2014-04-30 22:14:22 -07:00
|
|
|
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
|
|
|
//! Numeric traits and functions for generic mathematics
|
|
|
|
//!
|
|
|
|
//! These are implemented for the primitive numeric types in `std::{u8, u16,
|
2014-05-19 15:39:16 +02:00
|
|
|
//! u32, u64, uint, i8, i16, i32, i64, int, f32, f64}`.
|
2014-04-30 22:14:22 -07:00
|
|
|
|
|
|
|
#![allow(missing_doc)]
|
|
|
|
|
|
|
|
use clone::Clone;
|
|
|
|
use cmp::{Eq, Ord};
|
|
|
|
use kinds::Copy;
|
|
|
|
use mem::size_of;
|
|
|
|
use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
|
|
|
use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
|
|
|
use option::{Option, Some, None};
|
|
|
|
|
|
|
|
/// The base trait for numeric types
|
|
|
|
pub trait Num: Eq + Zero + One
|
|
|
|
+ Neg<Self>
|
|
|
|
+ Add<Self,Self>
|
|
|
|
+ Sub<Self,Self>
|
|
|
|
+ Mul<Self,Self>
|
|
|
|
+ Div<Self,Self>
|
|
|
|
+ Rem<Self,Self> {}
|
|
|
|
|
|
|
|
/// Simultaneous division and remainder
|
|
|
|
#[inline]
|
|
|
|
pub fn div_rem<T: Div<T, T> + Rem<T, T>>(x: T, y: T) -> (T, T) {
|
|
|
|
(x / y, x % y)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Defines an additive identity element for `Self`.
|
|
|
|
///
|
|
|
|
/// # Deriving
|
|
|
|
///
|
|
|
|
/// This trait can be automatically be derived using `#[deriving(Zero)]`
|
|
|
|
/// attribute. If you choose to use this, make sure that the laws outlined in
|
|
|
|
/// the documentation for `Zero::zero` still hold.
|
|
|
|
pub trait Zero: Add<Self, Self> {
|
|
|
|
/// Returns the additive identity element of `Self`, `0`.
|
|
|
|
///
|
|
|
|
/// # Laws
|
|
|
|
///
|
|
|
|
/// ~~~notrust
|
|
|
|
/// a + 0 = a ∀ a ∈ Self
|
|
|
|
/// 0 + a = a ∀ a ∈ Self
|
|
|
|
/// ~~~
|
|
|
|
///
|
|
|
|
/// # Purity
|
|
|
|
///
|
|
|
|
/// This function should return the same result at all times regardless of
|
|
|
|
/// external mutable state, for example values stored in TLS or in
|
|
|
|
/// `static mut`s.
|
|
|
|
// FIXME (#5527): This should be an associated constant
|
|
|
|
fn zero() -> Self;
|
|
|
|
|
|
|
|
/// Returns `true` if `self` is equal to the additive identity.
|
|
|
|
fn is_zero(&self) -> bool;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the additive identity, `0`.
|
|
|
|
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
|
|
|
|
|
|
|
|
/// Defines a multiplicative identity element for `Self`.
|
|
|
|
pub trait One: Mul<Self, Self> {
|
|
|
|
/// Returns the multiplicative identity element of `Self`, `1`.
|
|
|
|
///
|
|
|
|
/// # Laws
|
|
|
|
///
|
|
|
|
/// ~~~notrust
|
|
|
|
/// a * 1 = a ∀ a ∈ Self
|
|
|
|
/// 1 * a = a ∀ a ∈ Self
|
|
|
|
/// ~~~
|
|
|
|
///
|
|
|
|
/// # Purity
|
|
|
|
///
|
|
|
|
/// This function should return the same result at all times regardless of
|
|
|
|
/// external mutable state, for example values stored in TLS or in
|
|
|
|
/// `static mut`s.
|
|
|
|
// FIXME (#5527): This should be an associated constant
|
|
|
|
fn one() -> Self;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the multiplicative identity, `1`.
|
|
|
|
#[inline(always)] pub fn one<T: One>() -> T { One::one() }
|
|
|
|
|
|
|
|
/// Useful functions for signed numbers (i.e. numbers that can be negative).
|
|
|
|
pub trait Signed: Num + Neg<Self> {
|
|
|
|
/// Computes the absolute value.
|
|
|
|
///
|
2014-05-19 15:39:16 +02:00
|
|
|
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
|
2014-04-30 22:14:22 -07:00
|
|
|
fn abs(&self) -> Self;
|
|
|
|
|
|
|
|
/// The positive difference of two numbers.
|
|
|
|
///
|
|
|
|
/// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
|
|
|
|
/// between `self` and `other` is returned.
|
|
|
|
fn abs_sub(&self, other: &Self) -> Self;
|
|
|
|
|
|
|
|
/// Returns the sign of the number.
|
|
|
|
///
|
2014-05-19 15:39:16 +02:00
|
|
|
/// For `f32` and `f64`:
|
|
|
|
///
|
|
|
|
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
|
|
|
|
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
|
|
|
/// * `NaN` if the number is `NaN`
|
2014-04-30 22:14:22 -07:00
|
|
|
///
|
|
|
|
/// For `int`:
|
2014-05-19 15:39:16 +02:00
|
|
|
///
|
|
|
|
/// * `0` if the number is zero
|
|
|
|
/// * `1` if the number is positive
|
|
|
|
/// * `-1` if the number is negative
|
2014-04-30 22:14:22 -07:00
|
|
|
fn signum(&self) -> Self;
|
|
|
|
|
|
|
|
/// Returns true if the number is positive and false if the number is zero or negative.
|
|
|
|
fn is_positive(&self) -> bool;
|
|
|
|
|
|
|
|
/// Returns true if the number is negative and false if the number is zero or positive.
|
|
|
|
fn is_negative(&self) -> bool;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the absolute value.
|
|
|
|
///
|
2014-05-19 15:39:16 +02:00
|
|
|
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
|
2014-04-30 22:14:22 -07:00
|
|
|
#[inline(always)]
|
|
|
|
pub fn abs<T: Signed>(value: T) -> T {
|
|
|
|
value.abs()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The positive difference of two numbers.
|
|
|
|
///
|
|
|
|
/// Returns `zero` if the number is less than or equal to `other`,
|
|
|
|
/// otherwise the difference between `self` and `other` is returned.
|
|
|
|
#[inline(always)]
|
|
|
|
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
|
|
|
|
x.abs_sub(&y)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the sign of the number.
|
|
|
|
///
|
2014-05-19 15:39:16 +02:00
|
|
|
/// For `f32` and `f64`:
|
|
|
|
///
|
|
|
|
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
|
|
|
|
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
|
|
|
/// * `NaN` if the number is `NaN`
|
2014-04-30 22:14:22 -07:00
|
|
|
///
|
|
|
|
/// For int:
|
2014-05-19 15:39:16 +02:00
|
|
|
///
|
|
|
|
/// * `0` if the number is zero
|
|
|
|
/// * `1` if the number is positive
|
|
|
|
/// * `-1` if the number is negative
|
2014-04-30 22:14:22 -07:00
|
|
|
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
|
|
|
|
|
|
|
|
/// A trait for values which cannot be negative
|
|
|
|
pub trait Unsigned: Num {}
|
|
|
|
|
|
|
|
/// Raises a value to the power of exp, using exponentiation by squaring.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// use std::num;
|
|
|
|
///
|
|
|
|
/// assert_eq!(num::pow(2, 4), 16);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
pub fn pow<T: One + Mul<T, T>>(mut base: T, mut exp: uint) -> T {
|
|
|
|
if exp == 1 { base }
|
|
|
|
else {
|
|
|
|
let mut acc = one::<T>();
|
|
|
|
while exp > 0 {
|
|
|
|
if (exp & 1) == 1 {
|
|
|
|
acc = acc * base;
|
|
|
|
}
|
|
|
|
base = base * base;
|
|
|
|
exp = exp >> 1;
|
|
|
|
}
|
|
|
|
acc
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Numbers which have upper and lower bounds
|
|
|
|
pub trait Bounded {
|
|
|
|
// FIXME (#5527): These should be associated constants
|
|
|
|
/// returns the smallest finite number this type can represent
|
|
|
|
fn min_value() -> Self;
|
|
|
|
/// returns the largest finite number this type can represent
|
|
|
|
fn max_value() -> Self;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Numbers with a fixed binary representation.
|
|
|
|
pub trait Bitwise: Bounded
|
|
|
|
+ Not<Self>
|
|
|
|
+ BitAnd<Self,Self>
|
|
|
|
+ BitOr<Self,Self>
|
|
|
|
+ BitXor<Self,Self>
|
|
|
|
+ Shl<Self,Self>
|
|
|
|
+ Shr<Self,Self> {
|
|
|
|
/// Returns the number of ones in the binary representation of the number.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// use std::num::Bitwise;
|
|
|
|
///
|
|
|
|
/// let n = 0b01001100u8;
|
|
|
|
/// assert_eq!(n.count_ones(), 3);
|
|
|
|
/// ```
|
|
|
|
fn count_ones(&self) -> Self;
|
|
|
|
|
|
|
|
/// Returns the number of zeros in the binary representation of the number.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// use std::num::Bitwise;
|
|
|
|
///
|
|
|
|
/// let n = 0b01001100u8;
|
|
|
|
/// assert_eq!(n.count_zeros(), 5);
|
|
|
|
/// ```
|
|
|
|
#[inline]
|
|
|
|
fn count_zeros(&self) -> Self {
|
|
|
|
(!*self).count_ones()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the number of leading zeros in the in the binary representation
|
|
|
|
/// of the number.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// use std::num::Bitwise;
|
|
|
|
///
|
|
|
|
/// let n = 0b0101000u16;
|
|
|
|
/// assert_eq!(n.leading_zeros(), 10);
|
|
|
|
/// ```
|
|
|
|
fn leading_zeros(&self) -> Self;
|
|
|
|
|
|
|
|
/// Returns the number of trailing zeros in the in the binary representation
|
|
|
|
/// of the number.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```rust
|
|
|
|
/// use std::num::Bitwise;
|
|
|
|
///
|
|
|
|
/// let n = 0b0101000u16;
|
|
|
|
/// assert_eq!(n.trailing_zeros(), 3);
|
|
|
|
/// ```
|
|
|
|
fn trailing_zeros(&self) -> Self;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Specifies the available operations common to all of Rust's core numeric primitives.
|
|
|
|
/// These may not always make sense from a purely mathematical point of view, but
|
|
|
|
/// may be useful for systems programming.
|
|
|
|
pub trait Primitive: Copy
|
|
|
|
+ Clone
|
|
|
|
+ Num
|
|
|
|
+ NumCast
|
|
|
|
+ Ord
|
|
|
|
+ Bounded {}
|
|
|
|
|
|
|
|
/// A collection of traits relevant to primitive signed and unsigned integers
|
|
|
|
pub trait Int: Primitive
|
|
|
|
+ Bitwise
|
|
|
|
+ CheckedAdd
|
|
|
|
+ CheckedSub
|
|
|
|
+ CheckedMul
|
|
|
|
+ CheckedDiv {}
|
|
|
|
|
|
|
|
/// Returns the smallest power of 2 greater than or equal to `n`.
|
|
|
|
#[inline]
|
|
|
|
pub fn next_power_of_two<T: Unsigned + Int>(n: T) -> T {
|
|
|
|
let halfbits: T = cast(size_of::<T>() * 4).unwrap();
|
|
|
|
let mut tmp: T = n - one();
|
|
|
|
let mut shift: T = one();
|
|
|
|
while shift <= halfbits {
|
|
|
|
tmp = tmp | (tmp >> shift);
|
|
|
|
shift = shift << one();
|
|
|
|
}
|
|
|
|
tmp + one()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns `true` iff `n == 2^k` for some k.
|
|
|
|
#[inline]
|
|
|
|
pub fn is_power_of_two<T: Unsigned + Int>(n: T) -> bool {
|
|
|
|
(n - one()) & n == zero()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the smallest power of 2 greater than or equal to `n`. If the next
|
|
|
|
/// power of two is greater than the type's maximum value, `None` is returned,
|
|
|
|
/// otherwise the power of 2 is wrapped in `Some`.
|
|
|
|
#[inline]
|
|
|
|
pub fn checked_next_power_of_two<T: Unsigned + Int>(n: T) -> Option<T> {
|
|
|
|
let halfbits: T = cast(size_of::<T>() * 4).unwrap();
|
|
|
|
let mut tmp: T = n - one();
|
|
|
|
let mut shift: T = one();
|
|
|
|
while shift <= halfbits {
|
|
|
|
tmp = tmp | (tmp >> shift);
|
|
|
|
shift = shift << one();
|
|
|
|
}
|
|
|
|
tmp.checked_add(&one())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A generic trait for converting a value to a number.
|
|
|
|
pub trait ToPrimitive {
|
|
|
|
/// Converts the value of `self` to an `int`.
|
|
|
|
#[inline]
|
|
|
|
fn to_int(&self) -> Option<int> {
|
|
|
|
self.to_i64().and_then(|x| x.to_int())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `i8`.
|
|
|
|
#[inline]
|
|
|
|
fn to_i8(&self) -> Option<i8> {
|
|
|
|
self.to_i64().and_then(|x| x.to_i8())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `i16`.
|
|
|
|
#[inline]
|
|
|
|
fn to_i16(&self) -> Option<i16> {
|
|
|
|
self.to_i64().and_then(|x| x.to_i16())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `i32`.
|
|
|
|
#[inline]
|
|
|
|
fn to_i32(&self) -> Option<i32> {
|
|
|
|
self.to_i64().and_then(|x| x.to_i32())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `i64`.
|
|
|
|
fn to_i64(&self) -> Option<i64>;
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `uint`.
|
|
|
|
#[inline]
|
|
|
|
fn to_uint(&self) -> Option<uint> {
|
|
|
|
self.to_u64().and_then(|x| x.to_uint())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `u8`.
|
|
|
|
#[inline]
|
|
|
|
fn to_u8(&self) -> Option<u8> {
|
|
|
|
self.to_u64().and_then(|x| x.to_u8())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `u16`.
|
|
|
|
#[inline]
|
|
|
|
fn to_u16(&self) -> Option<u16> {
|
|
|
|
self.to_u64().and_then(|x| x.to_u16())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `u32`.
|
|
|
|
#[inline]
|
|
|
|
fn to_u32(&self) -> Option<u32> {
|
|
|
|
self.to_u64().and_then(|x| x.to_u32())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `u64`.
|
|
|
|
#[inline]
|
|
|
|
fn to_u64(&self) -> Option<u64>;
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `f32`.
|
|
|
|
#[inline]
|
|
|
|
fn to_f32(&self) -> Option<f32> {
|
|
|
|
self.to_f64().and_then(|x| x.to_f32())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Converts the value of `self` to an `f64`.
|
|
|
|
#[inline]
|
|
|
|
fn to_f64(&self) -> Option<f64> {
|
|
|
|
self.to_i64().and_then(|x| x.to_f64())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_int_to_int(
|
|
|
|
($SrcT:ty, $DstT:ty) => (
|
|
|
|
{
|
|
|
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
let n = *self as i64;
|
|
|
|
let min_value: $DstT = Bounded::min_value();
|
|
|
|
let max_value: $DstT = Bounded::max_value();
|
|
|
|
if min_value as i64 <= n && n <= max_value as i64 {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_int_to_uint(
|
|
|
|
($SrcT:ty, $DstT:ty) => (
|
|
|
|
{
|
|
|
|
let zero: $SrcT = Zero::zero();
|
|
|
|
let max_value: $DstT = Bounded::max_value();
|
|
|
|
if zero <= *self && *self as u64 <= max_value as u64 {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_int(
|
|
|
|
($T:ty) => (
|
|
|
|
impl ToPrimitive for $T {
|
|
|
|
#[inline]
|
|
|
|
fn to_int(&self) -> Option<int> { impl_to_primitive_int_to_int!($T, int) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64) }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn to_uint(&self) -> Option<uint> { impl_to_primitive_int_to_uint!($T, uint) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64) }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
impl_to_primitive_int!(int)
|
|
|
|
impl_to_primitive_int!(i8)
|
|
|
|
impl_to_primitive_int!(i16)
|
|
|
|
impl_to_primitive_int!(i32)
|
|
|
|
impl_to_primitive_int!(i64)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_uint_to_int(
|
|
|
|
($DstT:ty) => (
|
|
|
|
{
|
|
|
|
let max_value: $DstT = Bounded::max_value();
|
|
|
|
if *self as u64 <= max_value as u64 {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_uint_to_uint(
|
|
|
|
($SrcT:ty, $DstT:ty) => (
|
|
|
|
{
|
|
|
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
let zero: $SrcT = Zero::zero();
|
|
|
|
let max_value: $DstT = Bounded::max_value();
|
|
|
|
if zero <= *self && *self as u64 <= max_value as u64 {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_uint(
|
|
|
|
($T:ty) => (
|
|
|
|
impl ToPrimitive for $T {
|
|
|
|
#[inline]
|
|
|
|
fn to_int(&self) -> Option<int> { impl_to_primitive_uint_to_int!(int) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64) }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn to_uint(&self) -> Option<uint> { impl_to_primitive_uint_to_uint!($T, uint) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64) }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
impl_to_primitive_uint!(uint)
|
|
|
|
impl_to_primitive_uint!(u8)
|
|
|
|
impl_to_primitive_uint!(u16)
|
|
|
|
impl_to_primitive_uint!(u32)
|
|
|
|
impl_to_primitive_uint!(u64)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_float_to_float(
|
|
|
|
($SrcT:ty, $DstT:ty) => (
|
|
|
|
if size_of::<$SrcT>() <= size_of::<$DstT>() {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
let n = *self as f64;
|
|
|
|
let max_value: $SrcT = Bounded::max_value();
|
|
|
|
if -max_value as f64 <= n && n <= max_value as f64 {
|
|
|
|
Some(*self as $DstT)
|
|
|
|
} else {
|
|
|
|
None
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
macro_rules! impl_to_primitive_float(
|
|
|
|
($T:ty) => (
|
|
|
|
impl ToPrimitive for $T {
|
|
|
|
#[inline]
|
|
|
|
fn to_int(&self) -> Option<int> { Some(*self as int) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn to_uint(&self) -> Option<uint> { Some(*self as uint) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32) }
|
|
|
|
#[inline]
|
|
|
|
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64) }
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
impl_to_primitive_float!(f32)
|
|
|
|
impl_to_primitive_float!(f64)
|
|
|
|
|
|
|
|
/// A generic trait for converting a number to a value.
|
|
|
|
pub trait FromPrimitive {
|
|
|
|
/// Convert an `int` to return an optional value of this type. If the
|
|
|
|
/// value cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_int(n: int) -> Option<Self> {
|
|
|
|
FromPrimitive::from_i64(n as i64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `i8` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_i8(n: i8) -> Option<Self> {
|
|
|
|
FromPrimitive::from_i64(n as i64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `i16` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_i16(n: i16) -> Option<Self> {
|
|
|
|
FromPrimitive::from_i64(n as i64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `i32` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_i32(n: i32) -> Option<Self> {
|
|
|
|
FromPrimitive::from_i64(n as i64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `i64` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
fn from_i64(n: i64) -> Option<Self>;
|
|
|
|
|
|
|
|
/// Convert an `uint` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_uint(n: uint) -> Option<Self> {
|
|
|
|
FromPrimitive::from_u64(n as u64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `u8` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_u8(n: u8) -> Option<Self> {
|
|
|
|
FromPrimitive::from_u64(n as u64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `u16` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_u16(n: u16) -> Option<Self> {
|
|
|
|
FromPrimitive::from_u64(n as u64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `u32` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_u32(n: u32) -> Option<Self> {
|
|
|
|
FromPrimitive::from_u64(n as u64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert an `u64` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
fn from_u64(n: u64) -> Option<Self>;
|
|
|
|
|
|
|
|
/// Convert a `f32` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_f32(n: f32) -> Option<Self> {
|
|
|
|
FromPrimitive::from_f64(n as f64)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Convert a `f64` to return an optional value of this type. If the
|
|
|
|
/// type cannot be represented by this value, the `None` is returned.
|
|
|
|
#[inline]
|
|
|
|
fn from_f64(n: f64) -> Option<Self> {
|
|
|
|
FromPrimitive::from_i64(n as i64)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_int`.
|
|
|
|
pub fn from_int<A: FromPrimitive>(n: int) -> Option<A> {
|
|
|
|
FromPrimitive::from_int(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i8`.
|
|
|
|
pub fn from_i8<A: FromPrimitive>(n: i8) -> Option<A> {
|
|
|
|
FromPrimitive::from_i8(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i16`.
|
|
|
|
pub fn from_i16<A: FromPrimitive>(n: i16) -> Option<A> {
|
|
|
|
FromPrimitive::from_i16(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i32`.
|
|
|
|
pub fn from_i32<A: FromPrimitive>(n: i32) -> Option<A> {
|
|
|
|
FromPrimitive::from_i32(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_i64`.
|
|
|
|
pub fn from_i64<A: FromPrimitive>(n: i64) -> Option<A> {
|
|
|
|
FromPrimitive::from_i64(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_uint`.
|
|
|
|
pub fn from_uint<A: FromPrimitive>(n: uint) -> Option<A> {
|
|
|
|
FromPrimitive::from_uint(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u8`.
|
|
|
|
pub fn from_u8<A: FromPrimitive>(n: u8) -> Option<A> {
|
|
|
|
FromPrimitive::from_u8(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u16`.
|
|
|
|
pub fn from_u16<A: FromPrimitive>(n: u16) -> Option<A> {
|
|
|
|
FromPrimitive::from_u16(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u32`.
|
|
|
|
pub fn from_u32<A: FromPrimitive>(n: u32) -> Option<A> {
|
|
|
|
FromPrimitive::from_u32(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_u64`.
|
|
|
|
pub fn from_u64<A: FromPrimitive>(n: u64) -> Option<A> {
|
|
|
|
FromPrimitive::from_u64(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_f32`.
|
|
|
|
pub fn from_f32<A: FromPrimitive>(n: f32) -> Option<A> {
|
|
|
|
FromPrimitive::from_f32(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function that just calls `FromPrimitive::from_f64`.
|
|
|
|
pub fn from_f64<A: FromPrimitive>(n: f64) -> Option<A> {
|
|
|
|
FromPrimitive::from_f64(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! impl_from_primitive(
|
|
|
|
($T:ty, $to_ty:expr) => (
|
|
|
|
impl FromPrimitive for $T {
|
|
|
|
#[inline] fn from_int(n: int) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_i8(n: i8) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_i16(n: i16) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_i32(n: i32) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_i64(n: i64) -> Option<$T> { $to_ty }
|
|
|
|
|
|
|
|
#[inline] fn from_uint(n: uint) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_u8(n: u8) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_u16(n: u16) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_u32(n: u32) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_u64(n: u64) -> Option<$T> { $to_ty }
|
|
|
|
|
|
|
|
#[inline] fn from_f32(n: f32) -> Option<$T> { $to_ty }
|
|
|
|
#[inline] fn from_f64(n: f64) -> Option<$T> { $to_ty }
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
impl_from_primitive!(int, n.to_int())
|
|
|
|
impl_from_primitive!(i8, n.to_i8())
|
|
|
|
impl_from_primitive!(i16, n.to_i16())
|
|
|
|
impl_from_primitive!(i32, n.to_i32())
|
|
|
|
impl_from_primitive!(i64, n.to_i64())
|
|
|
|
impl_from_primitive!(uint, n.to_uint())
|
|
|
|
impl_from_primitive!(u8, n.to_u8())
|
|
|
|
impl_from_primitive!(u16, n.to_u16())
|
|
|
|
impl_from_primitive!(u32, n.to_u32())
|
|
|
|
impl_from_primitive!(u64, n.to_u64())
|
|
|
|
impl_from_primitive!(f32, n.to_f32())
|
|
|
|
impl_from_primitive!(f64, n.to_f64())
|
|
|
|
|
|
|
|
/// Cast from one machine scalar to another.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::num;
|
|
|
|
///
|
|
|
|
/// let twenty: f32 = num::cast(0x14).unwrap();
|
|
|
|
/// assert_eq!(twenty, 20f32);
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
#[inline]
|
|
|
|
pub fn cast<T: NumCast,U: NumCast>(n: T) -> Option<U> {
|
|
|
|
NumCast::from(n)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// An interface for casting between machine scalars.
|
|
|
|
pub trait NumCast: ToPrimitive {
|
|
|
|
/// Creates a number from another value that can be converted into a primitive via the
|
|
|
|
/// `ToPrimitive` trait.
|
|
|
|
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
|
|
|
|
}
|
|
|
|
|
|
|
|
macro_rules! impl_num_cast(
|
|
|
|
($T:ty, $conv:ident) => (
|
|
|
|
impl NumCast for $T {
|
|
|
|
#[inline]
|
|
|
|
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
|
|
|
|
// `$conv` could be generated using `concat_idents!`, but that
|
|
|
|
// macro seems to be broken at the moment
|
|
|
|
n.$conv()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
impl_num_cast!(u8, to_u8)
|
|
|
|
impl_num_cast!(u16, to_u16)
|
|
|
|
impl_num_cast!(u32, to_u32)
|
|
|
|
impl_num_cast!(u64, to_u64)
|
|
|
|
impl_num_cast!(uint, to_uint)
|
|
|
|
impl_num_cast!(i8, to_i8)
|
|
|
|
impl_num_cast!(i16, to_i16)
|
|
|
|
impl_num_cast!(i32, to_i32)
|
|
|
|
impl_num_cast!(i64, to_i64)
|
|
|
|
impl_num_cast!(int, to_int)
|
|
|
|
impl_num_cast!(f32, to_f32)
|
|
|
|
impl_num_cast!(f64, to_f64)
|
|
|
|
|
|
|
|
/// Saturating math operations
|
|
|
|
pub trait Saturating {
|
|
|
|
/// Saturating addition operator.
|
|
|
|
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
|
|
|
|
fn saturating_add(self, v: Self) -> Self;
|
|
|
|
|
|
|
|
/// Saturating subtraction operator.
|
|
|
|
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
|
|
|
|
fn saturating_sub(self, v: Self) -> Self;
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: CheckedAdd + CheckedSub + Zero + Ord + Bounded> Saturating for T {
|
|
|
|
#[inline]
|
|
|
|
fn saturating_add(self, v: T) -> T {
|
|
|
|
match self.checked_add(&v) {
|
|
|
|
Some(x) => x,
|
|
|
|
None => if v >= Zero::zero() {
|
|
|
|
Bounded::max_value()
|
|
|
|
} else {
|
|
|
|
Bounded::min_value()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn saturating_sub(self, v: T) -> T {
|
|
|
|
match self.checked_sub(&v) {
|
|
|
|
Some(x) => x,
|
|
|
|
None => if v >= Zero::zero() {
|
|
|
|
Bounded::min_value()
|
|
|
|
} else {
|
|
|
|
Bounded::max_value()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs addition that returns `None` instead of wrapping around on overflow.
|
|
|
|
pub trait CheckedAdd: Add<Self, Self> {
|
|
|
|
/// Adds two numbers, checking for overflow. If overflow happens, `None` is returned.
|
|
|
|
fn checked_add(&self, v: &Self) -> Option<Self>;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
|
|
|
|
pub trait CheckedSub: Sub<Self, Self> {
|
|
|
|
/// Subtracts two numbers, checking for underflow. If underflow happens, `None` is returned.
|
|
|
|
fn checked_sub(&self, v: &Self) -> Option<Self>;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
|
|
|
|
/// overflow.
|
|
|
|
pub trait CheckedMul: Mul<Self, Self> {
|
|
|
|
/// Multiplies two numbers, checking for underflow or overflow. If underflow or overflow
|
|
|
|
/// happens, `None` is returned.
|
|
|
|
fn checked_mul(&self, v: &Self) -> Option<Self>;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Performs division that returns `None` instead of wrapping around on underflow or overflow.
|
|
|
|
pub trait CheckedDiv: Div<Self, Self> {
|
|
|
|
/// Divides two numbers, checking for underflow or overflow. If underflow or overflow happens,
|
|
|
|
/// `None` is returned.
|
|
|
|
fn checked_div(&self, v: &Self) -> Option<Self>;
|
|
|
|
}
|
2014-05-01 18:06:59 -07:00
|
|
|
|
|
|
|
/// Helper function for testing numeric operations
|
|
|
|
#[cfg(test)]
|
|
|
|
pub fn test_num<T:Num + NumCast + ::std::fmt::Show>(ten: T, two: T) {
|
|
|
|
assert_eq!(ten.add(&two), cast(12).unwrap());
|
|
|
|
assert_eq!(ten.sub(&two), cast(8).unwrap());
|
|
|
|
assert_eq!(ten.mul(&two), cast(20).unwrap());
|
|
|
|
assert_eq!(ten.div(&two), cast(5).unwrap());
|
|
|
|
assert_eq!(ten.rem(&two), cast(0).unwrap());
|
|
|
|
|
|
|
|
assert_eq!(ten.add(&two), ten + two);
|
|
|
|
assert_eq!(ten.sub(&two), ten - two);
|
|
|
|
assert_eq!(ten.mul(&two), ten * two);
|
|
|
|
assert_eq!(ten.div(&two), ten / two);
|
|
|
|
assert_eq!(ten.rem(&two), ten % two);
|
|
|
|
}
|
2014-05-10 13:25:49 -07:00
|
|
|
|
|
|
|
/// Used for representing the classification of floating point numbers
|
|
|
|
#[deriving(Eq, Show)]
|
|
|
|
pub enum FPCategory {
|
|
|
|
/// "Not a Number", often obtained by dividing by zero
|
|
|
|
FPNaN,
|
|
|
|
/// Positive or negative infinity
|
|
|
|
FPInfinite ,
|
|
|
|
/// Positive or negative zero
|
|
|
|
FPZero,
|
|
|
|
/// De-normalized floating point representation (less precise than `FPNormal`)
|
|
|
|
FPSubnormal,
|
|
|
|
/// A regular floating point number
|
|
|
|
FPNormal,
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Operations on primitive floating point numbers.
|
|
|
|
// FIXME(#5527): In a future version of Rust, many of these functions will
|
|
|
|
// become constants.
|
|
|
|
//
|
|
|
|
// FIXME(#8888): Several of these functions have a parameter named
|
|
|
|
// `unused_self`. Removing it requires #8888 to be fixed.
|
|
|
|
pub trait Float: Signed + Primitive {
|
|
|
|
/// Returns the NaN value.
|
|
|
|
fn nan() -> Self;
|
|
|
|
/// Returns the infinite value.
|
|
|
|
fn infinity() -> Self;
|
|
|
|
/// Returns the negative infinite value.
|
|
|
|
fn neg_infinity() -> Self;
|
|
|
|
/// Returns -0.0.
|
|
|
|
fn neg_zero() -> Self;
|
|
|
|
|
|
|
|
/// Returns true if this value is NaN and false otherwise.
|
|
|
|
fn is_nan(self) -> bool;
|
|
|
|
/// Returns true if this value is positive infinity or negative infinity and
|
|
|
|
/// false otherwise.
|
|
|
|
fn is_infinite(self) -> bool;
|
|
|
|
/// Returns true if this number is neither infinite nor NaN.
|
|
|
|
fn is_finite(self) -> bool;
|
|
|
|
/// Returns true if this number is neither zero, infinite, denormal, or NaN.
|
|
|
|
fn is_normal(self) -> bool;
|
|
|
|
/// Returns the category that this number falls into.
|
|
|
|
fn classify(self) -> FPCategory;
|
|
|
|
|
|
|
|
// FIXME (#5527): These should be associated constants
|
|
|
|
|
|
|
|
/// Returns the number of binary digits of mantissa that this type supports.
|
|
|
|
fn mantissa_digits(unused_self: Option<Self>) -> uint;
|
|
|
|
/// Returns the number of base-10 digits of precision that this type supports.
|
|
|
|
fn digits(unused_self: Option<Self>) -> uint;
|
|
|
|
/// Returns the difference between 1.0 and the smallest representable number larger than 1.0.
|
|
|
|
fn epsilon() -> Self;
|
|
|
|
/// Returns the minimum binary exponent that this type can represent.
|
|
|
|
fn min_exp(unused_self: Option<Self>) -> int;
|
|
|
|
/// Returns the maximum binary exponent that this type can represent.
|
|
|
|
fn max_exp(unused_self: Option<Self>) -> int;
|
|
|
|
/// Returns the minimum base-10 exponent that this type can represent.
|
|
|
|
fn min_10_exp(unused_self: Option<Self>) -> int;
|
|
|
|
/// Returns the maximum base-10 exponent that this type can represent.
|
|
|
|
fn max_10_exp(unused_self: Option<Self>) -> int;
|
|
|
|
/// Returns the smallest normalized positive number that this type can represent.
|
|
|
|
fn min_pos_value(unused_self: Option<Self>) -> Self;
|
|
|
|
|
|
|
|
/// Returns the mantissa, exponent and sign as integers, respectively.
|
|
|
|
fn integer_decode(self) -> (u64, i16, i8);
|
|
|
|
|
|
|
|
/// Return the largest integer less than or equal to a number.
|
|
|
|
fn floor(self) -> Self;
|
|
|
|
/// Return the smallest integer greater than or equal to a number.
|
|
|
|
fn ceil(self) -> Self;
|
|
|
|
/// Return the nearest integer to a number. Round half-way cases away from
|
|
|
|
/// `0.0`.
|
|
|
|
fn round(self) -> Self;
|
|
|
|
/// Return the integer part of a number.
|
|
|
|
fn trunc(self) -> Self;
|
|
|
|
/// Return the fractional part of a number.
|
|
|
|
fn fract(self) -> Self;
|
|
|
|
|
|
|
|
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
|
|
|
|
/// error. This produces a more accurate result with better performance than
|
|
|
|
/// a separate multiplication operation followed by an add.
|
|
|
|
fn mul_add(self, a: Self, b: Self) -> Self;
|
|
|
|
/// Take the reciprocal (inverse) of a number, `1/x`.
|
|
|
|
fn recip(self) -> Self;
|
|
|
|
|
|
|
|
/// Raise a number to an integer power.
|
|
|
|
///
|
|
|
|
/// Using this function is generally faster than using `powf`
|
|
|
|
fn powi(self, n: i32) -> Self;
|
|
|
|
/// Raise a number to a floating point power.
|
|
|
|
fn powf(self, n: Self) -> Self;
|
|
|
|
|
|
|
|
/// sqrt(2.0).
|
|
|
|
fn sqrt2() -> Self;
|
|
|
|
/// 1.0 / sqrt(2.0).
|
|
|
|
fn frac_1_sqrt2() -> Self;
|
|
|
|
|
|
|
|
/// Take the square root of a number.
|
|
|
|
fn sqrt(self) -> Self;
|
|
|
|
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
|
|
|
fn rsqrt(self) -> Self;
|
|
|
|
|
|
|
|
// FIXME (#5527): These should be associated constants
|
|
|
|
|
|
|
|
/// Archimedes' constant.
|
|
|
|
fn pi() -> Self;
|
|
|
|
/// 2.0 * pi.
|
|
|
|
fn two_pi() -> Self;
|
|
|
|
/// pi / 2.0.
|
|
|
|
fn frac_pi_2() -> Self;
|
|
|
|
/// pi / 3.0.
|
|
|
|
fn frac_pi_3() -> Self;
|
|
|
|
/// pi / 4.0.
|
|
|
|
fn frac_pi_4() -> Self;
|
|
|
|
/// pi / 6.0.
|
|
|
|
fn frac_pi_6() -> Self;
|
|
|
|
/// pi / 8.0.
|
|
|
|
fn frac_pi_8() -> Self;
|
|
|
|
/// 1.0 / pi.
|
|
|
|
fn frac_1_pi() -> Self;
|
|
|
|
/// 2.0 / pi.
|
|
|
|
fn frac_2_pi() -> Self;
|
|
|
|
/// 2.0 / sqrt(pi).
|
|
|
|
fn frac_2_sqrtpi() -> Self;
|
|
|
|
|
|
|
|
/// Euler's number.
|
|
|
|
fn e() -> Self;
|
|
|
|
/// log2(e).
|
|
|
|
fn log2_e() -> Self;
|
|
|
|
/// log10(e).
|
|
|
|
fn log10_e() -> Self;
|
|
|
|
/// ln(2.0).
|
|
|
|
fn ln_2() -> Self;
|
|
|
|
/// ln(10.0).
|
|
|
|
fn ln_10() -> Self;
|
|
|
|
|
|
|
|
/// Returns `e^(self)`, (the exponential function).
|
|
|
|
fn exp(self) -> Self;
|
|
|
|
/// Returns 2 raised to the power of the number, `2^(self)`.
|
|
|
|
fn exp2(self) -> Self;
|
|
|
|
/// Returns the natural logarithm of the number.
|
|
|
|
fn ln(self) -> Self;
|
|
|
|
/// Returns the logarithm of the number with respect to an arbitrary base.
|
|
|
|
fn log(self, base: Self) -> Self;
|
|
|
|
/// Returns the base 2 logarithm of the number.
|
|
|
|
fn log2(self) -> Self;
|
|
|
|
/// Returns the base 10 logarithm of the number.
|
|
|
|
fn log10(self) -> Self;
|
|
|
|
|
|
|
|
/// Convert radians to degrees.
|
|
|
|
fn to_degrees(self) -> Self;
|
|
|
|
/// Convert degrees to radians.
|
|
|
|
fn to_radians(self) -> Self;
|
|
|
|
}
|