -05:00
}
}
impl Idx for ThreadId {
fn new(idx: usize) -> Self {
ThreadId(u32::try_from(idx).unwrap())
}
2020-04-27 14:32:57 -05:00
fn index(self) -> usize {
usize::try_from(self.0).unwrap()
}
}
2020-04-27 14:32:57 -05:00
impl TryFrom<u64> for ThreadId {
type Error = TryFromIntError;
fn try_from(id: u64) -> Result<Self, Self::Error> {
u32::try_from(id).map(|id_u32| Self(id_u32))
}
}
2020-04-07 22:20:41 -05:00
impl From<u32> for ThreadId {
fn from(id: u32) -> Self {
2020-04-27 14:32:57 -05:00
Self(id)
2020-04-07 22:20:41 -05:00
}
}
impl ThreadId {
pub fn to_u32_scalar<'tcx>(&self) -> Scalar<Tag> {
Scalar::from_u32(u32::try_from(self.0).unwrap())
}
}
/// The state of a thread.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ThreadState {
/// The thread is enabled and can be executed.
Enabled,
/// The thread tried to join the specified thread and is blocked until that
/// thread terminates.
2020-04-07 22:20:41 -05:00
BlockedOnJoin(ThreadId),
2020-04-30 15:47:12 -05:00
/// The thread is blocked on some synchronization primitive. It is the
/// responsibility of the synchronization primitives to track threads that
/// are blocked by them.
BlockedOnSync,
/// The thread has terminated its execution. We do not delete terminated
/// threads (FIXME: why?).
Terminated,
}
2020-04-19 18:43:40 -05:00
/// The join status of a thread.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ThreadJoinStatus {
/// The thread can be joined.
Joinable,
/// A thread is detached if its join handle was destroyed and no other
/// thread can join it.
Detached,
/// The thread was already joined by some thread and cannot be joined again.
Joined,
}
/// A thread.
pub struct Thread<'mir, 'tcx> {
state: ThreadState,
2020-04-06 18:12:13 -05:00
/// Name of the thread.
thread_name: Option<Vec<u8>>,
/// The virtual call stack.
stack: Vec<Frame<'mir, 'tcx, Tag, FrameData<'tcx>>>,
2020-04-19 18:43:40 -05:00
/// The join status.
join_status: ThreadJoinStatus,
/// The temporary used for storing the argument of
/// the call to `miri_start_panic` (the panic payload) when unwinding.
/// This is pointer-sized, and matches the `Payload` type in `src/libpanic_unwind/miri.rs`.
2020-08-31 19:32:14 -05:00
pub(crate) panic_payload: Option<Scalar<Tag>>,
2020-08-31 21:29:09 -05:00
/// Last OS error location in memory. It is a 32-bit integer.
pub(crate) last_error: Option<MPlaceTy<'tcx, Tag>>,
}
impl<'mir, 'tcx> Thread<'mir, 'tcx> {
2020-04-26 16:42:07 -05:00
/// Check if the thread is done executing (no more stack frames). If yes,
/// change the state to terminated and return `true`.
fn check_terminated(&mut self) -> bool {
if self.state == ThreadState::Enabled {
if self.stack.is_empty() {
self.state = ThreadState::Terminated;
return true;
}
}
false
}
/// Get the name of the current thread, or `<unnamed>` if it was not set.
fn thread_name(&self) -> &[u8] {
if let Some(ref thread_name) = self.thread_name {
thread_name
} else {
b"<unnamed>"
}
}
}
impl<'mir, 'tcx> std::fmt::Debug for Thread<'mir, 'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}({:?}, {:?})", String::from_utf8_lossy(self.thread_name()), self.state, self.join_status)
}
}
impl<'mir, 'tcx> Default for Thread<'mir, 'tcx> {
fn default() -> Self {
2020-04-19 18:43:40 -05:00
Self {
state: ThreadState::Enabled,
thread_name: None,
stack: Vec::new(),
join_status: ThreadJoinStatus::Joinable,
panic_payload: None,
2020-08-31 21:29:09 -05:00
last_error: None,
2020-04-19 18:43:40 -05:00
}
}
}
2020-05-19 11:44:32 -05:00
/// A specific moment in time.
2020-05-18 09:28:19 -05:00
#[derive(Debug)]
pub enum Time {
Monotonic(Instant),
RealTime(SystemTime),
}
impl Time {
/// How long do we have to wait from now until the specified time?
fn get_wait_time(&self) -> Duration {
match self {
Time::Monotonic(instant) => instant.saturating_duration_since(Instant::now()),
Time::RealTime(time) =>
time.duration_since(SystemTime::now()).unwrap_or(Duration::new(0, 0)),
}
}
}
/// Callbacks are used to implement timeouts. For example, waiting on a
/// conditional variable with a timeout creates a callback that is called after
/// the specified time and unblocks the thread. If another thread signals on the
/// conditional variable, the signal handler deletes the callback.
2020-04-30 16:07:07 -05:00
struct TimeoutCallbackInfo<'mir, 'tcx> {
/// The callback should be called no earlier than this time.
2020-05-18 09:28:19 -05:00
call_time: Time,
/// The called function.
2020-04-30 16:07:07 -05:00
callback: TimeoutCallback<'mir, 'tcx>,
}
2020-04-30 16:07:07 -05:00
impl<'mir, 'tcx> std::fmt::Debug for TimeoutCallbackInfo<'mir, 'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
2020-05-18 10:18:15 -05:00
write!(f, "TimeoutCallback({:?})", self.call_time)
}
}
/// A set of threads.
#[derive(Debug)]
2020-04-09 14:06:33 -05:00
pub struct ThreadManager<'mir, 'tcx> {
/// Identifier of the currently active thread.
active_thread: ThreadId,
/// Threads used in the program.
///
/// Note that this vector also contains terminated threads.
threads: IndexVec<ThreadId, Thread<'mir, 'tcx>>,
2020-04-30 16:07:07 -05:00
/// This field is pub(crate) because the synchronization primitives
/// (`crate::sync`) need a way to access it.
pub(crate) sync: SynchronizationState,
/// A mapping from a thread-local static to an allocation id of a thread
/// specific allocation.
thread_local_alloc_ids: RefCell<FxHashMap<(DefId, ThreadId), AllocId>>,
2020-04-18 17:39:53 -05:00
/// A flag that indicates that we should change the active thread.
yield_active_thread: bool,
/// Callbacks that are called once the specified time passes.
2020-04-30 16:07:07 -05:00
timeout_callbacks: FxHashMap<ThreadId, TimeoutCallbackInfo<'mir, 'tcx>>,
}
2020-04-09 14:06:33 -05:00
impl<'mir, 'tcx> Default for ThreadManager<'mir, 'tcx> {
fn default() -> Self {
let mut threads = IndexVec::new();
// Create the main thread and add it to the list of threads.
2020-04-20 15:22:28 -05:00
let mut main_thread = Thread::default();
2020-04-26 16:42:07 -05:00
// The main thread can *not* be joined on.
2020-04-20 15:22:28 -05:00
main_thread.join_status = ThreadJoinStatus::Detached;
threads.push(main_thread);
Self {
active_thread: ThreadId::new(0),
threads: threads,
sync: SynchronizationState::default(),
thread_local_alloc_ids: Default::default(),
2020-04-18 17:39:53 -05:00
yield_active_thread: false,
2020-04-30 16:07:07 -05:00
timeout_callbacks: FxHashMap::default(),
}
}
}
2020-04-09 14:06:33 -05:00
impl<'mir, 'tcx: 'mir> ThreadManager<'mir, 'tcx> {
/// Check if we have an allocation for the given thread local static for the
/// active thread.
2020-04-18 14:25:11 -05:00
fn get_thread_local_alloc_id(&self, def_id: DefId) -> Option<AllocId> {
self.thread_local_alloc_ids.borrow().get(&(def_id, self.active_thread)).cloned()
}
/// Set the allocation id as the allocation id of the given thread local
/// static for the active thread.
///
/// Panics if a thread local is initialized twice for the same thread.
2020-04-18 14:25:11 -05:00
fn set_thread_local_alloc_id(&self, def_id: DefId, new_alloc_id: AllocId) {
self.thread_local_alloc_ids
.borrow_mut()
.try_insert((def_id, self.active_thread), new_alloc_id)
.unwrap();
}
/// Borrow the stack of the active thread.
fn active_thread_stack(&self) -> &[Frame<'mir, 'tcx, Tag, FrameData<'tcx>>] {
&self.threads[self.active_thread].stack
}
/// Mutably borrow the stack of the active thread.
fn active_thread_stack_mut(&mut self) -> &mut Vec<Frame<'mir, 'tcx, Tag, FrameData<'tcx>>> {
&mut self.threads[self.active_thread].stack
}
/// Create a new thread and returns its id.
fn create_thread(&mut self) -> ThreadId {
let new_thread_id = ThreadId::new(self.threads.len());
self.threads.push(Default::default());
new_thread_id
}
/// Set an active thread and return the id of the thread that was active before.
2020-04-06 18:12:13 -05:00
fn set_active_thread_id(&mut self, id: ThreadId) -> ThreadId {
let active_thread_id = self.active_thread;
self.active_thread = id;
assert!(self.active_thread.index() < self.threads.len());
active_thread_id
}
/// Get the id of the currently active thread.
2020-04-06 18:12:13 -05:00
fn get_active_thread_id(&self) -> ThreadId {
self.active_thread
}
/// Get the total number of threads that were ever spawn by this program.
fn get_total_thread_count(&self) -> usize {
self.threads.len()
}
2020-04-16 21:40:02 -05:00
/// Has the given thread terminated?
fn has_terminated(&self, thread_id: ThreadId) -> bool {
self.threads[thread_id].state == ThreadState::Terminated
}
/// Enable the thread for execution. The thread must be terminated.
fn enable_thread(&mut self, thread_id: ThreadId) {
assert!(self.has_terminated(thread_id));
self.threads[thread_id].state = ThreadState::Enabled;
}
/// Get a mutable borrow of the currently active thread.
2020-04-06 18:12:13 -05:00
fn active_thread_mut(&mut self) -> &mut Thread<'mir, 'tcx> {
&mut self.threads[self.active_thread]
}
/// Get a shared borrow of the currently active thread.
fn active_thread_ref(&self) -> &Thread<'mir, 'tcx> {
&self.threads[self.active_thread]
}
/// Mark the thread as detached, which means that no other thread will try
/// to join it and the thread is responsible for cleaning up.
2020-04-19 18:43:40 -05:00
fn detach_thread(&mut self, id: ThreadId) -> InterpResult<'tcx> {
if self.threads[id].join_status != ThreadJoinStatus::Joinable {
throw_ub_format!("trying to detach thread that was already detached or joined");
}
self.threads[id].join_status = ThreadJoinStatus::Detached;
Ok(())
}
/// Mark that the active thread tries to join the thread with `joined_thread_id`.
fn join_thread(&mut self, joined_thread_id: ThreadId, data_race: &Option<Rc<data_race::GlobalState>>) -> InterpResult<'tcx> {
2020-04-19 18:43:40 -05:00
if self.threads[joined_thread_id].join_status != ThreadJoinStatus::Joinable {
throw_ub_format!("trying to join a detached or already joined thread");
}
if joined_thread_id == self.active_thread {
throw_ub_format!("trying to join itself");
}
2020-04-19 18:43:40 -05:00
assert!(
self.threads
.iter()
.all(|thread| thread.state != ThreadState::BlockedOnJoin(joined_thread_id)),
2020-04-26 16:42:07 -05:00
"a joinable thread already has threads waiting for its termination"
2020-04-19 18:43:40 -05:00
);
// Mark the joined thread as being joined so that we detect if other
// threads try to join it.
self.threads[joined_thread_id].join_status = ThreadJoinStatus::Joined;
if self.threads[joined_thread_id].state != ThreadState::Terminated {
// The joined thread is still running, we need to wait for it.
2020-04-07 22:20:41 -05:00
self.active_thread_mut().state = ThreadState::BlockedOnJoin(joined_thread_id);
trace!(
"{:?} blocked on {:?} when trying to join",
self.active_thread,
joined_thread_id
);
} else {
// The thread has already terminated - mark join happens-before
if let Some(data_race) = data_race {
data_race.thread_joined(self.active_thread, joined_thread_id);
}
}
Ok(())
}
2020-04-06 18:12:13 -05:00
/// Set the name of the active thread.
fn set_thread_name(&mut self, new_thread_name: Vec<u8>) {
self.active_thread_mut().thread_name = Some(new_thread_name);
}
/// Get the name of the active thread.
fn get_thread_name(&self) -> &[u8] {
self.active_thread_ref().thread_name()
}
/// Put the thread into the blocked state.
fn block_thread(&mut self, thread: ThreadId) {
let state = &mut self.threads[thread].state;
2020-04-07 22:20:41 -05:00
assert_eq!(*state, ThreadState::Enabled);
2020-04-30 15:47:12 -05:00
*state = ThreadState::BlockedOnSync;
2020-04-07 22:20:41 -05:00
}
/// Put the blocked thread into the enabled state.
fn unblock_thread(&mut self, thread: ThreadId) {
let state = &mut self.threads[thread].state;
2020-04-30 15:47:12 -05:00
assert_eq!(*state, ThreadState::BlockedOnSync);
*state = ThreadState::Enabled;
2020-04-07 22:20:41 -05:00
}
2020-04-18 17:39:53 -05:00
/// Change the active thread to some enabled thread.
fn yield_active_thread(&mut self) {
// We do not yield immediately, as swapping out the current stack while executing a MIR statement
2020-07-17 05:54:38 -05:00
// could lead to all sorts of confusion.
// We should only switch stacks between steps.
2020-04-18 17:39:53 -05:00
self.yield_active_thread = true;
}
/// Register the given `callback` to be called once the `call_time` passes.
2020-05-24 13:29:56 -05:00
///
/// The callback will be called with `thread` being the active thread, and
/// the callback may not change the active thread.
2020-04-30 16:07:07 -05:00
fn register_timeout_callback(
&mut self,
thread: ThreadId,
2020-05-18 09:28:19 -05:00
call_time: Time,
2020-04-30 16:07:07 -05:00
callback: TimeoutCallback<'mir, 'tcx>,
) {
2020-04-30 16:07:07 -05:00
self.timeout_callbacks
.try_insert(thread, TimeoutCallbackInfo { call_time, callback })
.unwrap();
}
/// Unregister the callback for the `thread`.
2020-04-30 16:07:07 -05:00
fn unregister_timeout_callback_if_exists(&mut self, thread: ThreadId) {
self.timeout_callbacks.remove(&thread);
}
/// Get a callback that is ready to be called.
2020-05-18 09:28:19 -05:00
fn get_ready_callback(&mut self) -> Option<(ThreadId, TimeoutCallback<'mir, 'tcx>)> {
2020-05-18 10:18:15 -05:00
// We iterate over all threads in the order of their indices because
// this allows us to have a deterministic scheduler.
for thread in self.threads.indices() {
2020-04-30 16:07:07 -05:00
match self.timeout_callbacks.entry(thread) {
Entry::Occupied(entry) =>
2020-05-18 09:28:19 -05:00
if entry.get().call_time.get_wait_time() == Duration::new(0, 0) {
return Some((thread, entry.remove().callback));
},
Entry::Vacant(_) => {}
}
}
None
}
/// Wakes up threads joining on the active one and deallocates thread-local statics.
/// The `AllocId` that can now be freed is returned.
fn thread_terminated(&mut self, data_race: &Option<Rc<data_race::GlobalState>>) -> Vec<AllocId> {
let mut free_tls_statics = Vec::new();
{
let mut thread_local_statics = self.thread_local_alloc_ids.borrow_mut();
thread_local_statics.retain(|&(_def_id, thread), &mut alloc_id| {
if thread != self.active_thread {
// Keep this static around.
return true;
}
// Delete this static from the map and from memory.
// We cannot free directly here as we cannot use `?` in this context.
free_tls_statics.push(alloc_id);
return false;
});
}
// Set the thread into a terminated state in the data-race detector
if let Some(data_race) = data_race {
data_race.thread_terminated();
}
// Check if we need to unblock any threads.
for (i, thread) in self.threads.iter_enumerated_mut() {
if thread.state == ThreadState::BlockedOnJoin(self.active_thread) {
// The thread has terminated, mark happens-before edge to joining thread
if let Some(data_race) = data_race {
data_race.thread_joined(i, self.active_thread);
}
trace!("unblocking {:?} because {:?} terminated", i, self.active_thread);
thread.state = ThreadState::Enabled;
}
}
return free_tls_statics;
}
2020-04-16 21:40:02 -05:00
/// Decide which action to take next and on which thread.
///
/// The currently implemented scheduling policy is the one that is commonly
/// used in stateless model checkers such as Loom: run the active thread as
/// long as we can and switch only when we have to (the active thread was
2020-04-26 16:42:07 -05:00
/// blocked, terminated, or has explicitly asked to be preempted).
fn schedule(&mut self, data_race: &Option<Rc<data_race::GlobalState>>) -> InterpResult<'tcx, SchedulingAction> {
2020-04-27 13:01:35 -05:00
// Check whether the thread has **just** terminated (`check_terminated`
// checks whether the thread has popped all its stack and if yes, sets
2020-04-29 15:16:22 -05:00
// the thread state to terminated).
if self.threads[self.active_thread].check_terminated() {
2020-04-16 21:40:02 -05:00
return Ok(SchedulingAction::ExecuteDtors);
}
// If we get here again and the thread is *still* terminated, there are no more dtors to run.
if self.threads[MAIN_THREAD].state == ThreadState::Terminated {
// The main thread terminated; stop the program.
if self.threads.iter().any(|thread| thread.state != ThreadState::Terminated) {
2020-04-20 18:57:30 -05:00
// FIXME: This check should be either configurable or just emit
// a warning. For example, it seems normal for a program to
// terminate without waiting for its detached threads to
// terminate. However, this case is not trivial to support
// because we also probably do not want to consider the memory
// owned by these threads as leaked.
throw_unsup_format!("the main thread terminated without waiting for other threads");
}
return Ok(SchedulingAction::Stop);
}
// This thread and the program can keep going.
2020-04-18 17:39:53 -05:00
if self.threads[self.active_thread].state == ThreadState::Enabled
&& !self.yield_active_thread
{
// The currently active thread is still enabled, just continue with it.
2020-04-16 21:40:02 -05:00
return Ok(SchedulingAction::ExecuteStep);
}
// The active thread yielded. Let's see if there are any timeouts to take care of. We do
// this *before* running any other thread, to ensure that timeouts "in the past" fire before
// any other thread can take an action. This ensures that for `pthread_cond_timedwait`, "an
// error is returned if [...] the absolute time specified by abstime has already been passed
// at the time of the call".
// <https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_timedwait.html>
let potential_sleep_time =
self.timeout_callbacks.values().map(|info| info.call_time.get_wait_time()).min();
if potential_sleep_time == Some(Duration::new(0, 0)) {
return Ok(SchedulingAction::ExecuteTimeoutCallback);
}
// No callbacks scheduled, pick a regular thread to execute.
// We need to pick a new thread for execution.
2020-04-18 17:39:53 -05:00
for (id, thread) in self.threads.iter_enumerated() {
if thread.state == ThreadState::Enabled {
if !self.yield_active_thread || id != self.active_thread {
2020-04-18 17:39:53 -05:00
self.active_thread = id;
if let Some(data_race) = data_race {
data_race.thread_set_active(self.active_thread);
}
2020-04-18 17:39:53 -05:00
break;
}
}
}
self.yield_active_thread = false;
if self.threads[self.active_thread].state == ThreadState::Enabled {
2020-04-16 21:40:02 -05:00
return Ok(SchedulingAction::ExecuteStep);
}
// We have not found a thread to execute.
if self.threads.iter().all(|thread| thread.state == ThreadState::Terminated) {
2020-05-18 09:28:19 -05:00
unreachable!("all threads terminated without the main thread terminating?!");
2020-05-19 11:44:32 -05:00
} else if let Some(sleep_time) = potential_sleep_time {
// All threads are currently blocked, but we have unexecuted
2020-04-30 16:07:07 -05:00
// timeout_callbacks, which may unblock some of the threads. Hence,
// sleep until the first callback.
2020-05-18 09:28:19 -05:00
std::thread::sleep(sleep_time);
2020-04-30 16:07:07 -05:00
Ok(SchedulingAction::ExecuteTimeoutCallback)
} else {
2020-04-07 22:20:41 -05:00
throw_machine_stop!(TerminationInfo::Deadlock);
}
}
}
// Public interface to thread management.
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
/// Get a thread-specific allocation id for the given thread-local static.
/// If needed, allocate a new one.
fn get_or_create_thread_local_alloc_id(&mut self, def_id: DefId) -> InterpResult<'tcx, AllocId> {
let this = self.eval_context_mut();
let tcx = this.tcx;
if let Some(new_alloc_id) = this.machine.threads.get_thread_local_alloc_id(def_id) {
// We already have a thread-specific allocation id for this
// thread-local static.
Ok(new_alloc_id)
} else {
// We need to allocate a thread-specific allocation id for this
// thread-local static.
// First, we compute the initial value for this static.
if tcx.is_foreign_item(def_id) {
throw_unsup_format!("foreign thread-local statics are not supported");
}
2020-08-11 04:37:29 -05:00
let allocation = tcx.eval_static_initializer(def_id)?;
// Create a fresh allocation with this content.
let new_alloc_id = this.memory.allocate_with(allocation.clone(), MiriMemoryKind::Tls.into()).alloc_id;
this.machine.threads.set_thread_local_alloc_id(def_id, new_alloc_id);
Ok(new_alloc_id)
}
}
#[inline]
fn create_thread(&mut self) -> ThreadId {
let this = self.eval_context_mut();
let id = this.machine.threads.create_thread();
if let Some(data_race) = &this.memory.extra.data_race {
data_race.thread_created(id);
}
id
}
#[inline]
fn detach_thread(&mut self, thread_id: ThreadId) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
2020-04-19 18:43:40 -05:00
this.machine.threads.detach_thread(thread_id)
}
#[inline]
fn join_thread(&mut self, joined_thread_id: ThreadId) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let data_race = &this.memory.extra.data_race;
this.machine.threads.join_thread(joined_thread_id, data_race)?;
Ok(())
}
#[inline]
fn set_active_thread(&mut self, thread_id: ThreadId) -> ThreadId {
let this = self.eval_context_mut();
if let Some(data_race) = &this.memory.extra.data_race {
data_race.thread_set_active(thread_id);
}
this.machine.threads.set_active_thread_id(thread_id)
}
#[inline]
fn get_active_thread(&self) -> ThreadId {
let this = self.eval_context_ref();
this.machine.threads.get_active_thread_id()
}
2020-08-31 19:32:14 -05:00
#[inline]
fn active_thread_mut(&mut self) -> &mut Thread<'mir, 'tcx> {
let this = self.eval_context_mut();
this.machine.threads.active_thread_mut()
}
2020-08-31 21:29:09 -05:00
#[inline]
fn active_thread_ref(&self) -> &Thread<'mir, 'tcx> {
let this = self.eval_context_ref();
this.machine.threads.active_thread_ref()
}
#[inline]
fn get_total_thread_count(&self) -> usize {
let this = self.eval_context_ref();
this.machine.threads.get_total_thread_count()
}
#[inline]
fn has_terminated(&self, thread_id: ThreadId) -> bool {
2020-04-16 21:40:02 -05:00
let this = self.eval_context_ref();
this.machine.threads.has_terminated(thread_id)
2020-04-16 21:40:02 -05:00
}
#[inline]
fn enable_thread(&mut self, thread_id: ThreadId) {
let this = self.eval_context_mut();
this.machine.threads.enable_thread(thread_id);
}
#[inline]
fn active_thread_stack(&self) -> &[Frame<'mir, 'tcx, Tag, FrameData<'tcx>>] {
let this = self.eval_context_ref();
this.machine.threads.active_thread_stack()
}
#[inline]
fn active_thread_stack_mut(&mut self) -> &mut Vec<Frame<'mir, 'tcx, Tag, FrameData<'tcx>>> {
let this = self.eval_context_mut();
this.machine.threads.active_thread_stack_mut()
}
#[inline]
fn set_active_thread_name(&mut self, new_thread_name: Vec<u8>) {
2020-04-06 18:12:13 -05:00
let this = self.eval_context_mut();
if let Some(data_race) = &this.memory.extra.data_race {
if let Ok(string) = String::from_utf8(new_thread_name.clone()) {
data_race.thread_set_name(
this.machine.threads.active_thread, string
);
}
}
this.machine.threads.set_thread_name(new_thread_name);
2020-04-06 18:12:13 -05:00
}
#[inline]
fn get_active_thread_name<'c>(&'c self) -> &'c [u8]
where
'mir: 'c,
{
let this = self.eval_context_ref();
this.machine.threads.get_thread_name()
}
#[inline]
fn block_thread(&mut self, thread: ThreadId) {
2020-04-07 22:20:41 -05:00
let this = self.eval_context_mut();
this.machine.threads.block_thread(thread);
2020-04-07 22:20:41 -05:00
}
#[inline]
fn unblock_thread(&mut self, thread: ThreadId) {
2020-04-07 22:20:41 -05:00
let this = self.eval_context_mut();
this.machine.threads.unblock_thread(thread);
2020-04-07 22:20:41 -05:00
}
#[inline]
fn yield_active_thread(&mut self) {
2020-04-07 22:20:41 -05:00
let this = self.eval_context_mut();
this.machine.threads.yield_active_thread();
2020-04-07 22:20:41 -05:00
}
#[inline]
2020-04-30 16:07:07 -05:00
fn register_timeout_callback(
&mut self,
thread: ThreadId,
2020-05-18 09:28:19 -05:00
call_time: Time,
2020-04-30 16:07:07 -05:00
callback: TimeoutCallback<'mir, 'tcx>,
) {
2020-04-18 17:39:53 -05:00
let this = self.eval_context_mut();
2020-04-30 16:07:07 -05:00
this.machine.threads.register_timeout_callback(thread, call_time, callback);
}
#[inline]
fn unregister_timeout_callback_if_exists(&mut self, thread: ThreadId) {
let this = self.eval_context_mut();
2020-04-30 16:07:07 -05:00
this.machine.threads.unregister_timeout_callback_if_exists(thread);
}
2020-04-30 16:07:07 -05:00
/// Execute a timeout callback on the callback's thread.
#[inline]
2020-04-30 16:07:07 -05:00
fn run_timeout_callback(&mut self) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
2020-05-18 09:28:19 -05:00
let (thread, callback) =
if let Some((thread, callback)) = this.machine.threads.get_ready_callback() {
(thread, callback)
} else {
2021-04-11 06:39:03 -05:00
// get_ready_callback can return None if the computer's clock
// was shifted after calling the scheduler and before the call
// to get_ready_callback (see issue
// https://github.com/rust-lang/miri/issues/1763). In this case,
// just do nothing, which effectively just returns to the
// scheduler.
return Ok(());
};
2020-05-24 13:29:56 -05:00
// This back-and-forth with `set_active_thread` is here because of two
// design decisions:
// 1. Make the caller and not the callback responsible for changing
// thread.
// 2. Make the scheduler the only place that can change the active
// thread.
let old_thread = this.set_active_thread(thread);
callback(this)?;
this.set_active_thread(old_thread);
2020-04-18 17:39:53 -05:00
Ok(())
}
2020-04-16 21:40:02 -05:00
/// Decide which action to take next and on which thread.
#[inline]
2020-04-16 21:40:02 -05:00
fn schedule(&mut self) -> InterpResult<'tcx, SchedulingAction> {
let this = self.eval_context_mut();
let data_race = &this.memory.extra.data_race;
this.machine.threads.schedule(data_race)
}
/// Handles thread termination of the active thread: wakes up threads joining on this one,
/// and deallocated thread-local statics.
///
/// This is called from `tls.rs` after handling the TLS dtors.
#[inline]
fn thread_terminated(&mut self) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let data_race = &this.memory.extra.data_race;
for alloc_id in this.machine.threads.thread_terminated(data_race) {
let ptr = this.memory.global_base_pointer(alloc_id.into())?;
this.memory.deallocate(ptr, None, MiriMemoryKind::Tls.into())?;
}
Ok(())
}
}