rust/src/libcore/num/mod.rs

877 lines
27 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Numeric traits and functions for generic mathematics
//!
//! These are implemented for the primitive numeric types in `std::{u8, u16,
//! u32, u64, uint, i8, i16, i32, i64, int, f32, f64, float}`.
#![allow(missing_doc)]
use clone::Clone;
use cmp::{Eq, Ord};
use kinds::Copy;
use mem::size_of;
use ops::{Add, Sub, Mul, Div, Rem, Neg};
use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use option::{Option, Some, None};
/// The base trait for numeric types
pub trait Num: Eq + Zero + One
+ Neg<Self>
+ Add<Self,Self>
+ Sub<Self,Self>
+ Mul<Self,Self>
+ Div<Self,Self>
+ Rem<Self,Self> {}
/// Simultaneous division and remainder
#[inline]
pub fn div_rem<T: Div<T, T> + Rem<T, T>>(x: T, y: T) -> (T, T) {
(x / y, x % y)
}
/// Defines an additive identity element for `Self`.
///
/// # Deriving
///
/// This trait can be automatically be derived using `#[deriving(Zero)]`
/// attribute. If you choose to use this, make sure that the laws outlined in
/// the documentation for `Zero::zero` still hold.
pub trait Zero: Add<Self, Self> {
/// Returns the additive identity element of `Self`, `0`.
///
/// # Laws
///
/// ~~~notrust
/// a + 0 = a ∀ a ∈ Self
/// 0 + a = a ∀ a ∈ Self
/// ~~~
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// FIXME (#5527): This should be an associated constant
fn zero() -> Self;
/// Returns `true` if `self` is equal to the additive identity.
fn is_zero(&self) -> bool;
}
/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
/// Defines a multiplicative identity element for `Self`.
pub trait One: Mul<Self, Self> {
/// Returns the multiplicative identity element of `Self`, `1`.
///
/// # Laws
///
/// ~~~notrust
/// a * 1 = a ∀ a ∈ Self
/// 1 * a = a ∀ a ∈ Self
/// ~~~
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// FIXME (#5527): This should be an associated constant
fn one() -> Self;
}
/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }
/// Useful functions for signed numbers (i.e. numbers that can be negative).
pub trait Signed: Num + Neg<Self> {
/// Computes the absolute value.
///
/// For float, f32, and f64, `NaN` will be returned if the number is `NaN`.
fn abs(&self) -> Self;
/// The positive difference of two numbers.
///
/// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
/// between `self` and `other` is returned.
fn abs_sub(&self, other: &Self) -> Self;
/// Returns the sign of the number.
///
/// For `float`, `f32`, `f64`:
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For `int`:
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
fn signum(&self) -> Self;
/// Returns true if the number is positive and false if the number is zero or negative.
fn is_positive(&self) -> bool;
/// Returns true if the number is negative and false if the number is zero or positive.
fn is_negative(&self) -> bool;
}
/// Computes the absolute value.
///
/// For float, f32, and f64, `NaN` will be returned if the number is `NaN`
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
value.abs()
}
/// The positive difference of two numbers.
///
/// Returns `zero` if the number is less than or equal to `other`,
/// otherwise the difference between `self` and `other` is returned.
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
x.abs_sub(&y)
}
/// Returns the sign of the number.
///
/// For float, f32, f64:
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
///
/// For int:
/// - `0` if the number is zero
/// - `1` if the number is positive
/// - `-1` if the number is negative
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
/// A trait for values which cannot be negative
pub trait Unsigned: Num {}
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use std::num;
///
/// assert_eq!(num::pow(2, 4), 16);
/// ```
#[inline]
pub fn pow<T: One + Mul<T, T>>(mut base: T, mut exp: uint) -> T {
if exp == 1 { base }
else {
let mut acc = one::<T>();
while exp > 0 {
if (exp & 1) == 1 {
acc = acc * base;
}
base = base * base;
exp = exp >> 1;
}
acc
}
}
/// Numbers which have upper and lower bounds
pub trait Bounded {
// FIXME (#5527): These should be associated constants
/// returns the smallest finite number this type can represent
fn min_value() -> Self;
/// returns the largest finite number this type can represent
fn max_value() -> Self;
}
/// Numbers with a fixed binary representation.
pub trait Bitwise: Bounded
+ Not<Self>
+ BitAnd<Self,Self>
+ BitOr<Self,Self>
+ BitXor<Self,Self>
+ Shl<Self,Self>
+ Shr<Self,Self> {
/// Returns the number of ones in the binary representation of the number.
///
/// # Example
///
/// ```rust
/// use std::num::Bitwise;
///
/// let n = 0b01001100u8;
/// assert_eq!(n.count_ones(), 3);
/// ```
fn count_ones(&self) -> Self;
/// Returns the number of zeros in the binary representation of the number.
///
/// # Example
///
/// ```rust
/// use std::num::Bitwise;
///
/// let n = 0b01001100u8;
/// assert_eq!(n.count_zeros(), 5);
/// ```
#[inline]
fn count_zeros(&self) -> Self {
(!*self).count_ones()
}
/// Returns the number of leading zeros in the in the binary representation
/// of the number.
///
/// # Example
///
/// ```rust
/// use std::num::Bitwise;
///
/// let n = 0b0101000u16;
/// assert_eq!(n.leading_zeros(), 10);
/// ```
fn leading_zeros(&self) -> Self;
/// Returns the number of trailing zeros in the in the binary representation
/// of the number.
///
/// # Example
///
/// ```rust
/// use std::num::Bitwise;
///
/// let n = 0b0101000u16;
/// assert_eq!(n.trailing_zeros(), 3);
/// ```
fn trailing_zeros(&self) -> Self;
}
/// Specifies the available operations common to all of Rust's core numeric primitives.
/// These may not always make sense from a purely mathematical point of view, but
/// may be useful for systems programming.
pub trait Primitive: Copy
+ Clone
+ Num
+ NumCast
+ Ord
+ Bounded {}
/// A collection of traits relevant to primitive signed and unsigned integers
pub trait Int: Primitive
+ Bitwise
+ CheckedAdd
+ CheckedSub
+ CheckedMul
+ CheckedDiv {}
/// Returns the smallest power of 2 greater than or equal to `n`.
#[inline]
pub fn next_power_of_two<T: Unsigned + Int>(n: T) -> T {
let halfbits: T = cast(size_of::<T>() * 4).unwrap();
let mut tmp: T = n - one();
let mut shift: T = one();
while shift <= halfbits {
tmp = tmp | (tmp >> shift);
shift = shift << one();
}
tmp + one()
}
// Returns `true` iff `n == 2^k` for some k.
#[inline]
pub fn is_power_of_two<T: Unsigned + Int>(n: T) -> bool {
(n - one()) & n == zero()
}
/// Returns the smallest power of 2 greater than or equal to `n`. If the next
/// power of two is greater than the type's maximum value, `None` is returned,
/// otherwise the power of 2 is wrapped in `Some`.
#[inline]
pub fn checked_next_power_of_two<T: Unsigned + Int>(n: T) -> Option<T> {
let halfbits: T = cast(size_of::<T>() * 4).unwrap();
let mut tmp: T = n - one();
let mut shift: T = one();
while shift <= halfbits {
tmp = tmp | (tmp >> shift);
shift = shift << one();
}
tmp.checked_add(&one())
}
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
/// Converts the value of `self` to an `int`.
#[inline]
fn to_int(&self) -> Option<int> {
self.to_i64().and_then(|x| x.to_int())
}
/// Converts the value of `self` to an `i8`.
#[inline]
fn to_i8(&self) -> Option<i8> {
self.to_i64().and_then(|x| x.to_i8())
}
/// Converts the value of `self` to an `i16`.
#[inline]
fn to_i16(&self) -> Option<i16> {
self.to_i64().and_then(|x| x.to_i16())
}
/// Converts the value of `self` to an `i32`.
#[inline]
fn to_i32(&self) -> Option<i32> {
self.to_i64().and_then(|x| x.to_i32())
}
/// Converts the value of `self` to an `i64`.
fn to_i64(&self) -> Option<i64>;
/// Converts the value of `self` to an `uint`.
#[inline]
fn to_uint(&self) -> Option<uint> {
self.to_u64().and_then(|x| x.to_uint())
}
/// Converts the value of `self` to an `u8`.
#[inline]
fn to_u8(&self) -> Option<u8> {
self.to_u64().and_then(|x| x.to_u8())
}
/// Converts the value of `self` to an `u16`.
#[inline]
fn to_u16(&self) -> Option<u16> {
self.to_u64().and_then(|x| x.to_u16())
}
/// Converts the value of `self` to an `u32`.
#[inline]
fn to_u32(&self) -> Option<u32> {
self.to_u64().and_then(|x| x.to_u32())
}
/// Converts the value of `self` to an `u64`.
#[inline]
fn to_u64(&self) -> Option<u64>;
/// Converts the value of `self` to an `f32`.
#[inline]
fn to_f32(&self) -> Option<f32> {
self.to_f64().and_then(|x| x.to_f32())
}
/// Converts the value of `self` to an `f64`.
#[inline]
fn to_f64(&self) -> Option<f64> {
self.to_i64().and_then(|x| x.to_f64())
}
}
macro_rules! impl_to_primitive_int_to_int(
($SrcT:ty, $DstT:ty) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some(*self as $DstT)
} else {
let n = *self as i64;
let min_value: $DstT = Bounded::min_value();
let max_value: $DstT = Bounded::max_value();
if min_value as i64 <= n && n <= max_value as i64 {
Some(*self as $DstT)
} else {
None
}
}
}
)
)
macro_rules! impl_to_primitive_int_to_uint(
($SrcT:ty, $DstT:ty) => (
{
let zero: $SrcT = Zero::zero();
let max_value: $DstT = Bounded::max_value();
if zero <= *self && *self as u64 <= max_value as u64 {
Some(*self as $DstT)
} else {
None
}
}
)
)
macro_rules! impl_to_primitive_int(
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_int(&self) -> Option<int> { impl_to_primitive_int_to_int!($T, int) }
#[inline]
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8) }
#[inline]
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16) }
#[inline]
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32) }
#[inline]
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64) }
#[inline]
fn to_uint(&self) -> Option<uint> { impl_to_primitive_int_to_uint!($T, uint) }
#[inline]
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8) }
#[inline]
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16) }
#[inline]
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32) }
#[inline]
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
)
impl_to_primitive_int!(int)
impl_to_primitive_int!(i8)
impl_to_primitive_int!(i16)
impl_to_primitive_int!(i32)
impl_to_primitive_int!(i64)
macro_rules! impl_to_primitive_uint_to_int(
($DstT:ty) => (
{
let max_value: $DstT = Bounded::max_value();
if *self as u64 <= max_value as u64 {
Some(*self as $DstT)
} else {
None
}
}
)
)
macro_rules! impl_to_primitive_uint_to_uint(
($SrcT:ty, $DstT:ty) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some(*self as $DstT)
} else {
let zero: $SrcT = Zero::zero();
let max_value: $DstT = Bounded::max_value();
if zero <= *self && *self as u64 <= max_value as u64 {
Some(*self as $DstT)
} else {
None
}
}
}
)
)
macro_rules! impl_to_primitive_uint(
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_int(&self) -> Option<int> { impl_to_primitive_uint_to_int!(int) }
#[inline]
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8) }
#[inline]
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16) }
#[inline]
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32) }
#[inline]
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64) }
#[inline]
fn to_uint(&self) -> Option<uint> { impl_to_primitive_uint_to_uint!($T, uint) }
#[inline]
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8) }
#[inline]
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16) }
#[inline]
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32) }
#[inline]
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
)
impl_to_primitive_uint!(uint)
impl_to_primitive_uint!(u8)
impl_to_primitive_uint!(u16)
impl_to_primitive_uint!(u32)
impl_to_primitive_uint!(u64)
macro_rules! impl_to_primitive_float_to_float(
($SrcT:ty, $DstT:ty) => (
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some(*self as $DstT)
} else {
let n = *self as f64;
let max_value: $SrcT = Bounded::max_value();
if -max_value as f64 <= n && n <= max_value as f64 {
Some(*self as $DstT)
} else {
None
}
}
)
)
macro_rules! impl_to_primitive_float(
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_int(&self) -> Option<int> { Some(*self as int) }
#[inline]
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
#[inline]
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
#[inline]
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
#[inline]
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
#[inline]
fn to_uint(&self) -> Option<uint> { Some(*self as uint) }
#[inline]
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
#[inline]
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
#[inline]
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
#[inline]
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
#[inline]
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64) }
}
)
)
impl_to_primitive_float!(f32)
impl_to_primitive_float!(f64)
/// A generic trait for converting a number to a value.
pub trait FromPrimitive {
/// Convert an `int` to return an optional value of this type. If the
/// value cannot be represented by this value, the `None` is returned.
#[inline]
fn from_int(n: int) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i8(n: i8) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i16(n: i16) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i32(n: i32) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_i64(n: i64) -> Option<Self>;
/// Convert an `uint` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_uint(n: uint) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u8(n: u8) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u16(n: u16) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u32(n: u32) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_u64(n: u64) -> Option<Self>;
/// Convert a `f32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f32(n: f32) -> Option<Self> {
FromPrimitive::from_f64(n as f64)
}
/// Convert a `f64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f64(n: f64) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
}
/// A utility function that just calls `FromPrimitive::from_int`.
pub fn from_int<A: FromPrimitive>(n: int) -> Option<A> {
FromPrimitive::from_int(n)
}
/// A utility function that just calls `FromPrimitive::from_i8`.
pub fn from_i8<A: FromPrimitive>(n: i8) -> Option<A> {
FromPrimitive::from_i8(n)
}
/// A utility function that just calls `FromPrimitive::from_i16`.
pub fn from_i16<A: FromPrimitive>(n: i16) -> Option<A> {
FromPrimitive::from_i16(n)
}
/// A utility function that just calls `FromPrimitive::from_i32`.
pub fn from_i32<A: FromPrimitive>(n: i32) -> Option<A> {
FromPrimitive::from_i32(n)
}
/// A utility function that just calls `FromPrimitive::from_i64`.
pub fn from_i64<A: FromPrimitive>(n: i64) -> Option<A> {
FromPrimitive::from_i64(n)
}
/// A utility function that just calls `FromPrimitive::from_uint`.
pub fn from_uint<A: FromPrimitive>(n: uint) -> Option<A> {
FromPrimitive::from_uint(n)
}
/// A utility function that just calls `FromPrimitive::from_u8`.
pub fn from_u8<A: FromPrimitive>(n: u8) -> Option<A> {
FromPrimitive::from_u8(n)
}
/// A utility function that just calls `FromPrimitive::from_u16`.
pub fn from_u16<A: FromPrimitive>(n: u16) -> Option<A> {
FromPrimitive::from_u16(n)
}
/// A utility function that just calls `FromPrimitive::from_u32`.
pub fn from_u32<A: FromPrimitive>(n: u32) -> Option<A> {
FromPrimitive::from_u32(n)
}
/// A utility function that just calls `FromPrimitive::from_u64`.
pub fn from_u64<A: FromPrimitive>(n: u64) -> Option<A> {
FromPrimitive::from_u64(n)
}
/// A utility function that just calls `FromPrimitive::from_f32`.
pub fn from_f32<A: FromPrimitive>(n: f32) -> Option<A> {
FromPrimitive::from_f32(n)
}
/// A utility function that just calls `FromPrimitive::from_f64`.
pub fn from_f64<A: FromPrimitive>(n: f64) -> Option<A> {
FromPrimitive::from_f64(n)
}
macro_rules! impl_from_primitive(
($T:ty, $to_ty:expr) => (
impl FromPrimitive for $T {
#[inline] fn from_int(n: int) -> Option<$T> { $to_ty }
#[inline] fn from_i8(n: i8) -> Option<$T> { $to_ty }
#[inline] fn from_i16(n: i16) -> Option<$T> { $to_ty }
#[inline] fn from_i32(n: i32) -> Option<$T> { $to_ty }
#[inline] fn from_i64(n: i64) -> Option<$T> { $to_ty }
#[inline] fn from_uint(n: uint) -> Option<$T> { $to_ty }
#[inline] fn from_u8(n: u8) -> Option<$T> { $to_ty }
#[inline] fn from_u16(n: u16) -> Option<$T> { $to_ty }
#[inline] fn from_u32(n: u32) -> Option<$T> { $to_ty }
#[inline] fn from_u64(n: u64) -> Option<$T> { $to_ty }
#[inline] fn from_f32(n: f32) -> Option<$T> { $to_ty }
#[inline] fn from_f64(n: f64) -> Option<$T> { $to_ty }
}
)
)
impl_from_primitive!(int, n.to_int())
impl_from_primitive!(i8, n.to_i8())
impl_from_primitive!(i16, n.to_i16())
impl_from_primitive!(i32, n.to_i32())
impl_from_primitive!(i64, n.to_i64())
impl_from_primitive!(uint, n.to_uint())
impl_from_primitive!(u8, n.to_u8())
impl_from_primitive!(u16, n.to_u16())
impl_from_primitive!(u32, n.to_u32())
impl_from_primitive!(u64, n.to_u64())
impl_from_primitive!(f32, n.to_f32())
impl_from_primitive!(f64, n.to_f64())
/// Cast from one machine scalar to another.
///
/// # Example
///
/// ```
/// use std::num;
///
/// let twenty: f32 = num::cast(0x14).unwrap();
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
pub fn cast<T: NumCast,U: NumCast>(n: T) -> Option<U> {
NumCast::from(n)
}
/// An interface for casting between machine scalars.
pub trait NumCast: ToPrimitive {
/// Creates a number from another value that can be converted into a primitive via the
/// `ToPrimitive` trait.
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}
macro_rules! impl_num_cast(
($T:ty, $conv:ident) => (
impl NumCast for $T {
#[inline]
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
// `$conv` could be generated using `concat_idents!`, but that
// macro seems to be broken at the moment
n.$conv()
}
}
)
)
impl_num_cast!(u8, to_u8)
impl_num_cast!(u16, to_u16)
impl_num_cast!(u32, to_u32)
impl_num_cast!(u64, to_u64)
impl_num_cast!(uint, to_uint)
impl_num_cast!(i8, to_i8)
impl_num_cast!(i16, to_i16)
impl_num_cast!(i32, to_i32)
impl_num_cast!(i64, to_i64)
impl_num_cast!(int, to_int)
impl_num_cast!(f32, to_f32)
impl_num_cast!(f64, to_f64)
/// Saturating math operations
pub trait Saturating {
/// Saturating addition operator.
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
fn saturating_add(self, v: Self) -> Self;
/// Saturating subtraction operator.
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
fn saturating_sub(self, v: Self) -> Self;
}
impl<T: CheckedAdd + CheckedSub + Zero + Ord + Bounded> Saturating for T {
#[inline]
fn saturating_add(self, v: T) -> T {
match self.checked_add(&v) {
Some(x) => x,
None => if v >= Zero::zero() {
Bounded::max_value()
} else {
Bounded::min_value()
}
}
}
#[inline]
fn saturating_sub(self, v: T) -> T {
match self.checked_sub(&v) {
Some(x) => x,
None => if v >= Zero::zero() {
Bounded::min_value()
} else {
Bounded::max_value()
}
}
}
}
/// Performs addition that returns `None` instead of wrapping around on overflow.
pub trait CheckedAdd: Add<Self, Self> {
/// Adds two numbers, checking for overflow. If overflow happens, `None` is returned.
fn checked_add(&self, v: &Self) -> Option<Self>;
}
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
pub trait CheckedSub: Sub<Self, Self> {
/// Subtracts two numbers, checking for underflow. If underflow happens, `None` is returned.
fn checked_sub(&self, v: &Self) -> Option<Self>;
}
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
/// overflow.
pub trait CheckedMul: Mul<Self, Self> {
/// Multiplies two numbers, checking for underflow or overflow. If underflow or overflow
/// happens, `None` is returned.
fn checked_mul(&self, v: &Self) -> Option<Self>;
}
/// Performs division that returns `None` instead of wrapping around on underflow or overflow.
pub trait CheckedDiv: Div<Self, Self> {
/// Divides two numbers, checking for underflow or overflow. If underflow or overflow happens,
/// `None` is returned.
fn checked_div(&self, v: &Self) -> Option<Self>;
}
/// Helper function for testing numeric operations
#[cfg(test)]
pub fn test_num<T:Num + NumCast + ::std::fmt::Show>(ten: T, two: T) {
assert_eq!(ten.add(&two), cast(12).unwrap());
assert_eq!(ten.sub(&two), cast(8).unwrap());
assert_eq!(ten.mul(&two), cast(20).unwrap());
assert_eq!(ten.div(&two), cast(5).unwrap());
assert_eq!(ten.rem(&two), cast(0).unwrap());
assert_eq!(ten.add(&two), ten + two);
assert_eq!(ten.sub(&two), ten - two);
assert_eq!(ten.mul(&two), ten * two);
assert_eq!(ten.div(&two), ten / two);
assert_eq!(ten.rem(&two), ten % two);
}