rust/src/librustc/metadata/creader.rs

587 lines
22 KiB
Rust
Raw Normal View History

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
//! Validates all used crates and extern libraries and loads their metadata
use back::svh::Svh;
use session::{config, Session};
use session::search_paths::PathKind;
use metadata::cstore;
use metadata::cstore::{CStore, CrateSource, MetadataBlob};
use metadata::decoder;
use metadata::loader;
use metadata::loader::CratePaths;
2014-03-27 12:28:38 -05:00
use std::rc::Rc;
use syntax::ast;
use syntax::abi;
2012-09-04 13:54:36 -05:00
use syntax::attr;
use syntax::attr::AttrMetaMethods;
use syntax::codemap::{Span, mk_sp};
use syntax::parse;
use syntax::parse::token::InternedString;
use syntax::parse::token;
use syntax::visit;
use util::fs;
use log;
2014-12-21 01:02:38 -06:00
pub struct CrateReader<'a> {
sess: &'a Session,
next_crate_num: ast::CrateNum,
}
2014-12-21 01:02:38 -06:00
impl<'a, 'v> visit::Visitor<'v> for CrateReader<'a> {
fn visit_item(&mut self, a: &ast::Item) {
self.process_item(a);
visit::walk_item(self, a);
}
}
fn dump_crates(cstore: &CStore) {
debug!("resolved crates:");
cstore.iter_crate_data_origins(|_, data, opt_source| {
debug!(" name: {}", data.name());
debug!(" cnum: {}", data.cnum);
debug!(" hash: {}", data.hash());
opt_source.map(|cs| {
let CrateSource { dylib, rlib, cnum: _ } = cs;
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
dylib.map(|dl| debug!(" dylib: {}", dl.0.display()));
rlib.map(|rl| debug!(" rlib: {}", rl.0.display()));
});
})
2012-04-09 17:06:38 -05:00
}
fn should_link(i: &ast::Item) -> bool {
2015-01-07 10:58:31 -06:00
!attr::contains_name(&i.attrs[], "no_link")
}
2013-12-25 12:10:33 -06:00
struct CrateInfo {
ident: String,
name: String,
2013-12-25 12:10:33 -06:00
id: ast::NodeId,
should_link: bool,
2013-12-25 12:10:33 -06:00
}
pub fn validate_crate_name(sess: Option<&Session>, s: &str, sp: Option<Span>) {
let err = |s: &str| {
match (sp, sess) {
(_, None) => panic!("{}", s),
(Some(sp), Some(sess)) => sess.span_err(sp, s),
(None, Some(sess)) => sess.err(s),
}
};
if s.len() == 0 {
err("crate name must not be empty");
}
for c in s.chars() {
if c.is_alphanumeric() { continue }
if c == '_' || c == '-' { continue }
2015-01-07 10:58:31 -06:00
err(&format!("invalid character `{}` in crate name: `{}`", c, s)[]);
}
match sess {
Some(sess) => sess.abort_if_errors(),
None => {}
}
}
fn register_native_lib(sess: &Session,
span: Option<Span>,
name: String,
kind: cstore::NativeLibraryKind) {
if name.is_empty() {
match span {
Some(span) => {
sess.span_err(span, "#[link(name = \"\")] given with \
empty name");
}
None => {
sess.err("empty library name given via `-l`");
}
}
return
}
let is_osx = sess.target.target.options.is_like_osx;
if kind == cstore::NativeFramework && !is_osx {
let msg = "native frameworks are only available on OSX targets";
match span {
Some(span) => sess.span_err(span, msg),
None => sess.err(msg),
}
}
sess.cstore.add_used_library(name, kind);
}
// Extra info about a crate loaded for plugins or exported macros.
struct ExtensionCrate {
metadata: PMDSource,
dylib: Option<Path>,
target_only: bool,
}
enum PMDSource {
Registered(Rc<cstore::crate_metadata>),
Owned(MetadataBlob),
}
impl PMDSource {
pub fn as_slice<'a>(&'a self) -> &'a [u8] {
match *self {
PMDSource::Registered(ref cmd) => cmd.data(),
PMDSource::Owned(ref mdb) => mdb.as_slice(),
}
}
}
2014-12-21 01:02:38 -06:00
impl<'a> CrateReader<'a> {
pub fn new(sess: &'a Session) -> CrateReader<'a> {
CrateReader {
sess: sess,
next_crate_num: sess.cstore.next_crate_num(),
}
}
// Traverses an AST, reading all the information about use'd crates and extern
// libraries necessary for later resolving, typechecking, linking, etc.
pub fn read_crates(&mut self, krate: &ast::Crate) {
self.process_crate(krate);
visit::walk_crate(self, krate);
if log_enabled!(log::DEBUG) {
dump_crates(&self.sess.cstore);
}
2015-01-31 11:20:46 -06:00
for &(ref name, kind) in &self.sess.opts.libs {
2014-12-21 01:02:38 -06:00
register_native_lib(self.sess, None, name.clone(), kind);
}
}
fn process_crate(&self, c: &ast::Crate) {
for a in c.attrs.iter().filter(|m| m.name() == "link_args") {
match a.value_str() {
Some(ref linkarg) => self.sess.cstore.add_used_link_args(&linkarg),
None => { /* fallthrough */ }
}
}
}
fn extract_crate_info(&self, i: &ast::Item) -> Option<CrateInfo> {
match i.node {
ast::ItemExternCrate(ref path_opt) => {
let ident = token::get_ident(i.ident);
2015-01-06 18:16:35 -06:00
debug!("resolving extern crate stmt. ident: {} path_opt: {:?}",
ident, path_opt);
let name = match *path_opt {
Some((ref path_str, _)) => {
2015-02-03 17:03:39 -06:00
let name = path_str.to_string();
2015-01-07 10:58:31 -06:00
validate_crate_name(Some(self.sess), &name[],
Some(i.span));
name
}
2015-02-03 17:03:39 -06:00
None => ident.to_string(),
};
Some(CrateInfo {
2015-02-03 17:03:39 -06:00
ident: ident.to_string(),
name: name,
id: i.id,
should_link: should_link(i),
})
}
_ => None
}
}
fn process_item(&mut self, i: &ast::Item) {
match i.node {
ast::ItemExternCrate(_) => {
if !should_link(i) {
return;
}
match self.extract_crate_info(i) {
Some(info) => {
let (cnum, _, _) = self.resolve_crate(&None,
&info.ident[],
&info.name[],
None,
i.span,
PathKind::Crate);
self.sess.cstore.add_extern_mod_stmt_cnum(info.id, cnum);
}
None => ()
}
}
ast::ItemForeignMod(ref fm) => {
if fm.abi == abi::Rust || fm.abi == abi::RustIntrinsic {
return;
}
// First, add all of the custom link_args attributes
let link_args = i.attrs.iter()
.filter_map(|at| if at.name() == "link_args" {
Some(at)
} else {
None
})
.collect::<Vec<&ast::Attribute>>();
2015-01-31 11:20:46 -06:00
for m in &link_args {
match m.value_str() {
Some(linkarg) => self.sess.cstore.add_used_link_args(&linkarg),
None => { /* fallthrough */ }
}
}
// Next, process all of the #[link(..)]-style arguments
let link_args = i.attrs.iter()
.filter_map(|at| if at.name() == "link" {
Some(at)
} else {
None
})
.collect::<Vec<&ast::Attribute>>();
2015-01-31 11:20:46 -06:00
for m in &link_args {
match m.meta_item_list() {
Some(items) => {
let kind = items.iter().find(|k| {
k.name() == "kind"
}).and_then(|a| a.value_str());
let kind = match kind {
Some(k) => {
if k == "static" {
cstore::NativeStatic
} else if self.sess.target.target.options.is_like_osx
&& k == "framework" {
cstore::NativeFramework
} else if k == "framework" {
cstore::NativeFramework
} else if k == "dylib" {
cstore::NativeUnknown
} else {
self.sess.span_err(m.span,
2015-01-07 10:58:31 -06:00
&format!("unknown kind: `{}`",
k)[]);
cstore::NativeUnknown
}
}
None => cstore::NativeUnknown
};
let n = items.iter().find(|n| {
n.name() == "name"
}).and_then(|a| a.value_str());
let n = match n {
Some(n) => n,
None => {
self.sess.span_err(m.span,
"#[link(...)] specified without \
`name = \"foo\"`");
InternedString::new("foo")
}
};
register_native_lib(self.sess, Some(m.span),
2015-02-03 17:03:39 -06:00
n.to_string(), kind);
}
None => {}
}
}
}
_ => { }
2012-06-04 10:03:14 -05:00
}
}
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
fn existing_match(&self, name: &str, hash: Option<&Svh>, kind: PathKind)
-> Option<ast::CrateNum> {
let mut ret = None;
self.sess.cstore.iter_crate_data(|cnum, data| {
if data.name != name { return }
match hash {
Some(hash) if *hash == data.hash() => { ret = Some(cnum); return }
Some(..) => return,
None => {}
}
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
// When the hash is None we're dealing with a top-level dependency
// in which case we may have a specification on the command line for
// this library. Even though an upstream library may have loaded
// something of the same name, we have to make sure it was loaded
// from the exact same location as well.
//
// We're also sure to compare *paths*, not actual byte slices. The
// `source` stores paths which are normalized which may be different
// from the strings on the command line.
let source = self.sess.cstore.get_used_crate_source(cnum).unwrap();
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
if let Some(locs) = self.sess.opts.externs.get(name) {
let found = locs.iter().any(|l| {
let l = fs::realpath(&Path::new(&l[])).ok();
source.dylib.as_ref().map(|p| &p.0) == l.as_ref() ||
source.rlib.as_ref().map(|p| &p.0) == l.as_ref()
});
if found {
ret = Some(cnum);
}
return
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
}
// Alright, so we've gotten this far which means that `data` has the
// right name, we don't have a hash, and we don't have a --extern
// pointing for ourselves. We're still not quite yet done because we
// have to make sure that this crate was found in the crate lookup
// path (this is a top-level dependency) as we don't want to
// implicitly load anything inside the dependency lookup path.
let prev_kind = source.dylib.as_ref().or(source.rlib.as_ref())
.unwrap().1;
if ret.is_none() && (prev_kind == kind || prev_kind == PathKind::All) {
ret = Some(cnum);
}
});
return ret;
}
fn register_crate(&mut self,
root: &Option<CratePaths>,
ident: &str,
name: &str,
span: Span,
lib: loader::Library)
-> (ast::CrateNum, Rc<cstore::crate_metadata>,
cstore::CrateSource) {
// Claim this crate number and cache it
let cnum = self.next_crate_num;
self.next_crate_num += 1;
// Stash paths for top-most crate locally if necessary.
let crate_paths = if root.is_none() {
Some(CratePaths {
ident: ident.to_string(),
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
dylib: lib.dylib.clone().map(|p| p.0),
rlib: lib.rlib.clone().map(|p| p.0),
})
} else {
None
};
// Maintain a reference to the top most crate.
let root = if root.is_some() { root } else { &crate_paths };
let cnum_map = self.resolve_crate_deps(root, lib.metadata.as_slice(), span);
let loader::Library{ dylib, rlib, metadata } = lib;
let cmeta = Rc::new( cstore::crate_metadata {
name: name.to_string(),
data: metadata,
cnum_map: cnum_map,
cnum: cnum,
span: span,
});
let source = cstore::CrateSource {
dylib: dylib,
rlib: rlib,
cnum: cnum,
};
self.sess.cstore.set_crate_data(cnum, cmeta.clone());
self.sess.cstore.add_used_crate_source(source.clone());
(cnum, cmeta, source)
}
fn resolve_crate(&mut self,
root: &Option<CratePaths>,
ident: &str,
name: &str,
hash: Option<&Svh>,
span: Span,
kind: PathKind)
-> (ast::CrateNum, Rc<cstore::crate_metadata>,
cstore::CrateSource) {
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
match self.existing_match(name, hash, kind) {
None => {
let mut load_ctxt = loader::Context {
sess: self.sess,
span: span,
ident: ident,
crate_name: name,
hash: hash.map(|a| &*a),
filesearch: self.sess.target_filesearch(kind),
target: &self.sess.target.target,
2015-01-07 10:58:31 -06:00
triple: &self.sess.opts.target_triple[],
root: root,
rejected_via_hash: vec!(),
rejected_via_triple: vec!(),
rejected_via_kind: vec!(),
should_match_name: true,
};
let library = load_ctxt.load_library_crate();
self.register_crate(root, ident, name, span, library)
}
Some(cnum) => (cnum,
self.sess.cstore.get_crate_data(cnum),
self.sess.cstore.get_used_crate_source(cnum).unwrap())
}
}
// Go through the crate metadata and load any crates that it references
fn resolve_crate_deps(&mut self,
root: &Option<CratePaths>,
cdata: &[u8], span : Span)
-> cstore::cnum_map {
debug!("resolving deps of external crate");
// The map from crate numbers in the crate we're resolving to local crate
// numbers
decoder::get_crate_deps(cdata).iter().map(|dep| {
debug!("resolving dep crate {} hash: `{}`", dep.name, dep.hash);
let (local_cnum, _, _) = self.resolve_crate(root,
2015-01-07 10:58:31 -06:00
&dep.name[],
&dep.name[],
Some(&dep.hash),
span,
PathKind::Dependency);
(dep.cnum, local_cnum)
}).collect()
}
2013-12-25 12:10:33 -06:00
fn read_extension_crate(&mut self, span: Span, info: &CrateInfo) -> ExtensionCrate {
2015-01-07 10:58:31 -06:00
let target_triple = &self.sess.opts.target_triple[];
let is_cross = target_triple != config::host_triple();
let mut should_link = info.should_link && !is_cross;
let mut target_only = false;
let ident = info.ident.clone();
let name = info.name.clone();
let mut load_ctxt = loader::Context {
2014-12-21 01:02:38 -06:00
sess: self.sess,
span: span,
2015-01-07 10:58:31 -06:00
ident: &ident[],
crate_name: &name[],
hash: None,
2014-12-21 01:02:38 -06:00
filesearch: self.sess.host_filesearch(PathKind::Crate),
target: &self.sess.host,
triple: config::host_triple(),
root: &None,
rejected_via_hash: vec!(),
rejected_via_triple: vec!(),
rejected_via_kind: vec!(),
should_match_name: true,
};
let library = match load_ctxt.maybe_load_library_crate() {
Some(l) => l,
None if is_cross => {
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
// Try loading from target crates. This will abort later if we
// try to load a plugin registrar function,
target_only = true;
should_link = info.should_link;
load_ctxt.target = &self.sess.target.target;
load_ctxt.triple = target_triple;
2014-12-21 01:02:38 -06:00
load_ctxt.filesearch = self.sess.target_filesearch(PathKind::Crate);
load_ctxt.load_library_crate()
}
None => { load_ctxt.report_load_errs(); unreachable!() },
};
let dylib = library.dylib.clone();
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
let register = should_link && self.existing_match(info.name.as_slice(),
None,
PathKind::Crate).is_none();
let metadata = if register {
// Register crate now to avoid double-reading metadata
2014-12-19 20:39:43 -06:00
let (_, cmd, _) = self.register_crate(&None, &info.ident[],
&info.name[], span, library);
PMDSource::Registered(cmd)
} else {
// Not registering the crate; just hold on to the metadata
PMDSource::Owned(library.metadata)
};
ExtensionCrate {
metadata: metadata,
rustc: Fix a leak in dependency= paths With the addition of separate search paths to the compiler, it was intended that applications such as Cargo could require a `--extern` flag per `extern crate` directive in the source. The system can currently be subverted, however, due to the `existing_match()` logic in the crate loader. When loading crates we first attempt to match an `extern crate` directive against all previously loaded crates to avoid reading metadata twice. This "hit the cache if possible" step was erroneously leaking crates across the search path boundaries, however. For example: extern crate b; extern crate a; If `b` depends on `a`, then it will load crate `a` when the `extern crate b` directive is being processed. When the compiler reaches `extern crate a` it will use the previously loaded version no matter what. If the compiler was not invoked with `-L crate=path/to/a`, it will still succeed. This behavior is allowing `extern crate` declarations in Cargo without a corresponding declaration in the manifest of a dependency, which is considered a bug. This commit fixes this problem by keeping track of the origin search path for a crate. Crates loaded from the dependency search path are not candidates for crates which are loaded from the crate search path. As a result of this fix, this is a likely a breaking change for a number of Cargo packages. If the compiler starts informing that a crate can no longer be found, it likely means that the dependency was forgotten in your Cargo.toml. [breaking-change]
2015-01-06 10:46:07 -06:00
dylib: dylib.map(|p| p.0),
target_only: target_only,
}
}
/// Read exported macros.
pub fn read_exported_macros(&mut self, krate: &ast::Item) -> Vec<ast::MacroDef> {
let ci = self.extract_crate_info(krate).unwrap();
let ekrate = self.read_extension_crate(krate.span, &ci);
let source_name = format!("<{} macros>", krate.ident);
let mut macros = vec![];
decoder::each_exported_macro(ekrate.metadata.as_slice(),
&*self.sess.cstore.intr,
|name, attrs, body| {
// NB: Don't use parse::parse_tts_from_source_str because it parses with
// quote_depth > 0.
let mut p = parse::new_parser_from_source_str(&self.sess.parse_sess,
self.sess.opts.cfg.clone(),
source_name.clone(),
body);
let lo = p.span.lo;
let body = p.parse_all_token_trees();
let span = mk_sp(lo, p.last_span.hi);
p.abort_if_errors();
macros.push(ast::MacroDef {
ident: name.ident(),
attrs: attrs,
id: ast::DUMMY_NODE_ID,
span: span,
imported_from: Some(krate.ident),
2015-01-02 14:50:45 -06:00
// overridden in plugin/load.rs
export: false,
use_locally: false,
body: body,
});
true
}
);
macros
}
/// Look for a plugin registrar. Returns library path and symbol name.
pub fn find_plugin_registrar(&mut self, span: Span, name: &str) -> Option<(Path, String)> {
let ekrate = self.read_extension_crate(span, &CrateInfo {
name: name.to_string(),
ident: name.to_string(),
id: ast::DUMMY_NODE_ID,
should_link: false,
});
if ekrate.target_only {
// Need to abort before syntax expansion.
let message = format!("plugin `{}` is not available for triple `{}` \
(only found {})",
name,
config::host_triple(),
self.sess.opts.target_triple);
self.sess.span_err(span, &message[]);
self.sess.abort_if_errors();
}
let registrar = decoder::get_plugin_registrar_fn(ekrate.metadata.as_slice())
.map(|id| decoder::get_symbol(ekrate.metadata.as_slice(), id));
match (ekrate.dylib.as_ref(), registrar) {
(Some(dylib), Some(reg)) => Some((dylib.clone(), reg)),
(None, Some(_)) => {
let message = format!("plugin `{}` only found in rlib format, \
but must be available in dylib format",
name);
self.sess.span_err(span, &message[]);
// No need to abort because the loading code will just ignore this
// empty dylib.
None
}
_ => None,
2013-12-25 12:10:33 -06:00
}
}
}