rust/src/librustc/metadata/creader.rs

959 lines
37 KiB
Rust
Raw Normal View History

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
//! Validates all used crates and extern libraries and loads their metadata
use back::svh::Svh;
use session::{config, Session};
use session::search_paths::PathKind;
use metadata::common::rustc_version;
use metadata::cstore;
use metadata::cstore::{CStore, CrateSource, MetadataBlob};
use metadata::decoder;
use metadata::loader;
use metadata::loader::CratePaths;
use util::nodemap::FnvHashMap;
2015-07-31 02:04:06 -05:00
use front::map as hir_map;
use std::cell::{RefCell, Cell};
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 01:21:13 -05:00
use std::path::PathBuf;
2014-03-27 12:28:38 -05:00
use std::rc::Rc;
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 01:21:13 -05:00
use std::fs;
use syntax::ast;
use syntax::abi;
use syntax::codemap::{self, Span, mk_sp, Pos};
use syntax::parse;
2015-07-31 02:04:06 -05:00
use syntax::attr;
use syntax::attr::AttrMetaMethods;
use syntax::parse::token::InternedString;
use syntax::util::small_vector::SmallVector;
2015-07-31 02:04:06 -05:00
use rustc_front::visit;
use rustc_front::hir;
use log;
pub struct LocalCrateReader<'a, 'b:'a> {
sess: &'a Session,
creader: CrateReader<'a>,
2015-07-31 02:04:06 -05:00
ast_map: &'a hir_map::Map<'b>,
}
2014-12-21 01:02:38 -06:00
pub struct CrateReader<'a> {
sess: &'a Session,
next_crate_num: ast::CrateNum,
foreign_item_map: FnvHashMap<String, Vec<ast::NodeId>>,
}
impl<'a, 'b, 'v> visit::Visitor<'v> for LocalCrateReader<'a, 'b> {
2015-07-31 02:04:06 -05:00
fn visit_item(&mut self, a: &hir::Item) {
self.process_item(a);
visit::walk_item(self, a);
}
}
fn dump_crates(cstore: &CStore) {
info!("resolved crates:");
cstore.iter_crate_data_origins(|_, data, opt_source| {
info!(" name: {}", data.name());
info!(" cnum: {}", data.cnum);
info!(" hash: {}", data.hash());
info!(" reqd: {}", data.explicitly_linked.get());
opt_source.map(|cs| {
let CrateSource { dylib, rlib, cnum: _ } = cs;
dylib.map(|dl| info!(" dylib: {}", dl.0.display()));
rlib.map(|rl| info!(" rlib: {}", rl.0.display()));
});
})
2012-04-09 17:06:38 -05:00
}
fn should_link(i: &ast::Item) -> bool {
!attr::contains_name(&i.attrs, "no_link")
}
2015-07-31 02:04:06 -05:00
// Dup for the hir
fn should_link_hir(i: &hir::Item) -> bool {
!attr::contains_name(&i.attrs, "no_link")
2015-07-31 02:04:06 -05:00
}
2013-12-25 12:10:33 -06:00
struct CrateInfo {
ident: String,
name: String,
2013-12-25 12:10:33 -06:00
id: ast::NodeId,
should_link: bool,
2013-12-25 12:10:33 -06:00
}
pub fn validate_crate_name(sess: Option<&Session>, s: &str, sp: Option<Span>) {
let say = |s: &str| {
match (sp, sess) {
(_, None) => panic!("{}", s),
(Some(sp), Some(sess)) => sess.span_err(sp, s),
(None, Some(sess)) => sess.err(s),
}
};
if s.is_empty() {
say("crate name must not be empty");
}
for c in s.chars() {
if c.is_alphanumeric() { continue }
if c == '_' { continue }
say(&format!("invalid character `{}` in crate name: `{}`", c, s));
}
match sess {
Some(sess) => sess.abort_if_errors(),
None => {}
}
}
fn register_native_lib(sess: &Session,
span: Option<Span>,
name: String,
kind: cstore::NativeLibraryKind) {
if name.is_empty() {
match span {
Some(span) => {
span_err!(sess, span, E0454,
"#[link(name = \"\")] given with empty name");
}
None => {
sess.err("empty library name given via `-l`");
}
}
return
}
let is_osx = sess.target.target.options.is_like_osx;
if kind == cstore::NativeFramework && !is_osx {
let msg = "native frameworks are only available on OSX targets";
match span {
Some(span) => {
span_err!(sess, span, E0455,
"{}", msg)
}
None => sess.err(msg),
}
}
sess.cstore.add_used_library(name, kind);
}
// Extra info about a crate loaded for plugins or exported macros.
struct ExtensionCrate {
metadata: PMDSource,
dylib: Option<PathBuf>,
target_only: bool,
}
enum PMDSource {
Registered(Rc<cstore::crate_metadata>),
Owned(MetadataBlob),
}
impl PMDSource {
pub fn as_slice<'a>(&'a self) -> &'a [u8] {
match *self {
PMDSource::Registered(ref cmd) => cmd.data(),
PMDSource::Owned(ref mdb) => mdb.as_slice(),
}
}
}
2014-12-21 01:02:38 -06:00
impl<'a> CrateReader<'a> {
pub fn new(sess: &'a Session) -> CrateReader<'a> {
CrateReader {
sess: sess,
next_crate_num: sess.cstore.next_crate_num(),
foreign_item_map: FnvHashMap(),
2014-12-21 01:02:38 -06:00
}
}
fn extract_crate_info(&self, i: &ast::Item) -> Option<CrateInfo> {
match i.node {
ast::ItemExternCrate(ref path_opt) => {
2015-01-06 18:16:35 -06:00
debug!("resolving extern crate stmt. ident: {} path_opt: {:?}",
i.ident, path_opt);
let name = match *path_opt {
Some(name) => {
validate_crate_name(Some(self.sess), &name.as_str(),
Some(i.span));
name.to_string()
}
None => i.ident.to_string(),
};
Some(CrateInfo {
ident: i.ident.to_string(),
name: name,
id: i.id,
should_link: should_link(i),
})
}
_ => None
}
}
2015-07-31 02:04:06 -05:00
// Dup of the above, but for the hir
fn extract_crate_info_hir(&self, i: &hir::Item) -> Option<CrateInfo> {
match i.node {
hir::ItemExternCrate(ref path_opt) => {
debug!("resolving extern crate stmt. ident: {} path_opt: {:?}",
2015-09-19 20:50:30 -05:00
i.name, path_opt);
2015-07-31 02:04:06 -05:00
let name = match *path_opt {
Some(name) => {
validate_crate_name(Some(self.sess), &name.as_str(),
Some(i.span));
name.to_string()
}
2015-09-19 20:50:30 -05:00
None => i.name.to_string(),
2015-07-31 02:04:06 -05:00
};
Some(CrateInfo {
2015-09-19 20:50:30 -05:00
ident: i.name.to_string(),
2015-07-31 02:04:06 -05:00
name: name,
id: i.id,
should_link: should_link_hir(i),
})
}
_ => None
}
}
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
fn existing_match(&self, name: &str, hash: Option<&Svh>, kind: PathKind)
-> Option<ast::CrateNum> {
let mut ret = None;
self.sess.cstore.iter_crate_data(|cnum, data| {
if data.name != name { return }
match hash {
Some(hash) if *hash == data.hash() => { ret = Some(cnum); return }
Some(..) => return,
None => {}
}
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
// When the hash is None we're dealing with a top-level dependency
// in which case we may have a specification on the command line for
// this library. Even though an upstream library may have loaded
// something of the same name, we have to make sure it was loaded
// from the exact same location as well.
//
// We're also sure to compare *paths*, not actual byte slices. The
// `source` stores paths which are normalized which may be different
// from the strings on the command line.
let source = self.sess.cstore.get_used_crate_source(cnum).unwrap();
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
if let Some(locs) = self.sess.opts.externs.get(name) {
let found = locs.iter().any(|l| {
std: Expand the area of std::fs This commit is an implementation of [RFC 1044][rfc] which adds additional surface area to the `std::fs` module. All new APIs are `#[unstable]` behind assorted feature names for each one. [rfc]: https://github.com/rust-lang/rfcs/pull/1044 The new APIs added are: * `fs::canonicalize` - bindings to `realpath` on unix and `GetFinalPathNameByHandle` on windows. * `fs::symlink_metadata` - similar to `lstat` on unix * `fs::FileType` and accessor methods as `is_{file,dir,symlink}` * `fs::Metadata::file_type` - accessor for the raw file type * `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows but requires a syscall on unix. * `fs::DirEntry::file_type` - access the file type which may not require a syscall on most platforms. * `fs::DirEntry::file_name` - access just the file name without leading components. * `fs::PathExt::symlink_metadata` - convenience method for the top-level function. * `fs::PathExt::canonicalize` - convenience method for the top-level function. * `fs::PathExt::read_link` - convenience method for the top-level function. * `fs::PathExt::read_dir` - convenience method for the top-level function. * `std::os::raw` - type definitions for raw OS/C types available on all platforms. * `std::os::$platform` - new modules have been added for all currently supported platforms (e.g. those more specific than just `unix`). * `std::os::$platform::raw` - platform-specific type definitions. These modules are populated with the bare essentials necessary for lowing I/O types into their raw representations, and currently largely consist of the `stat` definition for unix platforms. This commit also deprecates `Metadata::{modified, accessed}` in favor of inspecting the raw representations via the lowering methods of `Metadata`.
2015-04-16 01:21:13 -05:00
let l = fs::canonicalize(l).ok();
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
source.dylib.as_ref().map(|p| &p.0) == l.as_ref() ||
source.rlib.as_ref().map(|p| &p.0) == l.as_ref()
});
if found {
ret = Some(cnum);
}
return
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
}
// Alright, so we've gotten this far which means that `data` has the
// right name, we don't have a hash, and we don't have a --extern
// pointing for ourselves. We're still not quite yet done because we
// have to make sure that this crate was found in the crate lookup
// path (this is a top-level dependency) as we don't want to
// implicitly load anything inside the dependency lookup path.
let prev_kind = source.dylib.as_ref().or(source.rlib.as_ref())
.unwrap().1;
if ret.is_none() && (prev_kind == kind || prev_kind == PathKind::All) {
ret = Some(cnum);
}
});
return ret;
}
fn verify_rustc_version(&self,
name: &str,
span: Span,
metadata: &MetadataBlob) {
let crate_rustc_version = decoder::crate_rustc_version(metadata.as_slice());
if crate_rustc_version != Some(rustc_version()) {
span_err!(self.sess, span, E0514,
"the crate `{}` has been compiled with {}, which is \
incompatible with this version of rustc",
name,
crate_rustc_version
.as_ref().map(|s|&**s)
.unwrap_or("an old version of rustc")
);
self.sess.abort_if_errors();
}
}
fn register_crate(&mut self,
root: &Option<CratePaths>,
ident: &str,
name: &str,
span: Span,
lib: loader::Library,
explicitly_linked: bool)
-> (ast::CrateNum, Rc<cstore::crate_metadata>,
cstore::CrateSource) {
self.verify_rustc_version(name, span, &lib.metadata);
// Claim this crate number and cache it
let cnum = self.next_crate_num;
self.next_crate_num += 1;
// Stash paths for top-most crate locally if necessary.
let crate_paths = if root.is_none() {
Some(CratePaths {
ident: ident.to_string(),
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
dylib: lib.dylib.clone().map(|p| p.0),
rlib: lib.rlib.clone().map(|p| p.0),
})
} else {
None
};
// Maintain a reference to the top most crate.
let root = if root.is_some() { root } else { &crate_paths };
let loader::Library { dylib, rlib, metadata } = lib;
let cnum_map = self.resolve_crate_deps(root, metadata.as_slice(), span);
let staged_api = self.is_staged_api(metadata.as_slice());
let cmeta = Rc::new(cstore::crate_metadata {
name: name.to_string(),
local_path: RefCell::new(SmallVector::zero()),
local_def_path: RefCell::new(vec![]),
index: decoder::load_index(metadata.as_slice()),
xref_index: decoder::load_xrefs(metadata.as_slice()),
data: metadata,
cnum_map: RefCell::new(cnum_map),
cnum: cnum,
codemap_import_info: RefCell::new(vec![]),
span: span,
staged_api: staged_api,
explicitly_linked: Cell::new(explicitly_linked),
});
let source = cstore::CrateSource {
dylib: dylib,
rlib: rlib,
cnum: cnum,
};
self.sess.cstore.set_crate_data(cnum, cmeta.clone());
self.sess.cstore.add_used_crate_source(source.clone());
(cnum, cmeta, source)
}
fn is_staged_api(&self, data: &[u8]) -> bool {
let attrs = decoder::get_crate_attributes(data);
for attr in &attrs {
if &attr.name()[..] == "staged_api" {
match attr.node.value.node { ast::MetaWord(_) => return true, _ => (/*pass*/) }
}
}
return false;
}
fn resolve_crate(&mut self,
root: &Option<CratePaths>,
ident: &str,
name: &str,
hash: Option<&Svh>,
span: Span,
kind: PathKind,
explicitly_linked: bool)
-> (ast::CrateNum, Rc<cstore::crate_metadata>,
cstore::CrateSource) {
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
match self.existing_match(name, hash, kind) {
None => {
let mut load_ctxt = loader::Context {
sess: self.sess,
span: span,
ident: ident,
crate_name: name,
hash: hash.map(|a| &*a),
filesearch: self.sess.target_filesearch(kind),
target: &self.sess.target.target,
triple: &self.sess.opts.target_triple,
root: root,
rejected_via_hash: vec!(),
rejected_via_triple: vec!(),
rejected_via_kind: vec!(),
should_match_name: true,
};
let library = load_ctxt.load_library_crate();
self.register_crate(root, ident, name, span, library,
explicitly_linked)
}
Some(cnum) => {
let data = self.sess.cstore.get_crate_data(cnum);
if explicitly_linked && !data.explicitly_linked.get() {
data.explicitly_linked.set(explicitly_linked);
}
(cnum, data, self.sess.cstore.get_used_crate_source(cnum).unwrap())
}
}
}
// Go through the crate metadata and load any crates that it references
fn resolve_crate_deps(&mut self,
root: &Option<CratePaths>,
cdata: &[u8], span : Span)
-> cstore::cnum_map {
debug!("resolving deps of external crate");
// The map from crate numbers in the crate we're resolving to local crate
// numbers
decoder::get_crate_deps(cdata).iter().map(|dep| {
debug!("resolving dep crate {} hash: `{}`", dep.name, dep.hash);
let (local_cnum, _, _) = self.resolve_crate(root,
&dep.name,
&dep.name,
Some(&dep.hash),
span,
PathKind::Dependency,
dep.explicitly_linked);
(dep.cnum, local_cnum)
}).collect()
}
2013-12-25 12:10:33 -06:00
fn read_extension_crate(&mut self, span: Span, info: &CrateInfo) -> ExtensionCrate {
let target_triple = &self.sess.opts.target_triple[..];
let is_cross = target_triple != config::host_triple();
let mut should_link = info.should_link && !is_cross;
let mut target_only = false;
let ident = info.ident.clone();
let name = info.name.clone();
let mut load_ctxt = loader::Context {
2014-12-21 01:02:38 -06:00
sess: self.sess,
span: span,
ident: &ident[..],
crate_name: &name[..],
hash: None,
2014-12-21 01:02:38 -06:00
filesearch: self.sess.host_filesearch(PathKind::Crate),
target: &self.sess.host,
triple: config::host_triple(),
root: &None,
rejected_via_hash: vec!(),
rejected_via_triple: vec!(),
rejected_via_kind: vec!(),
should_match_name: true,
};
let library = match load_ctxt.maybe_load_library_crate() {
Some(l) => l,
None if is_cross => {
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
// Try loading from target crates. This will abort later if we
// try to load a plugin registrar function,
target_only = true;
should_link = info.should_link;
load_ctxt.target = &self.sess.target.target;
load_ctxt.triple = target_triple;
2014-12-21 01:02:38 -06:00
load_ctxt.filesearch = self.sess.target_filesearch(PathKind::Crate);
load_ctxt.load_library_crate()
}
None => { load_ctxt.report_load_errs(); unreachable!() },
};
let dylib = library.dylib.clone();
let register = should_link && self.existing_match(&info.name,
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
None,
PathKind::Crate).is_none();
let metadata = if register {
// Register crate now to avoid double-reading metadata
let (_, cmd, _) = self.register_crate(&None, &info.ident,
&info.name, span, library,
true);
PMDSource::Registered(cmd)
} else {
// Not registering the crate; just hold on to the metadata
PMDSource::Owned(library.metadata)
};
ExtensionCrate {
metadata: metadata,
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
dylib: dylib.map(|p| p.0),
target_only: target_only,
}
}
/// Read exported macros.
2015-07-31 02:04:06 -05:00
pub fn read_exported_macros(&mut self, item: &ast::Item) -> Vec<ast::MacroDef> {
let ci = self.extract_crate_info(item).unwrap();
let ekrate = self.read_extension_crate(item.span, &ci);
2015-07-31 02:04:06 -05:00
let source_name = format!("<{} macros>", item.ident);
let mut macros = vec![];
decoder::each_exported_macro(ekrate.metadata.as_slice(),
&*self.sess.cstore.intr,
|name, attrs, body| {
// NB: Don't use parse::parse_tts_from_source_str because it parses with
// quote_depth > 0.
let mut p = parse::new_parser_from_source_str(&self.sess.parse_sess,
self.sess.opts.cfg.clone(),
source_name.clone(),
body);
let lo = p.span.lo;
let body = match p.parse_all_token_trees() {
Ok(body) => body,
Err(err) => panic!(err),
};
let span = mk_sp(lo, p.last_span.hi);
p.abort_if_errors();
// Mark the attrs as used
for attr in &attrs {
attr::mark_used(attr);
}
macros.push(ast::MacroDef {
ident: ast::Ident::with_empty_ctxt(name),
attrs: attrs,
id: ast::DUMMY_NODE_ID,
span: span,
2015-07-31 02:04:06 -05:00
imported_from: Some(item.ident),
2015-01-02 14:50:45 -06:00
// overridden in plugin/load.rs
export: false,
use_locally: false,
allow_internal_unstable: false,
2015-01-02 14:50:45 -06:00
body: body,
});
true
}
);
macros
}
/// Look for a plugin registrar. Returns library path and symbol name.
pub fn find_plugin_registrar(&mut self, span: Span, name: &str)
-> Option<(PathBuf, String)> {
let ekrate = self.read_extension_crate(span, &CrateInfo {
name: name.to_string(),
ident: name.to_string(),
id: ast::DUMMY_NODE_ID,
should_link: false,
});
if ekrate.target_only {
// Need to abort before syntax expansion.
let message = format!("plugin `{}` is not available for triple `{}` \
(only found {})",
name,
config::host_triple(),
self.sess.opts.target_triple);
span_err!(self.sess, span, E0456, "{}", &message[..]);
self.sess.abort_if_errors();
}
let registrar =
decoder::get_plugin_registrar_fn(ekrate.metadata.as_slice())
.map(|id| decoder::get_symbol_from_buf(ekrate.metadata.as_slice(), id));
match (ekrate.dylib.as_ref(), registrar) {
(Some(dylib), Some(reg)) => Some((dylib.to_path_buf(), reg)),
(None, Some(_)) => {
span_err!(self.sess, span, E0457,
"plugin `{}` only found in rlib format, but must be available \
in dylib format",
name);
// No need to abort because the loading code will just ignore this
// empty dylib.
None
}
_ => None,
2013-12-25 12:10:33 -06:00
}
}
fn register_statically_included_foreign_items(&mut self) {
let libs = self.sess.cstore.get_used_libraries();
for (lib, list) in self.foreign_item_map.iter() {
let is_static = libs.borrow().iter().any(|&(ref name, kind)| {
lib == name && kind == cstore::NativeStatic
});
if is_static {
for id in list {
self.sess.cstore.add_statically_included_foreign_item(*id);
}
}
}
}
fn inject_allocator_crate(&mut self) {
// Make sure that we actually need an allocator, if none of our
// dependencies need one then we definitely don't!
//
// Also, if one of our dependencies has an explicit allocator, then we
// also bail out as we don't need to implicitly inject one.
let mut needs_allocator = false;
let mut found_required_allocator = false;
self.sess.cstore.iter_crate_data(|cnum, data| {
needs_allocator = needs_allocator || data.needs_allocator();
if data.is_allocator() {
debug!("{} required by rlib and is an allocator", data.name());
self.inject_allocator_dependency(cnum);
found_required_allocator = found_required_allocator ||
data.explicitly_linked.get();
}
});
if !needs_allocator || found_required_allocator { return }
// At this point we've determined that we need an allocator and no
// previous allocator has been activated. We look through our outputs of
// crate types to see what kind of allocator types we may need.
//
// The main special output type here is that rlibs do **not** need an
// allocator linked in (they're just object files), only final products
// (exes, dylibs, staticlibs) need allocators.
let mut need_lib_alloc = false;
let mut need_exe_alloc = false;
for ct in self.sess.crate_types.borrow().iter() {
match *ct {
config::CrateTypeExecutable => need_exe_alloc = true,
config::CrateTypeDylib |
config::CrateTypeStaticlib => need_lib_alloc = true,
config::CrateTypeRlib => {}
}
}
if !need_lib_alloc && !need_exe_alloc { return }
// The default allocator crate comes from the custom target spec, and we
// choose between the standard library allocator or exe allocator. This
// distinction exists because the default allocator for binaries (where
// the world is Rust) is different than library (where the world is
// likely *not* Rust).
//
// If a library is being produced, but we're also flagged with `-C
// prefer-dynamic`, then we interpret this as a *Rust* dynamic library
// is being produced so we use the exe allocator instead.
//
// What this boils down to is:
//
// * Binaries use jemalloc
// * Staticlibs and Rust dylibs use system malloc
// * Rust dylibs used as dependencies to rust use jemalloc
let name = if need_lib_alloc && !self.sess.opts.cg.prefer_dynamic {
&self.sess.target.target.options.lib_allocation_crate
} else {
&self.sess.target.target.options.exe_allocation_crate
};
let (cnum, data, _) = self.resolve_crate(&None, name, name, None,
codemap::DUMMY_SP,
PathKind::Crate, false);
// To ensure that the `-Z allocation-crate=foo` option isn't abused, and
// to ensure that the allocator is indeed an allocator, we verify that
// the crate loaded here is indeed tagged #![allocator].
if !data.is_allocator() {
self.sess.err(&format!("the allocator crate `{}` is not tagged \
with #![allocator]", data.name()));
}
self.sess.injected_allocator.set(Some(cnum));
self.inject_allocator_dependency(cnum);
}
fn inject_allocator_dependency(&self, allocator: ast::CrateNum) {
// Before we inject any dependencies, make sure we don't inject a
// circular dependency by validating that this allocator crate doesn't
// transitively depend on any `#![needs_allocator]` crates.
validate(self, allocator, allocator);
// All crates tagged with `needs_allocator` do not explicitly depend on
// the allocator selected for this compile, but in order for this
// compilation to be successfully linked we need to inject a dependency
// (to order the crates on the command line correctly).
//
// Here we inject a dependency from all crates with #![needs_allocator]
// to the crate tagged with #![allocator] for this compilation unit.
self.sess.cstore.iter_crate_data(|cnum, data| {
if !data.needs_allocator() {
return
}
info!("injecting a dep from {} to {}", cnum, allocator);
let mut cnum_map = data.cnum_map.borrow_mut();
let remote_cnum = cnum_map.len() + 1;
let prev = cnum_map.insert(remote_cnum as ast::CrateNum, allocator);
assert!(prev.is_none());
});
fn validate(me: &CrateReader, krate: ast::CrateNum,
allocator: ast::CrateNum) {
let data = me.sess.cstore.get_crate_data(krate);
if data.needs_allocator() {
let krate_name = data.name();
let data = me.sess.cstore.get_crate_data(allocator);
let alloc_name = data.name();
me.sess.err(&format!("the allocator crate `{}` cannot depend \
on a crate that needs an allocator, but \
it depends on `{}`", alloc_name,
krate_name));
}
for (_, &dep) in data.cnum_map.borrow().iter() {
validate(me, dep, allocator);
}
}
}
2013-12-25 12:10:33 -06:00
}
impl<'a, 'b> LocalCrateReader<'a, 'b> {
2015-07-31 02:04:06 -05:00
pub fn new(sess: &'a Session, map: &'a hir_map::Map<'b>) -> LocalCrateReader<'a, 'b> {
LocalCrateReader {
sess: sess,
creader: CrateReader::new(sess),
ast_map: map,
}
}
// Traverses an AST, reading all the information about use'd crates and
// extern libraries necessary for later resolving, typechecking, linking,
// etc.
2015-07-31 02:04:06 -05:00
pub fn read_crates(&mut self, krate: &hir::Crate) {
self.process_crate(krate);
visit::walk_crate(self, krate);
self.creader.inject_allocator_crate();
if log_enabled!(log::INFO) {
dump_crates(&self.sess.cstore);
}
for &(ref name, kind) in &self.sess.opts.libs {
register_native_lib(self.sess, None, name.clone(), kind);
}
self.creader.register_statically_included_foreign_items();
}
2015-07-31 02:04:06 -05:00
fn process_crate(&self, c: &hir::Crate) {
for a in c.attrs.iter().filter(|m| m.name() == "link_args") {
match a.value_str() {
Some(ref linkarg) => self.sess.cstore.add_used_link_args(&linkarg),
None => { /* fallthrough */ }
}
}
}
2015-07-31 02:04:06 -05:00
fn process_item(&mut self, i: &hir::Item) {
match i.node {
2015-07-31 02:04:06 -05:00
hir::ItemExternCrate(_) => {
if !should_link_hir(i) {
return;
}
2015-07-31 02:04:06 -05:00
match self.creader.extract_crate_info_hir(i) {
Some(info) => {
let (cnum, cmeta, _) = self.creader.resolve_crate(&None,
&info.ident,
&info.name,
None,
i.span,
PathKind::Crate,
true);
let def_id = self.ast_map.local_def_id(i.id);
let def_path = self.ast_map.def_path(def_id);
cmeta.update_local_def_path(def_path);
self.ast_map.with_path(i.id, |path| {
cmeta.update_local_path(path)
});
self.sess.cstore.add_extern_mod_stmt_cnum(info.id, cnum);
}
None => ()
}
}
2015-07-31 02:04:06 -05:00
hir::ItemForeignMod(ref fm) => self.process_foreign_mod(i, fm),
_ => { }
}
}
2015-07-31 02:04:06 -05:00
fn process_foreign_mod(&mut self, i: &hir::Item, fm: &hir::ForeignMod) {
if fm.abi == abi::Rust || fm.abi == abi::RustIntrinsic || fm.abi == abi::PlatformIntrinsic {
return;
}
// First, add all of the custom #[link_args] attributes
for m in i.attrs.iter().filter(|a| a.check_name("link_args")) {
if let Some(linkarg) = m.value_str() {
self.sess.cstore.add_used_link_args(&linkarg);
}
}
// Next, process all of the #[link(..)]-style arguments
for m in i.attrs.iter().filter(|a| a.check_name("link")) {
let items = match m.meta_item_list() {
Some(item) => item,
None => continue,
};
let kind = items.iter().find(|k| {
k.check_name("kind")
}).and_then(|a| a.value_str());
let kind = match kind.as_ref().map(|s| &s[..]) {
Some("static") => cstore::NativeStatic,
Some("dylib") => cstore::NativeUnknown,
Some("framework") => cstore::NativeFramework,
Some(k) => {
span_err!(self.sess, m.span, E0458,
"unknown kind: `{}`", k);
cstore::NativeUnknown
}
None => cstore::NativeUnknown
};
let n = items.iter().find(|n| {
n.check_name("name")
}).and_then(|a| a.value_str());
let n = match n {
Some(n) => n,
None => {
span_err!(self.sess, m.span, E0459,
"#[link(...)] specified without `name = \"foo\"`");
InternedString::new("foo")
}
};
register_native_lib(self.sess, Some(m.span), n.to_string(), kind);
}
// Finally, process the #[linked_from = "..."] attribute
for m in i.attrs.iter().filter(|a| a.check_name("linked_from")) {
let lib_name = match m.value_str() {
Some(name) => name,
None => continue,
};
let list = self.creader.foreign_item_map.entry(lib_name.to_string())
.or_insert(Vec::new());
list.extend(fm.items.iter().map(|it| it.id));
}
}
}
/// Imports the codemap from an external crate into the codemap of the crate
/// currently being compiled (the "local crate").
///
/// The import algorithm works analogous to how AST items are inlined from an
/// external crate's metadata:
/// For every FileMap in the external codemap an 'inline' copy is created in the
/// local codemap. The correspondence relation between external and local
/// FileMaps is recorded in the `ImportedFileMap` objects returned from this
/// function. When an item from an external crate is later inlined into this
/// crate, this correspondence information is used to translate the span
/// information of the inlined item so that it refers the correct positions in
/// the local codemap (see `astencode::DecodeContext::tr_span()`).
///
/// The import algorithm in the function below will reuse FileMaps already
/// existing in the local codemap. For example, even if the FileMap of some
/// source file of libstd gets imported many times, there will only ever be
/// one FileMap object for the corresponding file in the local codemap.
///
/// Note that imported FileMaps do not actually contain the source code of the
/// file they represent, just information about length, line breaks, and
/// multibyte characters. This information is enough to generate valid debuginfo
/// for items inlined from other crates.
pub fn import_codemap(local_codemap: &codemap::CodeMap,
metadata: &MetadataBlob)
-> Vec<cstore::ImportedFileMap> {
let external_codemap = decoder::get_imported_filemaps(metadata.as_slice());
let imported_filemaps = external_codemap.into_iter().map(|filemap_to_import| {
// Try to find an existing FileMap that can be reused for the filemap to
// be imported. A FileMap is reusable if it is exactly the same, just
// positioned at a different offset within the codemap.
let reusable_filemap = {
local_codemap.files
.borrow()
.iter()
.find(|fm| are_equal_modulo_startpos(&fm, &filemap_to_import))
.map(|rc| rc.clone())
};
match reusable_filemap {
Some(fm) => {
cstore::ImportedFileMap {
original_start_pos: filemap_to_import.start_pos,
original_end_pos: filemap_to_import.end_pos,
translated_filemap: fm
}
}
None => {
// We can't reuse an existing FileMap, so allocate a new one
// containing the information we need.
let codemap::FileMap {
name,
start_pos,
end_pos,
lines,
multibyte_chars,
..
} = filemap_to_import;
let source_length = (end_pos - start_pos).to_usize();
// Translate line-start positions and multibyte character
// position into frame of reference local to file.
// `CodeMap::new_imported_filemap()` will then translate those
// coordinates to their new global frame of reference when the
// offset of the FileMap is known.
let mut lines = lines.into_inner();
for pos in &mut lines {
*pos = *pos - start_pos;
}
let mut multibyte_chars = multibyte_chars.into_inner();
for mbc in &mut multibyte_chars {
mbc.pos = mbc.pos - start_pos;
}
let local_version = local_codemap.new_imported_filemap(name,
source_length,
lines,
multibyte_chars);
cstore::ImportedFileMap {
original_start_pos: start_pos,
original_end_pos: end_pos,
translated_filemap: local_version
}
}
}
}).collect();
return imported_filemaps;
fn are_equal_modulo_startpos(fm1: &codemap::FileMap,
fm2: &codemap::FileMap)
-> bool {
if fm1.name != fm2.name {
return false;
}
let lines1 = fm1.lines.borrow();
let lines2 = fm2.lines.borrow();
if lines1.len() != lines2.len() {
return false;
}
for (&line1, &line2) in lines1.iter().zip(lines2.iter()) {
if (line1 - fm1.start_pos) != (line2 - fm2.start_pos) {
return false;
}
}
let multibytes1 = fm1.multibyte_chars.borrow();
let multibytes2 = fm2.multibyte_chars.borrow();
if multibytes1.len() != multibytes2.len() {
return false;
}
for (mb1, mb2) in multibytes1.iter().zip(multibytes2.iter()) {
if (mb1.bytes != mb2.bytes) ||
((mb1.pos - fm1.start_pos) != (mb2.pos - fm2.start_pos)) {
return false;
}
}
true
}
}