851 lines
23 KiB
Rust
Raw Normal View History

complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This is pretty much entirely stolen from TreeSet, since BTreeMap has an identical interface
// to TreeMap
use core::prelude::*;
use core::borrow::BorrowFrom;
2015-01-03 22:42:21 -05:00
use core::cmp::Ordering::{self, Less, Greater, Equal};
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
use core::default::Default;
use core::fmt::Show;
use core::fmt;
use core::hash::Hash;
use core::iter::{Peekable, Map, FromIterator};
use core::ops::{BitOr, BitAnd, BitXor, Sub};
use btree_map::{BTreeMap, Keys};
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
// FIXME(conventions): implement bounded iterators
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// A set based on a B-Tree.
2014-10-05 09:48:38 -04:00
///
/// See BTreeMap's documentation for a detailed discussion of this collection's performance
/// benefits and drawbacks.
#[derive(Clone, Hash, PartialEq, Eq, Ord, PartialOrd)]
2014-12-30 19:07:53 -05:00
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub struct BTreeSet<T>{
map: BTreeMap<T, ()>,
}
/// An iterator over a BTreeSet's items.
2014-12-30 19:07:53 -05:00
#[stable]
pub struct Iter<'a, T: 'a> {
iter: Keys<'a, T, ()>
}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// An owning iterator over a BTreeSet's items.
2014-12-30 19:07:53 -05:00
#[stable]
pub struct IntoIter<T> {
iter: Map<(T, ()), T, ::btree_map::IntoIter<T, ()>, fn((T, ())) -> T>
}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// A lazy iterator producing elements in the set difference (in-order).
2014-12-30 19:07:53 -05:00
#[stable]
pub struct Difference<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// A lazy iterator producing elements in the set symmetric difference (in-order).
2014-12-30 19:07:53 -05:00
#[stable]
pub struct SymmetricDifference<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// A lazy iterator producing elements in the set intersection (in-order).
2014-12-30 19:07:53 -05:00
#[stable]
pub struct Intersection<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// A lazy iterator producing elements in the set union (in-order).
2014-12-30 19:07:53 -05:00
#[stable]
pub struct Union<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
impl<T: Ord> BTreeSet<T> {
/// Makes a new BTreeSet with a reasonable choice of B.
2014-12-12 22:09:40 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set: BTreeSet<int> = BTreeSet::new();
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn new() -> BTreeSet<T> {
BTreeSet { map: BTreeMap::new() }
}
/// Makes a new BTreeSet with the given B.
2014-10-05 09:48:38 -04:00
///
/// B cannot be less than 2.
2014-12-30 19:07:53 -05:00
#[unstable = "probably want this to be on the type, eventually"]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn with_b(b: uint) -> BTreeSet<T> {
BTreeSet { map: BTreeMap::with_b(b) }
}
}
impl<T> BTreeSet<T> {
/// Gets an iterator over the BTreeSet's contents.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<uint> = [1u, 2, 3, 4].iter().map(|&x| x).collect();
///
/// for x in set.iter() {
/// println!("{}", x);
/// }
///
/// let v: Vec<uint> = set.iter().map(|&x| x).collect();
/// assert_eq!(v, vec![1u,2,3,4]);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn iter(&self) -> Iter<T> {
Iter { iter: self.map.keys() }
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Gets an iterator for moving out the BtreeSet's contents.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<uint> = [1u, 2, 3, 4].iter().map(|&x| x).collect();
///
/// let v: Vec<uint> = set.into_iter().collect();
/// assert_eq!(v, vec![1u,2,3,4]);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn into_iter(self) -> IntoIter<T> {
2014-12-02 14:07:40 -05:00
fn first<A, B>((a, _): (A, B)) -> A { a }
let first: fn((T, ())) -> T = first; // coerce to fn pointer
2014-12-02 14:07:40 -05:00
IntoIter { iter: self.map.into_iter().map(first) }
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
}
impl<T: Ord> BTreeSet<T> {
/// Visits the values representing the difference, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
/// a.insert(2u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
/// b.insert(3u);
///
/// let diff: Vec<uint> = a.difference(&b).cloned().collect();
/// assert_eq!(diff, vec![1u]);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn difference<'a>(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T> {
Difference{a: self.iter().peekable(), b: other.iter().peekable()}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Visits the values representing the symmetric difference, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
/// a.insert(2u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
/// b.insert(3u);
///
/// let sym_diff: Vec<uint> = a.symmetric_difference(&b).cloned().collect();
/// assert_eq!(sym_diff, vec![1u,3]);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn symmetric_difference<'a>(&'a self, other: &'a BTreeSet<T>)
-> SymmetricDifference<'a, T> {
SymmetricDifference{a: self.iter().peekable(), b: other.iter().peekable()}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Visits the values representing the intersection, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
/// a.insert(2u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
/// b.insert(3u);
///
/// let intersection: Vec<uint> = a.intersection(&b).cloned().collect();
/// assert_eq!(intersection, vec![2u]);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn intersection<'a>(&'a self, other: &'a BTreeSet<T>)
-> Intersection<'a, T> {
Intersection{a: self.iter().peekable(), b: other.iter().peekable()}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Visits the values representing the union, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
///
/// let union: Vec<uint> = a.union(&b).cloned().collect();
/// assert_eq!(union, vec![1u,2]);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn union<'a>(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T> {
Union{a: self.iter().peekable(), b: other.iter().peekable()}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Return the number of elements in the set
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// assert_eq!(v.len(), 0);
/// v.insert(1i);
/// assert_eq!(v.len(), 1);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn len(&self) -> uint { self.map.len() }
/// Returns true if the set contains no elements
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// assert!(v.is_empty());
/// v.insert(1i);
/// assert!(!v.is_empty());
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears the set, removing all values.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// v.insert(1i);
/// v.clear();
/// assert!(v.is_empty());
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn clear(&mut self) {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
self.map.clear()
}
/// Returns `true` if the set contains a value.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<int> = [1i, 2, 3].iter().map(|&x| x).collect();
/// assert_eq!(set.contains(&1), true);
/// assert_eq!(set.contains(&4), false);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-06 10:16:49 +13:00
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool where Q: BorrowFrom<T> + Ord {
self.map.contains_key(value)
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Returns `true` if the set has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = [1i, 2, 3].iter().map(|&x| x).collect();
/// let mut b: BTreeSet<int> = BTreeSet::new();
///
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(4);
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(1);
/// assert_eq!(a.is_disjoint(&b), false);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn is_disjoint(&self, other: &BTreeSet<T>) -> bool {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
self.intersection(other).next().is_none()
}
/// Returns `true` if the set is a subset of another.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let sup: BTreeSet<int> = [1i, 2, 3].iter().map(|&x| x).collect();
/// let mut set: BTreeSet<int> = BTreeSet::new();
///
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(2);
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(4);
/// assert_eq!(set.is_subset(&sup), false);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn is_subset(&self, other: &BTreeSet<T>) -> bool {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
// Stolen from TreeMap
let mut x = self.iter();
let mut y = other.iter();
let mut a = x.next();
let mut b = y.next();
while a.is_some() {
if b.is_none() {
return false;
}
let a1 = a.unwrap();
let b1 = b.unwrap();
match b1.cmp(a1) {
Less => (),
Greater => return false,
Equal => a = x.next(),
}
b = y.next();
}
true
}
/// Returns `true` if the set is a superset of another.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let sub: BTreeSet<int> = [1i, 2].iter().map(|&x| x).collect();
/// let mut set: BTreeSet<int> = BTreeSet::new();
///
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(0);
/// set.insert(1);
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(2);
/// assert_eq!(set.is_superset(&sub), true);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn is_superset(&self, other: &BTreeSet<T>) -> bool {
other.is_subset(self)
}
/// Adds a value to the set. Returns `true` if the value was not already
/// present in the set.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// assert_eq!(set.insert(2i), true);
/// assert_eq!(set.insert(2i), false);
/// assert_eq!(set.len(), 1);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
pub fn insert(&mut self, value: T) -> bool {
self.map.insert(value, ()).is_none()
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Removes a value from the set. Returns `true` if the value was
/// present in the set.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// set.insert(2i);
/// assert_eq!(set.remove(&2), true);
/// assert_eq!(set.remove(&2), false);
/// ```
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-06 10:16:49 +13:00
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where Q: BorrowFrom<T> + Ord {
self.map.remove(value).is_some()
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
}
2014-12-30 19:07:53 -05:00
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
impl<T: Ord> FromIterator<T> for BTreeSet<T> {
2015-01-01 23:15:35 -05:00
fn from_iter<Iter: Iterator<Item=T>>(iter: Iter) -> BTreeSet<T> {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
let mut set = BTreeSet::new();
set.extend(iter);
set
}
}
2014-12-30 19:07:53 -05:00
#[stable]
impl<T: Ord> Extend<T> for BTreeSet<T> {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
#[inline]
2015-01-01 23:15:35 -05:00
fn extend<Iter: Iterator<Item=T>>(&mut self, mut iter: Iter) {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
for elem in iter {
self.insert(elem);
}
}
}
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
impl<T: Ord> Default for BTreeSet<T> {
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
fn default() -> BTreeSet<T> {
BTreeSet::new()
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2014-12-31 15:45:13 -05:00
impl<'a, 'b, T: Ord + Clone> Sub<&'b BTreeSet<T>> for &'a BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the difference of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![3, 4, 5].into_iter().collect();
///
/// let result: BTreeSet<int> = &a - &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![1, 2]);
/// ```
fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.difference(rhs).cloned().collect()
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2014-12-31 15:45:13 -05:00
impl<'a, 'b, T: Ord + Clone> BitXor<&'b BTreeSet<T>> for &'a BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the symmetric difference of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![2, 3, 4].into_iter().collect();
///
/// let result: BTreeSet<int> = &a ^ &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![1, 4]);
/// ```
fn bitxor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.symmetric_difference(rhs).cloned().collect()
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2014-12-31 15:45:13 -05:00
impl<'a, 'b, T: Ord + Clone> BitAnd<&'b BTreeSet<T>> for &'a BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the intersection of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![2, 3, 4].into_iter().collect();
///
/// let result: BTreeSet<int> = &a & &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![2, 3]);
/// ```
fn bitand(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.intersection(rhs).cloned().collect()
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2014-12-31 15:45:13 -05:00
impl<'a, 'b, T: Ord + Clone> BitOr<&'b BTreeSet<T>> for &'a BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the union of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![3, 4, 5].into_iter().collect();
///
/// let result: BTreeSet<int> = &a | &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![1, 2, 3, 4, 5]);
/// ```
fn bitor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.union(rhs).cloned().collect()
}
}
2014-12-30 19:07:53 -05:00
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
impl<T: Show> Show for BTreeSet<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "BTreeSet {{"));
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
for (i, x) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{:?}", *x));
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
write!(f, "}}")
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<T> ExactSizeIterator for IntoIter<T> {}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// Compare `x` and `y`, but return `short` if x is None and `long` if y is None
fn cmp_opt<T: Ord>(x: Option<&T>, y: Option<&T>,
short: Ordering, long: Ordering) -> Ordering {
match (x, y) {
(None , _ ) => short,
(_ , None ) => long,
(Some(x1), Some(y1)) => x1.cmp(y1),
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T: Ord> Iterator for Difference<'a, T> {
type Item = &'a T;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
fn next(&mut self) -> Option<&'a T> {
loop {
match cmp_opt(self.a.peek(), self.b.peek(), Less, Less) {
Less => return self.a.next(),
Equal => { self.a.next(); self.b.next(); }
Greater => { self.b.next(); }
}
}
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T: Ord> Iterator for SymmetricDifference<'a, T> {
type Item = &'a T;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
fn next(&mut self) -> Option<&'a T> {
loop {
match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) {
Less => return self.a.next(),
Equal => { self.a.next(); self.b.next(); }
Greater => return self.b.next(),
}
}
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T: Ord> Iterator for Intersection<'a, T> {
type Item = &'a T;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
fn next(&mut self) -> Option<&'a T> {
loop {
let o_cmp = match (self.a.peek(), self.b.peek()) {
(None , _ ) => None,
(_ , None ) => None,
(Some(a1), Some(b1)) => Some(a1.cmp(b1)),
};
match o_cmp {
None => return None,
Some(Less) => { self.a.next(); }
Some(Equal) => { self.b.next(); return self.a.next() }
Some(Greater) => { self.b.next(); }
}
}
}
}
2014-12-30 19:07:53 -05:00
#[stable]
2015-01-01 23:15:35 -05:00
impl<'a, T: Ord> Iterator for Union<'a, T> {
type Item = &'a T;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
fn next(&mut self) -> Option<&'a T> {
loop {
match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) {
Less => return self.a.next(),
Equal => { self.b.next(); return self.a.next() }
Greater => return self.b.next(),
}
}
}
}
#[cfg(test)]
mod test {
use prelude::*;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
use super::BTreeSet;
use std::hash;
#[test]
fn test_clone_eq() {
let mut m = BTreeSet::new();
m.insert(1i);
m.insert(2);
assert!(m.clone() == m);
}
#[test]
fn test_hash() {
let mut x = BTreeSet::new();
let mut y = BTreeSet::new();
x.insert(1i);
x.insert(2);
x.insert(3);
y.insert(3i);
y.insert(2);
y.insert(1);
assert!(hash::hash(&x) == hash::hash(&y));
}
2014-12-03 21:05:25 -05:00
struct Counter<'a, 'b> {
i: &'a mut uint,
expected: &'b [int],
}
impl<'a, 'b, 'c> FnMut(&'c int) -> bool for Counter<'a, 'b> {
extern "rust-call" fn call_mut(&mut self, (&x,): (&'c int,)) -> bool {
2014-12-03 21:05:25 -05:00
assert_eq!(x, self.expected[*self.i]);
*self.i += 1;
true
}
}
fn check<F>(a: &[int], b: &[int], expected: &[int], f: F) where
// FIXME Replace Counter with `Box<FnMut(_) -> _>`
F: FnOnce(&BTreeSet<int>, &BTreeSet<int>, Counter) -> bool,
{
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
let mut set_a = BTreeSet::new();
let mut set_b = BTreeSet::new();
for x in a.iter() { assert!(set_a.insert(*x)) }
for y in b.iter() { assert!(set_b.insert(*y)) }
let mut i = 0;
2014-12-03 21:05:25 -05:00
f(&set_a, &set_b, Counter { i: &mut i, expected: expected });
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
assert_eq!(i, expected.len());
}
#[test]
fn test_intersection() {
fn check_intersection(a: &[int], b: &[int], expected: &[int]) {
check(a, b, expected, |x, y, f| x.intersection(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_intersection(&[], &[], &[]);
check_intersection(&[1, 2, 3], &[], &[]);
check_intersection(&[], &[1, 2, 3], &[]);
check_intersection(&[2], &[1, 2, 3], &[2]);
check_intersection(&[1, 2, 3], &[2], &[2]);
check_intersection(&[11, 1, 3, 77, 103, 5, -5],
&[2, 11, 77, -9, -42, 5, 3],
&[3, 5, 11, 77]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_difference() {
fn check_difference(a: &[int], b: &[int], expected: &[int]) {
check(a, b, expected, |x, y, f| x.difference(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_difference(&[], &[], &[]);
check_difference(&[1, 12], &[], &[1, 12]);
check_difference(&[], &[1, 2, 3, 9], &[]);
check_difference(&[1, 3, 5, 9, 11],
&[3, 9],
&[1, 5, 11]);
check_difference(&[-5, 11, 22, 33, 40, 42],
&[-12, -5, 14, 23, 34, 38, 39, 50],
&[11, 22, 33, 40, 42]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_symmetric_difference() {
fn check_symmetric_difference(a: &[int], b: &[int],
expected: &[int]) {
check(a, b, expected, |x, y, f| x.symmetric_difference(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_symmetric_difference(&[], &[], &[]);
check_symmetric_difference(&[1, 2, 3], &[2], &[1, 3]);
check_symmetric_difference(&[2], &[1, 2, 3], &[1, 3]);
check_symmetric_difference(&[1, 3, 5, 9, 11],
&[-2, 3, 9, 14, 22],
&[-2, 1, 5, 11, 14, 22]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_union() {
fn check_union(a: &[int], b: &[int],
expected: &[int]) {
check(a, b, expected, |x, y, f| x.union(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_union(&[], &[], &[]);
check_union(&[1, 2, 3], &[2], &[1, 2, 3]);
check_union(&[2], &[1, 2, 3], &[1, 2, 3]);
check_union(&[1, 3, 5, 9, 11, 16, 19, 24],
&[-2, 1, 5, 9, 13, 19],
&[-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_zip() {
let mut x = BTreeSet::new();
x.insert(5u);
x.insert(12u);
x.insert(11u);
let mut y = BTreeSet::new();
y.insert("foo");
y.insert("bar");
let x = x;
let y = y;
let mut z = x.iter().zip(y.iter());
// FIXME: #5801: this needs a type hint to compile...
let result: Option<(&uint, & &'static str)> = z.next();
assert_eq!(result.unwrap(), (&5u, &("bar")));
let result: Option<(&uint, & &'static str)> = z.next();
assert_eq!(result.unwrap(), (&11u, &("foo")));
let result: Option<(&uint, & &'static str)> = z.next();
assert!(result.is_none());
}
#[test]
fn test_from_iter() {
let xs = [1i, 2, 3, 4, 5, 6, 7, 8, 9];
let set: BTreeSet<int> = xs.iter().map(|&x| x).collect();
for x in xs.iter() {
assert!(set.contains(x));
}
}
#[test]
fn test_show() {
let mut set: BTreeSet<int> = BTreeSet::new();
let empty: BTreeSet<int> = BTreeSet::new();
set.insert(1);
set.insert(2);
let set_str = format!("{}", set);
assert!(set_str == "{1, 2}");
assert_eq!(format!("{}", empty), "{}");
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
}