rust/src/libcore/num/mod.rs

1790 lines
60 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-07-21 15:57:14 -07:00
//
// ignore-lexer-test FIXME #15679
2014-11-10 16:00:13 +11:00
//! Numeric traits and functions for the built-in numeric types.
2015-01-23 21:48:20 -08:00
#![stable(feature = "rust1", since = "1.0.0")]
2014-10-27 15:37:07 -07:00
#![allow(missing_docs)]
use char::CharExt;
use clone::Clone;
use cmp::{PartialEq, Eq, PartialOrd, Ord};
use error::Error;
use fmt;
2014-11-15 17:02:38 +11:00
use intrinsics;
2014-11-06 09:32:37 -08:00
use iter::IteratorExt;
2015-01-07 11:33:42 +13:00
use marker::Copy;
use mem::size_of;
use ops::{Add, Sub, Mul, Div, Rem, Neg};
2015-01-07 11:58:31 -05:00
use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use option::Option::{self, Some, None};
use result::Result::{self, Ok, Err};
use str::{FromStr, StrExt};
2014-11-10 16:00:13 +11:00
/// A built-in signed or unsigned integer.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-11-10 11:30:52 +11:00
pub trait Int
: Copy + Clone
+ NumCast
+ PartialOrd + Ord
+ PartialEq + Eq
2014-12-31 15:45:13 -05:00
+ Add<Output=Self>
+ Sub<Output=Self>
+ Mul<Output=Self>
+ Div<Output=Self>
+ Rem<Output=Self>
2015-01-02 22:56:24 -05:00
+ Not<Output=Self>
2014-12-31 15:45:13 -05:00
+ BitAnd<Output=Self>
+ BitOr<Output=Self>
+ BitXor<Output=Self>
+ Shl<uint, Output=Self>
+ Shr<uint, Output=Self>
2014-11-10 11:30:52 +11:00
{
2014-11-10 16:00:13 +11:00
/// Returns the `0` value of this integer type.
2014-11-10 09:35:53 +11:00
// FIXME (#5527): Should be an associated constant
#[unstable(feature = "core",
reason = "unsure about its place in the world")]
2014-11-10 09:35:53 +11:00
fn zero() -> Self;
2014-11-10 16:00:13 +11:00
/// Returns the `1` value of this integer type.
2014-11-10 09:35:53 +11:00
// FIXME (#5527): Should be an associated constant
#[unstable(feature = "core",
reason = "unsure about its place in the world")]
2014-11-10 09:35:53 +11:00
fn one() -> Self;
2014-11-10 16:00:13 +11:00
/// Returns the smallest value that can be represented by this integer type.
2014-11-10 01:20:13 +11:00
// FIXME (#5527): Should be and associated constant
#[unstable(feature = "core",
reason = "unsure about its place in the world")]
2014-11-10 01:20:13 +11:00
fn min_value() -> Self;
2014-11-10 16:00:13 +11:00
/// Returns the largest value that can be represented by this integer type.
2014-11-10 01:20:13 +11:00
// FIXME (#5527): Should be and associated constant
#[unstable(feature = "core",
reason = "unsure about its place in the world")]
2014-11-10 01:20:13 +11:00
fn max_value() -> Self;
2014-11-10 16:00:13 +11:00
/// Returns the number of ones in the binary representation of `self`.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0b01001100u8;
///
/// assert_eq!(n.count_ones(), 3);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
fn count_ones(self) -> uint;
2014-11-10 16:00:13 +11:00
/// Returns the number of zeros in the binary representation of `self`.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0b01001100u8;
///
/// assert_eq!(n.count_zeros(), 5);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
#[inline]
fn count_zeros(self) -> uint {
(!self).count_ones()
}
2014-08-01 02:43:51 +02:00
/// Returns the number of leading zeros in the binary representation
2014-11-10 16:00:13 +11:00
/// of `self`.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0b0101000u16;
///
/// assert_eq!(n.leading_zeros(), 10);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
fn leading_zeros(self) -> uint;
2014-08-01 02:43:51 +02:00
/// Returns the number of trailing zeros in the binary representation
2014-11-10 16:00:13 +11:00
/// of `self`.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0b0101000u16;
///
/// assert_eq!(n.trailing_zeros(), 3);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
fn trailing_zeros(self) -> uint;
/// Shifts the bits to the left by a specified amount amount, `n`, wrapping
/// the truncated bits to the end of the resulting integer.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0x3456789ABCDEF012u64;
///
/// assert_eq!(n.rotate_left(12), m);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
fn rotate_left(self, n: uint) -> Self;
/// Shifts the bits to the right by a specified amount amount, `n`, wrapping
/// the truncated bits to the beginning of the resulting integer.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0xDEF0123456789ABCu64;
///
/// assert_eq!(n.rotate_right(12), m);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
fn rotate_right(self, n: uint) -> Self;
/// Reverses the byte order of the integer.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
/// let m = 0xEFCDAB8967452301u64;
///
/// assert_eq!(n.swap_bytes(), m);
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn swap_bytes(self) -> Self;
2014-11-16 16:51:22 -08:00
/// Convert an integer from big endian to the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(Int::from_be(n), n)
/// } else {
/// assert_eq!(Int::from_be(n), n.swap_bytes())
/// }
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn from_be(x: Self) -> Self {
if cfg!(target_endian = "big") { x } else { x.swap_bytes() }
}
2014-11-16 16:51:22 -08:00
/// Convert an integer from little endian to the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(Int::from_le(n), n)
/// } else {
/// assert_eq!(Int::from_le(n), n.swap_bytes())
/// }
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn from_le(x: Self) -> Self {
if cfg!(target_endian = "little") { x } else { x.swap_bytes() }
}
2014-11-10 16:00:13 +11:00
/// Convert `self` to big endian from the target's endianness.
///
/// On big endian this is a no-op. On little endian the bytes are swapped.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "big") {
/// assert_eq!(n.to_be(), n)
/// } else {
/// assert_eq!(n.to_be(), n.swap_bytes())
/// }
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn to_be(self) -> Self { // or not to be?
if cfg!(target_endian = "big") { self } else { self.swap_bytes() }
}
2014-11-10 16:00:13 +11:00
/// Convert `self` to little endian from the target's endianness.
///
/// On little endian this is a no-op. On big endian the bytes are swapped.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// let n = 0x0123456789ABCDEFu64;
///
/// if cfg!(target_endian = "little") {
/// assert_eq!(n.to_le(), n)
/// } else {
/// assert_eq!(n.to_le(), n.swap_bytes())
/// }
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn to_le(self) -> Self {
if cfg!(target_endian = "little") { self } else { self.swap_bytes() }
}
2014-11-10 16:00:13 +11:00
/// Checked integer addition. Computes `self + other`, returning `None` if
/// overflow occurred.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// assert_eq!(5u16.checked_add(65530), Some(65535));
/// assert_eq!(6u16.checked_add(65530), None);
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn checked_add(self, other: Self) -> Option<Self>;
/// Checked integer subtraction. Computes `self - other`, returning `None`
2014-11-10 16:00:13 +11:00
/// if underflow occurred.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// assert_eq!((-127i8).checked_sub(1), Some(-128));
/// assert_eq!((-128i8).checked_sub(1), None);
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn checked_sub(self, other: Self) -> Option<Self>;
/// Checked integer multiplication. Computes `self * other`, returning
2014-11-10 16:00:13 +11:00
/// `None` if underflow or overflow occurred.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// assert_eq!(5u8.checked_mul(51), Some(255));
/// assert_eq!(5u8.checked_mul(52), None);
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn checked_mul(self, other: Self) -> Option<Self>;
/// Checked integer division. Computes `self / other`, returning `None` if
/// `other == 0` or the operation results in underflow or overflow.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// assert_eq!((-127i8).checked_div(-1), Some(127));
/// assert_eq!((-128i8).checked_div(-1), None);
/// assert_eq!((1i8).checked_div(0), None);
/// ```
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn checked_div(self, other: Self) -> Option<Self>;
2014-11-10 16:00:13 +11:00
/// Saturating integer addition. Computes `self + other`, saturating at
/// the numeric bounds instead of overflowing.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn saturating_add(self, other: Self) -> Self {
match self.checked_add(other) {
2014-11-10 09:35:53 +11:00
Some(x) => x,
None if other >= Int::zero() => Int::max_value(),
None => Int::min_value(),
}
}
2014-11-10 16:00:13 +11:00
/// Saturating integer subtraction. Computes `self - other`, saturating at
/// the numeric bounds instead of overflowing.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn saturating_sub(self, other: Self) -> Self {
match self.checked_sub(other) {
2014-11-10 09:35:53 +11:00
Some(x) => x,
None if other >= Int::zero() => Int::min_value(),
None => Int::max_value(),
}
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use std::num::Int;
///
/// assert_eq!(2.pow(4), 16);
/// ```
#[unstable(feature = "core",
reason = "pending integer conventions")]
#[inline]
fn pow(self, mut exp: uint) -> Self {
let mut base = self;
let mut acc: Self = Int::one();
while exp > 0 {
if (exp & 1) == 1 {
acc = acc * base;
}
base = base * base;
exp /= 2;
}
acc
}
}
macro_rules! checked_op {
($T:ty, $U:ty, $op:path, $x:expr, $y:expr) => {{
let (result, overflowed) = unsafe { $op($x as $U, $y as $U) };
if overflowed { None } else { Some(result as $T) }
}}
}
macro_rules! uint_impl {
($T:ty = $ActualT:ty, $BITS:expr,
$ctpop:path,
$ctlz:path,
$cttz:path,
$bswap:path,
$add_with_overflow:path,
$sub_with_overflow:path,
$mul_with_overflow:path) => {
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl Int for $T {
2014-11-10 09:35:53 +11:00
#[inline]
fn zero() -> $T { 0 }
#[inline]
fn one() -> $T { 1 }
2014-11-10 01:20:13 +11:00
#[inline]
fn min_value() -> $T { 0 }
#[inline]
fn max_value() -> $T { -1 }
#[inline]
fn count_ones(self) -> uint { unsafe { $ctpop(self as $ActualT) as uint } }
#[inline]
fn leading_zeros(self) -> uint { unsafe { $ctlz(self as $ActualT) as uint } }
#[inline]
fn trailing_zeros(self) -> uint { unsafe { $cttz(self as $ActualT) as uint } }
#[inline]
fn rotate_left(self, n: uint) -> $T {
// Protect against undefined behaviour for over-long bit shifts
let n = n % $BITS;
(self << n) | (self >> (($BITS - n) % $BITS))
}
#[inline]
fn rotate_right(self, n: uint) -> $T {
// Protect against undefined behaviour for over-long bit shifts
let n = n % $BITS;
(self >> n) | (self << (($BITS - n) % $BITS))
}
#[inline]
fn swap_bytes(self) -> $T { unsafe { $bswap(self as $ActualT) as $T } }
#[inline]
fn checked_add(self, other: $T) -> Option<$T> {
checked_op!($T, $ActualT, $add_with_overflow, self, other)
}
#[inline]
fn checked_sub(self, other: $T) -> Option<$T> {
checked_op!($T, $ActualT, $sub_with_overflow, self, other)
}
#[inline]
fn checked_mul(self, other: $T) -> Option<$T> {
checked_op!($T, $ActualT, $mul_with_overflow, self, other)
}
#[inline]
fn checked_div(self, v: $T) -> Option<$T> {
match v {
0 => None,
v => Some(self / v),
}
}
}
}
}
/// Swapping a single byte is a no-op. This is marked as `unsafe` for
/// consistency with the other `bswap` intrinsics.
unsafe fn bswap8(x: u8) -> u8 { x }
uint_impl! { u8 = u8, 8,
intrinsics::ctpop8,
intrinsics::ctlz8,
intrinsics::cttz8,
bswap8,
intrinsics::u8_add_with_overflow,
intrinsics::u8_sub_with_overflow,
intrinsics::u8_mul_with_overflow }
uint_impl! { u16 = u16, 16,
intrinsics::ctpop16,
intrinsics::ctlz16,
intrinsics::cttz16,
intrinsics::bswap16,
intrinsics::u16_add_with_overflow,
intrinsics::u16_sub_with_overflow,
intrinsics::u16_mul_with_overflow }
uint_impl! { u32 = u32, 32,
intrinsics::ctpop32,
intrinsics::ctlz32,
intrinsics::cttz32,
intrinsics::bswap32,
intrinsics::u32_add_with_overflow,
intrinsics::u32_sub_with_overflow,
intrinsics::u32_mul_with_overflow }
uint_impl! { u64 = u64, 64,
intrinsics::ctpop64,
intrinsics::ctlz64,
intrinsics::cttz64,
intrinsics::bswap64,
intrinsics::u64_add_with_overflow,
intrinsics::u64_sub_with_overflow,
intrinsics::u64_mul_with_overflow }
2015-01-16 17:01:02 +02:00
#[cfg(target_pointer_width = "32")]
uint_impl! { uint = u32, 32,
intrinsics::ctpop32,
intrinsics::ctlz32,
intrinsics::cttz32,
intrinsics::bswap32,
intrinsics::u32_add_with_overflow,
intrinsics::u32_sub_with_overflow,
intrinsics::u32_mul_with_overflow }
2015-01-16 17:01:02 +02:00
#[cfg(target_pointer_width = "64")]
uint_impl! { uint = u64, 64,
intrinsics::ctpop64,
intrinsics::ctlz64,
intrinsics::cttz64,
intrinsics::bswap64,
intrinsics::u64_add_with_overflow,
intrinsics::u64_sub_with_overflow,
intrinsics::u64_mul_with_overflow }
macro_rules! int_impl {
2014-11-10 01:20:13 +11:00
($T:ty = $ActualT:ty, $UnsignedT:ty, $BITS:expr,
$add_with_overflow:path,
$sub_with_overflow:path,
$mul_with_overflow:path) => {
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl Int for $T {
2014-11-10 09:35:53 +11:00
#[inline]
fn zero() -> $T { 0 }
#[inline]
fn one() -> $T { 1 }
2014-11-10 01:20:13 +11:00
#[inline]
fn min_value() -> $T { (-1 as $T) << ($BITS - 1) }
#[inline]
fn max_value() -> $T { let min: $T = Int::min_value(); !min }
#[inline]
fn count_ones(self) -> uint { (self as $UnsignedT).count_ones() }
#[inline]
fn leading_zeros(self) -> uint { (self as $UnsignedT).leading_zeros() }
#[inline]
fn trailing_zeros(self) -> uint { (self as $UnsignedT).trailing_zeros() }
#[inline]
fn rotate_left(self, n: uint) -> $T { (self as $UnsignedT).rotate_left(n) as $T }
#[inline]
fn rotate_right(self, n: uint) -> $T { (self as $UnsignedT).rotate_right(n) as $T }
#[inline]
fn swap_bytes(self) -> $T { (self as $UnsignedT).swap_bytes() as $T }
#[inline]
fn checked_add(self, other: $T) -> Option<$T> {
checked_op!($T, $ActualT, $add_with_overflow, self, other)
}
#[inline]
fn checked_sub(self, other: $T) -> Option<$T> {
checked_op!($T, $ActualT, $sub_with_overflow, self, other)
}
#[inline]
fn checked_mul(self, other: $T) -> Option<$T> {
checked_op!($T, $ActualT, $mul_with_overflow, self, other)
}
#[inline]
fn checked_div(self, v: $T) -> Option<$T> {
match v {
0 => None,
2014-11-10 01:20:13 +11:00
-1 if self == Int::min_value()
=> None,
v => Some(self / v),
}
}
}
}
}
int_impl! { i8 = i8, u8, 8,
intrinsics::i8_add_with_overflow,
intrinsics::i8_sub_with_overflow,
intrinsics::i8_mul_with_overflow }
int_impl! { i16 = i16, u16, 16,
intrinsics::i16_add_with_overflow,
intrinsics::i16_sub_with_overflow,
intrinsics::i16_mul_with_overflow }
int_impl! { i32 = i32, u32, 32,
intrinsics::i32_add_with_overflow,
intrinsics::i32_sub_with_overflow,
intrinsics::i32_mul_with_overflow }
int_impl! { i64 = i64, u64, 64,
intrinsics::i64_add_with_overflow,
intrinsics::i64_sub_with_overflow,
intrinsics::i64_mul_with_overflow }
2015-01-16 17:01:02 +02:00
#[cfg(target_pointer_width = "32")]
int_impl! { int = i32, u32, 32,
intrinsics::i32_add_with_overflow,
intrinsics::i32_sub_with_overflow,
intrinsics::i32_mul_with_overflow }
2015-01-16 17:01:02 +02:00
#[cfg(target_pointer_width = "64")]
int_impl! { int = i64, u64, 64,
intrinsics::i64_add_with_overflow,
intrinsics::i64_sub_with_overflow,
intrinsics::i64_mul_with_overflow }
/// A built-in two's complement integer.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub trait SignedInt
: Int
2015-01-02 22:56:24 -05:00
+ Neg<Output=Self>
{
/// Computes the absolute value of `self`. `Int::min_value()` will be
/// returned if the number is `Int::min_value()`.
#[unstable(feature = "core", reason = "overflow in debug builds?")]
fn abs(self) -> Self;
/// Returns a number representing sign of `self`.
///
/// - `0` if the number is zero
/// - `1` if the number is positive
/// - `-1` if the number is negative
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn signum(self) -> Self;
/// Returns `true` if `self` is positive and `false` if the number
/// is zero or negative.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn is_positive(self) -> bool;
/// Returns `true` if `self` is negative and `false` if the number
/// is zero or positive.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn is_negative(self) -> bool;
}
macro_rules! signed_int_impl {
($T:ty) => {
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl SignedInt for $T {
#[inline]
fn abs(self) -> $T {
if self.is_negative() { -self } else { self }
}
#[inline]
fn signum(self) -> $T {
match self {
n if n > 0 => 1,
0 => 0,
_ => -1,
}
}
#[inline]
fn is_positive(self) -> bool { self > 0 }
#[inline]
fn is_negative(self) -> bool { self < 0 }
}
}
}
signed_int_impl! { i8 }
signed_int_impl! { i16 }
signed_int_impl! { i32 }
signed_int_impl! { i64 }
signed_int_impl! { int }
2014-11-10 16:00:13 +11:00
/// A built-in unsigned integer.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UnsignedInt: Int {
/// Returns `true` iff `self == 2^k` for some `k`.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn is_power_of_two(self) -> bool {
(self - Int::one()) & self == Int::zero() && !(self == Int::zero())
}
/// Returns the smallest power of two greater than or equal to `self`.
/// Unspecified behavior on overflow.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
fn next_power_of_two(self) -> Self {
let bits = size_of::<Self>() * 8;
let one: Self = Int::one();
one << ((bits - (self - one).leading_zeros()) % bits)
}
/// Returns the smallest power of two greater than or equal to `n`. If the
/// next power of two is greater than the type's maximum value, `None` is
/// returned, otherwise the power of two is wrapped in `Some`.
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
fn checked_next_power_of_two(self) -> Option<Self> {
let npot = self.next_power_of_two();
if npot >= self {
Some(npot)
} else {
None
}
}
}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl UnsignedInt for uint {}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl UnsignedInt for u8 {}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl UnsignedInt for u16 {}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl UnsignedInt for u32 {}
2015-01-23 21:48:20 -08:00
#[stable(feature = "rust1", since = "1.0.0")]
impl UnsignedInt for u64 {}
/// A generic trait for converting a value to a number.
#[unstable(feature = "core", reason = "trait is likely to be removed")]
pub trait ToPrimitive {
/// Converts the value of `self` to an `int`.
#[inline]
fn to_int(&self) -> Option<int> {
self.to_i64().and_then(|x| x.to_int())
}
/// Converts the value of `self` to an `i8`.
#[inline]
fn to_i8(&self) -> Option<i8> {
self.to_i64().and_then(|x| x.to_i8())
}
/// Converts the value of `self` to an `i16`.
#[inline]
fn to_i16(&self) -> Option<i16> {
self.to_i64().and_then(|x| x.to_i16())
}
/// Converts the value of `self` to an `i32`.
#[inline]
fn to_i32(&self) -> Option<i32> {
self.to_i64().and_then(|x| x.to_i32())
}
/// Converts the value of `self` to an `i64`.
fn to_i64(&self) -> Option<i64>;
/// Converts the value of `self` to an `uint`.
#[inline]
fn to_uint(&self) -> Option<uint> {
self.to_u64().and_then(|x| x.to_uint())
}
/// Converts the value of `self` to an `u8`.
#[inline]
fn to_u8(&self) -> Option<u8> {
self.to_u64().and_then(|x| x.to_u8())
}
/// Converts the value of `self` to an `u16`.
#[inline]
fn to_u16(&self) -> Option<u16> {
self.to_u64().and_then(|x| x.to_u16())
}
/// Converts the value of `self` to an `u32`.
#[inline]
fn to_u32(&self) -> Option<u32> {
self.to_u64().and_then(|x| x.to_u32())
}
/// Converts the value of `self` to an `u64`.
#[inline]
fn to_u64(&self) -> Option<u64>;
/// Converts the value of `self` to an `f32`.
#[inline]
fn to_f32(&self) -> Option<f32> {
self.to_f64().and_then(|x| x.to_f32())
}
/// Converts the value of `self` to an `f64`.
#[inline]
fn to_f64(&self) -> Option<f64> {
self.to_i64().and_then(|x| x.to_f64())
}
}
macro_rules! impl_to_primitive_int_to_int {
2014-07-07 16:26:30 -07:00
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
2014-07-07 16:26:30 -07:00
Some($slf as $DstT)
} else {
2014-07-07 16:26:30 -07:00
let n = $slf as i64;
2014-11-10 01:20:13 +11:00
let min_value: $DstT = Int::min_value();
let max_value: $DstT = Int::max_value();
if min_value as i64 <= n && n <= max_value as i64 {
2014-07-07 16:26:30 -07:00
Some($slf as $DstT)
} else {
None
}
}
}
)
}
macro_rules! impl_to_primitive_int_to_uint {
2014-07-07 16:26:30 -07:00
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
2014-11-10 09:35:53 +11:00
let zero: $SrcT = Int::zero();
2014-11-10 01:20:13 +11:00
let max_value: $DstT = Int::max_value();
2014-07-07 16:26:30 -07:00
if zero <= $slf && $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_int {
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
2014-07-07 16:26:30 -07:00
fn to_int(&self) -> Option<int> { impl_to_primitive_int_to_int!($T, int, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_uint(&self) -> Option<uint> { impl_to_primitive_int_to_uint!($T, uint, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
}
impl_to_primitive_int! { int }
impl_to_primitive_int! { i8 }
impl_to_primitive_int! { i16 }
impl_to_primitive_int! { i32 }
impl_to_primitive_int! { i64 }
macro_rules! impl_to_primitive_uint_to_int {
2014-07-07 16:26:30 -07:00
($DstT:ty, $slf:expr) => (
{
2014-11-10 01:20:13 +11:00
let max_value: $DstT = Int::max_value();
2014-07-07 16:26:30 -07:00
if $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_uint_to_uint {
2014-07-07 16:26:30 -07:00
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
2014-07-07 16:26:30 -07:00
Some($slf as $DstT)
} else {
2014-11-10 09:35:53 +11:00
let zero: $SrcT = Int::zero();
2014-11-10 01:20:13 +11:00
let max_value: $DstT = Int::max_value();
2014-07-07 16:26:30 -07:00
if zero <= $slf && $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
}
)
}
macro_rules! impl_to_primitive_uint {
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
2014-07-07 16:26:30 -07:00
fn to_int(&self) -> Option<int> { impl_to_primitive_uint_to_int!(int, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_uint(&self) -> Option<uint> { impl_to_primitive_uint_to_uint!($T, uint, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
}
impl_to_primitive_uint! { uint }
impl_to_primitive_uint! { u8 }
impl_to_primitive_uint! { u16 }
impl_to_primitive_uint! { u32 }
impl_to_primitive_uint! { u64 }
macro_rules! impl_to_primitive_float_to_float {
($SrcT:ident, $DstT:ident, $slf:expr) => (
if size_of::<$SrcT>() <= size_of::<$DstT>() {
2014-07-07 16:26:30 -07:00
Some($slf as $DstT)
} else {
2014-07-07 16:26:30 -07:00
let n = $slf as f64;
let max_value: $SrcT = ::$SrcT::MAX;
if -max_value as f64 <= n && n <= max_value as f64 {
2014-07-07 16:26:30 -07:00
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_float {
($T:ident) => (
impl ToPrimitive for $T {
#[inline]
fn to_int(&self) -> Option<int> { Some(*self as int) }
#[inline]
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
#[inline]
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
#[inline]
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
#[inline]
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
#[inline]
fn to_uint(&self) -> Option<uint> { Some(*self as uint) }
#[inline]
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
#[inline]
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
#[inline]
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
#[inline]
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
#[inline]
2014-07-07 16:26:30 -07:00
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
}
)
}
impl_to_primitive_float! { f32 }
impl_to_primitive_float! { f64 }
/// A generic trait for converting a number to a value.
#[unstable(feature = "core", reason = "trait is likely to be removed")]
2015-01-07 11:33:42 +13:00
pub trait FromPrimitive : ::marker::Sized {
/// Convert an `int` to return an optional value of this type. If the
/// value cannot be represented by this value, the `None` is returned.
#[inline]
fn from_int(n: int) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i8(n: i8) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i16(n: i16) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i32(n: i32) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_i64(n: i64) -> Option<Self>;
/// Convert an `uint` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_uint(n: uint) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u8(n: u8) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u16(n: u16) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u32(n: u32) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_u64(n: u64) -> Option<Self>;
/// Convert a `f32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f32(n: f32) -> Option<Self> {
FromPrimitive::from_f64(n as f64)
}
/// Convert a `f64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f64(n: f64) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
}
/// A utility function that just calls `FromPrimitive::from_int`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_int<A: FromPrimitive>(n: int) -> Option<A> {
FromPrimitive::from_int(n)
}
/// A utility function that just calls `FromPrimitive::from_i8`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_i8<A: FromPrimitive>(n: i8) -> Option<A> {
FromPrimitive::from_i8(n)
}
/// A utility function that just calls `FromPrimitive::from_i16`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_i16<A: FromPrimitive>(n: i16) -> Option<A> {
FromPrimitive::from_i16(n)
}
/// A utility function that just calls `FromPrimitive::from_i32`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_i32<A: FromPrimitive>(n: i32) -> Option<A> {
FromPrimitive::from_i32(n)
}
/// A utility function that just calls `FromPrimitive::from_i64`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_i64<A: FromPrimitive>(n: i64) -> Option<A> {
FromPrimitive::from_i64(n)
}
/// A utility function that just calls `FromPrimitive::from_uint`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_uint<A: FromPrimitive>(n: uint) -> Option<A> {
FromPrimitive::from_uint(n)
}
/// A utility function that just calls `FromPrimitive::from_u8`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_u8<A: FromPrimitive>(n: u8) -> Option<A> {
FromPrimitive::from_u8(n)
}
/// A utility function that just calls `FromPrimitive::from_u16`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_u16<A: FromPrimitive>(n: u16) -> Option<A> {
FromPrimitive::from_u16(n)
}
/// A utility function that just calls `FromPrimitive::from_u32`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_u32<A: FromPrimitive>(n: u32) -> Option<A> {
FromPrimitive::from_u32(n)
}
/// A utility function that just calls `FromPrimitive::from_u64`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_u64<A: FromPrimitive>(n: u64) -> Option<A> {
FromPrimitive::from_u64(n)
}
/// A utility function that just calls `FromPrimitive::from_f32`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_f32<A: FromPrimitive>(n: f32) -> Option<A> {
FromPrimitive::from_f32(n)
}
/// A utility function that just calls `FromPrimitive::from_f64`.
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn from_f64<A: FromPrimitive>(n: f64) -> Option<A> {
FromPrimitive::from_f64(n)
}
macro_rules! impl_from_primitive {
2014-07-07 16:26:30 -07:00
($T:ty, $to_ty:ident) => (
impl FromPrimitive for $T {
2014-07-07 16:26:30 -07:00
#[inline] fn from_int(n: int) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
#[inline] fn from_uint(n: uint) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
#[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
}
)
}
impl_from_primitive! { int, to_int }
impl_from_primitive! { i8, to_i8 }
impl_from_primitive! { i16, to_i16 }
impl_from_primitive! { i32, to_i32 }
impl_from_primitive! { i64, to_i64 }
impl_from_primitive! { uint, to_uint }
impl_from_primitive! { u8, to_u8 }
impl_from_primitive! { u16, to_u16 }
impl_from_primitive! { u32, to_u32 }
impl_from_primitive! { u64, to_u64 }
impl_from_primitive! { f32, to_f32 }
impl_from_primitive! { f64, to_f64 }
/// Cast from one machine scalar to another.
///
/// # Example
///
/// ```
/// use std::num;
///
/// let twenty: f32 = num::cast(0x14).unwrap();
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
#[unstable(feature = "core", reason = "likely to be removed")]
pub fn cast<T: NumCast,U: NumCast>(n: T) -> Option<U> {
NumCast::from(n)
}
/// An interface for casting between machine scalars.
#[unstable(feature = "core", reason = "trait is likely to be removed")]
pub trait NumCast: ToPrimitive {
/// Creates a number from another value that can be converted into a primitive via the
/// `ToPrimitive` trait.
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}
macro_rules! impl_num_cast {
($T:ty, $conv:ident) => (
impl NumCast for $T {
#[inline]
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
// `$conv` could be generated using `concat_idents!`, but that
// macro seems to be broken at the moment
n.$conv()
}
}
)
}
impl_num_cast! { u8, to_u8 }
impl_num_cast! { u16, to_u16 }
impl_num_cast! { u32, to_u32 }
impl_num_cast! { u64, to_u64 }
impl_num_cast! { uint, to_uint }
impl_num_cast! { i8, to_i8 }
impl_num_cast! { i16, to_i16 }
impl_num_cast! { i32, to_i32 }
impl_num_cast! { i64, to_i64 }
impl_num_cast! { int, to_int }
impl_num_cast! { f32, to_f32 }
impl_num_cast! { f64, to_f64 }
/// Used for representing the classification of floating point numbers
2015-01-28 08:34:18 -05:00
#[derive(Copy, PartialEq, Debug)]
#[unstable(feature = "core", reason = "may be renamed")]
pub enum FpCategory {
/// "Not a Number", often obtained by dividing by zero
Nan,
/// Positive or negative infinity
Infinite ,
/// Positive or negative zero
Zero,
/// De-normalized floating point representation (less precise than `Normal`)
Subnormal,
/// A regular floating point number
Normal,
}
2014-11-10 16:00:13 +11:00
/// A built-in floating point number.
// FIXME(#5527): In a future version of Rust, many of these functions will
// become constants.
//
// FIXME(#8888): Several of these functions have a parameter named
// `unused_self`. Removing it requires #8888 to be fixed.
#[unstable(feature = "core",
reason = "distribution of methods between core/std is unclear")]
2014-11-10 11:30:52 +11:00
pub trait Float
: Copy + Clone
+ NumCast
+ PartialOrd
+ PartialEq
2015-01-02 22:56:24 -05:00
+ Neg<Output=Self>
2014-12-31 15:45:13 -05:00
+ Add<Output=Self>
+ Sub<Output=Self>
+ Mul<Output=Self>
+ Div<Output=Self>
+ Rem<Output=Self>
2014-11-10 11:30:52 +11:00
{
/// Returns the NaN value.
fn nan() -> Self;
/// Returns the infinite value.
fn infinity() -> Self;
/// Returns the negative infinite value.
fn neg_infinity() -> Self;
2014-11-10 09:35:53 +11:00
/// Returns the `0` value.
fn zero() -> Self;
/// Returns -0.0.
fn neg_zero() -> Self;
2014-11-10 09:35:53 +11:00
/// Returns the `1` value.
fn one() -> Self;
// FIXME (#5527): These should be associated constants
/// Returns the number of binary digits of mantissa that this type supports.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MANTISSA_DIGITS` or \
`std::f64::MANTISSA_DIGITS` as appropriate")]
fn mantissa_digits(unused_self: Option<Self>) -> uint;
/// Returns the number of base-10 digits of precision that this type supports.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::DIGITS` or `std::f64::DIGITS` as appropriate")]
fn digits(unused_self: Option<Self>) -> uint;
/// Returns the difference between 1.0 and the smallest representable number larger than 1.0.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::EPSILON` or `std::f64::EPSILON` as appropriate")]
fn epsilon() -> Self;
/// Returns the minimum binary exponent that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MIN_EXP` or `std::f64::MIN_EXP` as appropriate")]
fn min_exp(unused_self: Option<Self>) -> int;
/// Returns the maximum binary exponent that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MAX_EXP` or `std::f64::MAX_EXP` as appropriate")]
fn max_exp(unused_self: Option<Self>) -> int;
/// Returns the minimum base-10 exponent that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MIN_10_EXP` or `std::f64::MIN_10_EXP` as appropriate")]
fn min_10_exp(unused_self: Option<Self>) -> int;
/// Returns the maximum base-10 exponent that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MAX_10_EXP` or `std::f64::MAX_10_EXP` as appropriate")]
fn max_10_exp(unused_self: Option<Self>) -> int;
2014-11-10 01:20:13 +11:00
/// Returns the smallest finite value that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MIN` or `std::f64::MIN` as appropriate")]
2014-11-10 01:20:13 +11:00
fn min_value() -> Self;
/// Returns the smallest normalized positive number that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MIN_POSITIVE` or \
`std::f64::MIN_POSITIVE` as appropriate")]
fn min_pos_value(unused_self: Option<Self>) -> Self;
2014-11-10 01:20:13 +11:00
/// Returns the largest finite value that this type can represent.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
reason = "use `std::f32::MAX` or `std::f64::MAX` as appropriate")]
2014-11-10 01:20:13 +11:00
fn max_value() -> Self;
2015-01-02 22:33:07 +11:00
/// Returns true if this value is NaN and false otherwise.
fn is_nan(self) -> bool;
/// Returns true if this value is positive infinity or negative infinity and
/// false otherwise.
fn is_infinite(self) -> bool;
/// Returns true if this number is neither infinite nor NaN.
fn is_finite(self) -> bool;
/// Returns true if this number is neither zero, infinite, denormal, or NaN.
fn is_normal(self) -> bool;
/// Returns the category that this number falls into.
fn classify(self) -> FpCategory;
/// Returns the mantissa, exponent and sign as integers, respectively.
fn integer_decode(self) -> (u64, i16, i8);
/// Return the largest integer less than or equal to a number.
fn floor(self) -> Self;
/// Return the smallest integer greater than or equal to a number.
fn ceil(self) -> Self;
/// Return the nearest integer to a number. Round half-way cases away from
/// `0.0`.
fn round(self) -> Self;
/// Return the integer part of a number.
fn trunc(self) -> Self;
/// Return the fractional part of a number.
fn fract(self) -> Self;
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
/// number is `Float::nan()`.
fn abs(self) -> Self;
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
/// - `Float::nan()` if the number is `Float::nan()`
fn signum(self) -> Self;
/// Returns `true` if `self` is positive, including `+0.0` and
/// `Float::infinity()`.
fn is_positive(self) -> bool;
/// Returns `true` if `self` is negative, including `-0.0` and
/// `Float::neg_infinity()`.
fn is_negative(self) -> bool;
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error. This produces a more accurate result with better performance than
/// a separate multiplication operation followed by an add.
fn mul_add(self, a: Self, b: Self) -> Self;
/// Take the reciprocal (inverse) of a number, `1/x`.
fn recip(self) -> Self;
/// Raise a number to an integer power.
///
/// Using this function is generally faster than using `powf`
fn powi(self, n: i32) -> Self;
/// Raise a number to a floating point power.
fn powf(self, n: Self) -> Self;
/// Take the square root of a number.
///
/// Returns NaN if `self` is a negative number.
fn sqrt(self) -> Self;
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
fn rsqrt(self) -> Self;
/// Returns `e^(self)`, (the exponential function).
fn exp(self) -> Self;
/// Returns 2 raised to the power of the number, `2^(self)`.
fn exp2(self) -> Self;
/// Returns the natural logarithm of the number.
fn ln(self) -> Self;
/// Returns the logarithm of the number with respect to an arbitrary base.
fn log(self, base: Self) -> Self;
/// Returns the base 2 logarithm of the number.
fn log2(self) -> Self;
/// Returns the base 10 logarithm of the number.
fn log10(self) -> Self;
/// Convert radians to degrees.
fn to_degrees(self) -> Self;
/// Convert degrees to radians.
fn to_radians(self) -> Self;
}
2014-11-09 16:59:28 +11:00
2014-11-15 15:52:00 +11:00
/// A generic trait for converting a string with a radix (base) to a value
#[unstable(feature = "core", reason = "needs reevaluation")]
2014-11-15 15:52:00 +11:00
pub trait FromStrRadix {
type Err;
2015-02-15 00:10:19 +03:00
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::Err>;
2014-11-15 15:52:00 +11:00
}
/// A utility function that just calls FromStrRadix::from_str_radix.
#[unstable(feature = "core", reason = "needs reevaluation")]
2015-02-15 00:10:19 +03:00
pub fn from_str_radix<T: FromStrRadix>(str: &str, radix: u32)
-> Result<T, T::Err> {
2014-11-15 15:52:00 +11:00
FromStrRadix::from_str_radix(str, radix)
}
2014-11-15 17:02:38 +11:00
macro_rules! from_str_radix_float_impl {
($T:ty) => {
#[stable(feature = "rust1", since = "1.0.0")]
2014-11-15 17:02:38 +11:00
impl FromStr for $T {
type Err = ParseFloatError;
2014-11-15 17:02:38 +11:00
/// Convert a string in base 10 to a float.
/// Accepts an optional decimal exponent.
///
/// This function accepts strings such as
///
/// * '3.14'
/// * '+3.14', equivalent to '3.14'
/// * '-3.14'
/// * '2.5E10', or equivalently, '2.5e10'
/// * '2.5E-10'
/// * '.' (understood as 0)
/// * '5.'
/// * '.5', or, equivalently, '0.5'
/// * '+inf', 'inf', '-inf', 'NaN'
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * src - A string
///
/// # Return value
///
/// `None` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `src`.
#[inline]
fn from_str(src: &str) -> Result<$T, ParseFloatError> {
2014-11-15 17:02:38 +11:00
from_str_radix(src, 10)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
2014-11-15 17:02:38 +11:00
impl FromStrRadix for $T {
type Err = ParseFloatError;
2014-11-15 17:02:38 +11:00
/// Convert a string in a given base to a float.
///
/// Due to possible conflicts, this function does **not** accept
/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
/// does it recognize exponents of any kind.
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * src - A string
/// * radix - The base to use. Must lie in the range [2 .. 36]
///
/// # Return value
///
/// `None` if the string did not represent a valid number.
/// Otherwise, `Some(n)` where `n` is the floating-point number
/// represented by `src`.
2015-02-15 00:10:19 +03:00
fn from_str_radix(src: &str, radix: u32)
-> Result<$T, ParseFloatError> {
use self::FloatErrorKind::*;
use self::ParseFloatError as PFE;
assert!(radix >= 2 && radix <= 36,
2014-11-15 17:02:38 +11:00
"from_str_radix_float: must lie in the range `[2, 36]` - found {}",
radix);
// Special values
match src {
"inf" => return Ok(Float::infinity()),
"-inf" => return Ok(Float::neg_infinity()),
"NaN" => return Ok(Float::nan()),
2014-11-15 17:02:38 +11:00
_ => {},
}
let (is_positive, src) = match src.slice_shift_char() {
None => return Err(PFE { kind: Empty }),
Some(('-', "")) => return Err(PFE { kind: Empty }),
Some(('-', src)) => (false, src),
Some((_, _)) => (true, src),
2014-11-15 17:02:38 +11:00
};
// The significand to accumulate
let mut sig = if is_positive { 0.0 } else { -0.0 };
// Necessary to detect overflow
let mut prev_sig = sig;
let mut cs = src.chars().enumerate();
// Exponent prefix and exponent index offset
let mut exp_info = None::<(char, uint)>;
// Parse the integer part of the significand
2015-01-10 21:50:07 -05:00
for (i, c) in cs.by_ref() {
2014-11-15 17:02:38 +11:00
match c.to_digit(radix) {
Some(digit) => {
// shift significand one digit left
sig = sig * (radix as $T);
// add/subtract current digit depending on sign
if is_positive {
sig = sig + ((digit as int) as $T);
} else {
sig = sig - ((digit as int) as $T);
}
// Detect overflow by comparing to last value, except
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(Float::infinity()); }
2014-11-15 17:02:38 +11:00
if !is_positive && sig >= prev_sig
{ return Ok(Float::neg_infinity()); }
2014-11-15 17:02:38 +11:00
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $T) / radix as $T)
{ return Ok(Float::infinity()); }
2014-11-15 17:02:38 +11:00
if !is_positive && (prev_sig != (sig + digit as $T) / radix as $T)
{ return Ok(Float::neg_infinity()); }
2014-11-15 17:02:38 +11:00
}
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
'.' => {
break; // start of fractional part
},
_ => {
return Err(PFE { kind: Invalid });
2014-11-15 17:02:38 +11:00
},
},
}
}
// If we are not yet at the exponent parse the fractional
// part of the significand
if exp_info.is_none() {
let mut power = 1.0;
2015-01-10 21:50:07 -05:00
for (i, c) in cs.by_ref() {
2014-11-15 17:02:38 +11:00
match c.to_digit(radix) {
Some(digit) => {
// Decrease power one order of magnitude
power = power / (radix as $T);
// add/subtract current digit depending on sign
sig = if is_positive {
sig + (digit as $T) * power
} else {
sig - (digit as $T) * power
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(Float::infinity()); }
2014-11-15 17:02:38 +11:00
if !is_positive && sig > prev_sig
{ return Ok(Float::neg_infinity()); }
2014-11-15 17:02:38 +11:00
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
_ => {
return Err(PFE { kind: Invalid });
2014-11-15 17:02:38 +11:00
},
},
}
}
}
// Parse and calculate the exponent
let exp = match exp_info {
Some((c, offset)) => {
let base = match c {
'E' | 'e' if radix == 10 => 10.0,
'P' | 'p' if radix == 16 => 2.0,
_ => return Err(PFE { kind: Invalid }),
2014-11-15 17:02:38 +11:00
};
// Parse the exponent as decimal integer
2015-01-07 11:58:31 -05:00
let src = &src[offset..];
2014-11-15 17:02:38 +11:00
let (is_positive, exp) = match src.slice_shift_char() {
Some(('-', src)) => (false, src.parse::<uint>()),
Some(('+', src)) => (true, src.parse::<uint>()),
Some((_, _)) => (true, src.parse::<uint>()),
None => return Err(PFE { kind: Invalid }),
2014-11-15 17:02:38 +11:00
};
match (is_positive, exp) {
(true, Ok(exp)) => base.powi(exp as i32),
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
2014-11-15 17:02:38 +11:00
}
},
None => 1.0, // no exponent
};
Ok(sig * exp)
2014-11-15 17:02:38 +11:00
}
}
}
}
from_str_radix_float_impl! { f32 }
from_str_radix_float_impl! { f64 }
2014-11-15 17:02:38 +11:00
macro_rules! from_str_radix_int_impl {
($T:ty) => {
#[stable(feature = "rust1", since = "1.0.0")]
2014-11-15 17:02:38 +11:00
impl FromStr for $T {
type Err = ParseIntError;
2014-11-15 17:02:38 +11:00
#[inline]
fn from_str(src: &str) -> Result<$T, ParseIntError> {
2014-11-15 17:02:38 +11:00
from_str_radix(src, 10)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
2014-11-15 17:02:38 +11:00
impl FromStrRadix for $T {
type Err = ParseIntError;
2015-02-15 00:10:19 +03:00
fn from_str_radix(src: &str, radix: u32)
-> Result<$T, ParseIntError> {
use self::IntErrorKind::*;
use self::ParseIntError as PIE;
2014-11-15 17:02:38 +11:00
assert!(radix >= 2 && radix <= 36,
"from_str_radix_int: must lie in the range `[2, 36]` - found {}",
radix);
let is_signed_ty = (0 as $T) > Int::min_value();
match src.slice_shift_char() {
Some(('-', "")) => Err(PIE { kind: Empty }),
Some(('-', src)) if is_signed_ty => {
2014-11-15 17:02:38 +11:00
// The number is negative
let mut result = 0;
for c in src.chars() {
let x = match c.to_digit(radix) {
Some(x) => x,
None => return Err(PIE { kind: InvalidDigit }),
2014-11-15 17:02:38 +11:00
};
result = match result.checked_mul(radix as $T) {
Some(result) => result,
None => return Err(PIE { kind: Underflow }),
2014-11-15 17:02:38 +11:00
};
result = match result.checked_sub(x as $T) {
Some(result) => result,
None => return Err(PIE { kind: Underflow }),
2014-11-15 17:02:38 +11:00
};
}
Ok(result)
2014-11-15 17:02:38 +11:00
},
Some((_, _)) => {
2014-11-15 17:02:38 +11:00
// The number is signed
let mut result = 0;
for c in src.chars() {
let x = match c.to_digit(radix) {
Some(x) => x,
None => return Err(PIE { kind: InvalidDigit }),
2014-11-15 17:02:38 +11:00
};
result = match result.checked_mul(radix as $T) {
Some(result) => result,
None => return Err(PIE { kind: Overflow }),
2014-11-15 17:02:38 +11:00
};
result = match result.checked_add(x as $T) {
Some(result) => result,
None => return Err(PIE { kind: Overflow }),
2014-11-15 17:02:38 +11:00
};
}
Ok(result)
2014-11-15 17:02:38 +11:00
},
None => Err(ParseIntError { kind: Empty }),
2014-11-15 17:02:38 +11:00
}
}
}
}
}
from_str_radix_int_impl! { int }
from_str_radix_int_impl! { i8 }
from_str_radix_int_impl! { i16 }
from_str_radix_int_impl! { i32 }
from_str_radix_int_impl! { i64 }
from_str_radix_int_impl! { uint }
from_str_radix_int_impl! { u8 }
from_str_radix_int_impl! { u16 }
from_str_radix_int_impl! { u32 }
from_str_radix_int_impl! { u64 }
/// An error which can be returned when parsing an integer.
#[derive(Debug, Clone, PartialEq)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ParseIntError { kind: IntErrorKind }
#[derive(Debug, Clone, PartialEq)]
enum IntErrorKind {
Empty,
InvalidDigit,
Overflow,
Underflow,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for ParseIntError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.description().fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Error for ParseIntError {
fn description(&self) -> &str {
match self.kind {
IntErrorKind::Empty => "cannot parse integer from empty string",
IntErrorKind::InvalidDigit => "invalid digit found in string",
IntErrorKind::Overflow => "number too large to fit in target type",
IntErrorKind::Underflow => "number too small to fit in target type",
}
}
}
/// An error which can be returned when parsing a float.
#[derive(Debug, Clone, PartialEq)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ParseFloatError { kind: FloatErrorKind }
#[derive(Debug, Clone, PartialEq)]
enum FloatErrorKind {
Empty,
Invalid,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for ParseFloatError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.description().fmt(f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Error for ParseFloatError {
fn description(&self) -> &str {
match self.kind {
FloatErrorKind::Empty => "cannot parse float from empty string",
FloatErrorKind::Invalid => "invalid float literal",
}
}
}