806 lines
24 KiB
Rust
Raw Normal View History

complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This is pretty much entirely stolen from TreeSet, since BTreeMap has an identical interface
// to TreeMap
use core::prelude::*;
use btree_map::{BTreeMap, Keys, MoveEntries};
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
use std::hash::Hash;
use core::borrow::BorrowFrom;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
use core::default::Default;
use core::fmt;
use core::iter::{Peekable, Map};
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
use core::fmt::Show;
// FIXME(conventions): implement bounded iterators
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// A set based on a B-Tree.
2014-10-05 09:48:38 -04:00
///
/// See BTreeMap's documentation for a detailed discussion of this collection's performance
/// benefits and drawbacks.
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
#[deriving(Clone, Hash, PartialEq, Eq, Ord, PartialOrd)]
pub struct BTreeSet<T>{
map: BTreeMap<T, ()>,
}
/// An iterator over a BTreeSet's items.
pub struct Iter<'a, T: 'a> {
iter: Keys<'a, T, ()>
}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// An owning iterator over a BTreeSet's items.
pub struct IntoIter<T> {
iter: Map<(T, ()), T, MoveEntries<T, ()>, fn((T, ())) -> T>
}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// A lazy iterator producing elements in the set difference (in-order).
pub struct DifferenceItems<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// A lazy iterator producing elements in the set symmetric difference (in-order).
pub struct SymDifferenceItems<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// A lazy iterator producing elements in the set intersection (in-order).
pub struct IntersectionItems<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// A lazy iterator producing elements in the set union (in-order).
pub struct UnionItems<'a, T:'a> {
a: Peekable<&'a T, Iter<'a, T>>,
b: Peekable<&'a T, Iter<'a, T>>,
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
impl<T: Ord> BTreeSet<T> {
/// Makes a new BTreeSet with a reasonable choice of B.
2014-12-12 22:09:40 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set: BTreeSet<int> = BTreeSet::new();
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn new() -> BTreeSet<T> {
BTreeSet { map: BTreeMap::new() }
}
/// Makes a new BTreeSet with the given B.
2014-10-05 09:48:38 -04:00
///
/// B cannot be less than 2.
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn with_b(b: uint) -> BTreeSet<T> {
BTreeSet { map: BTreeMap::with_b(b) }
}
}
impl<T> BTreeSet<T> {
/// Gets an iterator over the BTreeSet's contents.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<uint> = [1u, 2, 3, 4].iter().map(|&x| x).collect();
///
/// for x in set.iter() {
/// println!("{}", x);
/// }
///
/// let v: Vec<uint> = set.iter().map(|&x| x).collect();
/// assert_eq!(v, vec![1u,2,3,4]);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn iter<'a>(&'a self) -> Iter<'a, T> {
Iter { iter: self.map.keys() }
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Gets an iterator for moving out the BtreeSet's contents.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<uint> = [1u, 2, 3, 4].iter().map(|&x| x).collect();
///
/// let v: Vec<uint> = set.into_iter().collect();
/// assert_eq!(v, vec![1u,2,3,4]);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn into_iter(self) -> IntoIter<T> {
2014-12-02 14:07:40 -05:00
fn first<A, B>((a, _): (A, B)) -> A { a }
IntoIter { iter: self.map.into_iter().map(first) }
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
}
impl<T: Ord> BTreeSet<T> {
/// Visits the values representing the difference, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
/// a.insert(2u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
/// b.insert(3u);
///
/// let diff: Vec<uint> = a.difference(&b).cloned().collect();
/// assert_eq!(diff, vec![1u]);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn difference<'a>(&'a self, other: &'a BTreeSet<T>) -> DifferenceItems<'a, T> {
DifferenceItems{a: self.iter().peekable(), b: other.iter().peekable()}
}
/// Visits the values representing the symmetric difference, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
/// a.insert(2u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
/// b.insert(3u);
///
/// let sym_diff: Vec<uint> = a.symmetric_difference(&b).cloned().collect();
/// assert_eq!(sym_diff, vec![1u,3]);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn symmetric_difference<'a>(&'a self, other: &'a BTreeSet<T>)
-> SymDifferenceItems<'a, T> {
SymDifferenceItems{a: self.iter().peekable(), b: other.iter().peekable()}
}
/// Visits the values representing the intersection, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
/// a.insert(2u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
/// b.insert(3u);
///
/// let intersection: Vec<uint> = a.intersection(&b).cloned().collect();
/// assert_eq!(intersection, vec![2u]);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn intersection<'a>(&'a self, other: &'a BTreeSet<T>)
-> IntersectionItems<'a, T> {
IntersectionItems{a: self.iter().peekable(), b: other.iter().peekable()}
}
/// Visits the values representing the union, in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1u);
///
/// let mut b = BTreeSet::new();
/// b.insert(2u);
///
/// let union: Vec<uint> = a.union(&b).cloned().collect();
/// assert_eq!(union, vec![1u,2]);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
pub fn union<'a>(&'a self, other: &'a BTreeSet<T>) -> UnionItems<'a, T> {
UnionItems{a: self.iter().peekable(), b: other.iter().peekable()}
}
/// Return the number of elements in the set
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// assert_eq!(v.len(), 0);
/// v.insert(1i);
/// assert_eq!(v.len(), 1);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn len(&self) -> uint { self.map.len() }
/// Returns true if the set contains no elements
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// assert!(v.is_empty());
/// v.insert(1i);
/// assert!(!v.is_empty());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears the set, removing all values.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// v.insert(1i);
/// v.clear();
/// assert!(v.is_empty());
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn clear(&mut self) {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
self.map.clear()
}
/// Returns `true` if the set contains a value.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<int> = [1i, 2, 3].iter().map(|&x| x).collect();
/// assert_eq!(set.contains(&1), true);
/// assert_eq!(set.contains(&4), false);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn contains<Sized? Q>(&self, value: &Q) -> bool where Q: BorrowFrom<T> + Ord {
self.map.contains_key(value)
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Returns `true` if the set has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = [1i, 2, 3].iter().map(|&x| x).collect();
/// let mut b: BTreeSet<int> = BTreeSet::new();
///
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(4);
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(1);
/// assert_eq!(a.is_disjoint(&b), false);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_disjoint(&self, other: &BTreeSet<T>) -> bool {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
self.intersection(other).next().is_none()
}
/// Returns `true` if the set is a subset of another.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let sup: BTreeSet<int> = [1i, 2, 3].iter().map(|&x| x).collect();
/// let mut set: BTreeSet<int> = BTreeSet::new();
///
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(2);
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(4);
/// assert_eq!(set.is_subset(&sup), false);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_subset(&self, other: &BTreeSet<T>) -> bool {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
// Stolen from TreeMap
let mut x = self.iter();
let mut y = other.iter();
let mut a = x.next();
let mut b = y.next();
while a.is_some() {
if b.is_none() {
return false;
}
let a1 = a.unwrap();
let b1 = b.unwrap();
match b1.cmp(a1) {
Less => (),
Greater => return false,
Equal => a = x.next(),
}
b = y.next();
}
true
}
/// Returns `true` if the set is a superset of another.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let sub: BTreeSet<int> = [1i, 2].iter().map(|&x| x).collect();
/// let mut set: BTreeSet<int> = BTreeSet::new();
///
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(0);
/// set.insert(1);
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(2);
/// assert_eq!(set.is_superset(&sub), true);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_superset(&self, other: &BTreeSet<T>) -> bool {
other.is_subset(self)
}
/// Adds a value to the set. Returns `true` if the value was not already
/// present in the set.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// assert_eq!(set.insert(2i), true);
/// assert_eq!(set.insert(2i), false);
/// assert_eq!(set.len(), 1);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn insert(&mut self, value: T) -> bool {
self.map.insert(value, ()).is_none()
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
/// Removes a value from the set. Returns `true` if the value was
/// present in the set.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// set.insert(2i);
/// assert_eq!(set.remove(&2), true);
/// assert_eq!(set.remove(&2), false);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn remove<Sized? Q>(&mut self, value: &Q) -> bool where Q: BorrowFrom<T> + Ord {
self.map.remove(value).is_some()
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
}
impl<T: Ord> FromIterator<T> for BTreeSet<T> {
fn from_iter<Iter: Iterator<T>>(iter: Iter) -> BTreeSet<T> {
let mut set = BTreeSet::new();
set.extend(iter);
set
}
}
impl<T: Ord> Extend<T> for BTreeSet<T> {
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
#[inline]
fn extend<Iter: Iterator<T>>(&mut self, mut iter: Iter) {
for elem in iter {
self.insert(elem);
}
}
}
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
impl<T: Ord> Default for BTreeSet<T> {
#[stable]
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
fn default() -> BTreeSet<T> {
BTreeSet::new()
}
}
#[unstable = "matches collection reform specification, waiting for dust to settle"]
impl<'a, 'b, T: Ord + Clone> Sub<&'b BTreeSet<T>, BTreeSet<T>> for &'a BTreeSet<T> {
/// Returns the difference of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![3, 4, 5].into_iter().collect();
///
/// let result: BTreeSet<int> = &a - &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![1, 2]);
/// ```
fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.difference(rhs).cloned().collect()
}
}
#[unstable = "matches collection reform specification, waiting for dust to settle"]
impl<'a, 'b, T: Ord + Clone> BitXor<&'b BTreeSet<T>, BTreeSet<T>> for &'a BTreeSet<T> {
/// Returns the symmetric difference of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![2, 3, 4].into_iter().collect();
///
/// let result: BTreeSet<int> = &a ^ &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![1, 4]);
/// ```
fn bitxor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.symmetric_difference(rhs).cloned().collect()
}
}
#[unstable = "matches collection reform specification, waiting for dust to settle"]
impl<'a, 'b, T: Ord + Clone> BitAnd<&'b BTreeSet<T>, BTreeSet<T>> for &'a BTreeSet<T> {
/// Returns the intersection of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![2, 3, 4].into_iter().collect();
///
/// let result: BTreeSet<int> = &a & &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![2, 3]);
/// ```
fn bitand(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.intersection(rhs).cloned().collect()
}
}
#[unstable = "matches collection reform specification, waiting for dust to settle"]
impl<'a, 'b, T: Ord + Clone> BitOr<&'b BTreeSet<T>, BTreeSet<T>> for &'a BTreeSet<T> {
/// Returns the union of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<int> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<int> = vec![3, 4, 5].into_iter().collect();
///
/// let result: BTreeSet<int> = &a | &b;
/// let result_vec: Vec<int> = result.into_iter().collect();
/// assert_eq!(result_vec, vec![1, 2, 3, 4, 5]);
/// ```
fn bitor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.union(rhs).cloned().collect()
}
}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
impl<T: Show> Show for BTreeSet<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "{{"));
for (i, x) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{}", *x));
}
write!(f, "}}")
}
}
impl<'a, T> Iterator<&'a T> for Iter<'a, T> {
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
impl<'a, T> DoubleEndedIterator<&'a T> for Iter<'a, T> {
fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
}
impl<'a, T> ExactSizeIterator<&'a T> for Iter<'a, T> {}
impl<T> Iterator<T> for IntoIter<T> {
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
}
impl<T> DoubleEndedIterator<T> for IntoIter<T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
impl<T> ExactSizeIterator<T> for IntoIter<T> {}
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
/// Compare `x` and `y`, but return `short` if x is None and `long` if y is None
fn cmp_opt<T: Ord>(x: Option<&T>, y: Option<&T>,
short: Ordering, long: Ordering) -> Ordering {
match (x, y) {
(None , _ ) => short,
(_ , None ) => long,
(Some(x1), Some(y1)) => x1.cmp(y1),
}
}
impl<'a, T: Ord> Iterator<&'a T> for DifferenceItems<'a, T> {
fn next(&mut self) -> Option<&'a T> {
loop {
match cmp_opt(self.a.peek(), self.b.peek(), Less, Less) {
Less => return self.a.next(),
Equal => { self.a.next(); self.b.next(); }
Greater => { self.b.next(); }
}
}
}
}
impl<'a, T: Ord> Iterator<&'a T> for SymDifferenceItems<'a, T> {
fn next(&mut self) -> Option<&'a T> {
loop {
match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) {
Less => return self.a.next(),
Equal => { self.a.next(); self.b.next(); }
Greater => return self.b.next(),
}
}
}
}
impl<'a, T: Ord> Iterator<&'a T> for IntersectionItems<'a, T> {
fn next(&mut self) -> Option<&'a T> {
loop {
let o_cmp = match (self.a.peek(), self.b.peek()) {
(None , _ ) => None,
(_ , None ) => None,
(Some(a1), Some(b1)) => Some(a1.cmp(b1)),
};
match o_cmp {
None => return None,
Some(Less) => { self.a.next(); }
Some(Equal) => { self.b.next(); return self.a.next() }
Some(Greater) => { self.b.next(); }
}
}
}
}
impl<'a, T: Ord> Iterator<&'a T> for UnionItems<'a, T> {
fn next(&mut self) -> Option<&'a T> {
loop {
match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) {
Less => return self.a.next(),
Equal => { self.b.next(); return self.a.next() }
Greater => return self.b.next(),
}
}
}
}
#[cfg(test)]
mod test {
use prelude::*;
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
use super::BTreeSet;
use std::hash;
#[test]
fn test_clone_eq() {
let mut m = BTreeSet::new();
m.insert(1i);
m.insert(2);
assert!(m.clone() == m);
}
#[test]
fn test_hash() {
let mut x = BTreeSet::new();
let mut y = BTreeSet::new();
x.insert(1i);
x.insert(2);
x.insert(3);
y.insert(3i);
y.insert(2);
y.insert(1);
assert!(hash::hash(&x) == hash::hash(&y));
}
2014-12-03 21:05:25 -05:00
struct Counter<'a, 'b> {
i: &'a mut uint,
expected: &'b [int],
}
impl<'a, 'b, 'c> FnMut(&'c int) -> bool for Counter<'a, 'b> {
extern "rust-call" fn call_mut(&mut self, (&x,): (&'c int,)) -> bool {
2014-12-03 21:05:25 -05:00
assert_eq!(x, self.expected[*self.i]);
*self.i += 1;
true
}
}
fn check<F>(a: &[int], b: &[int], expected: &[int], f: F) where
// FIXME Replace Counter with `Box<FnMut(_) -> _>`
F: FnOnce(&BTreeSet<int>, &BTreeSet<int>, Counter) -> bool,
{
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
let mut set_a = BTreeSet::new();
let mut set_b = BTreeSet::new();
for x in a.iter() { assert!(set_a.insert(*x)) }
for y in b.iter() { assert!(set_b.insert(*y)) }
let mut i = 0;
2014-12-03 21:05:25 -05:00
f(&set_a, &set_b, Counter { i: &mut i, expected: expected });
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
assert_eq!(i, expected.len());
}
#[test]
fn test_intersection() {
fn check_intersection(a: &[int], b: &[int], expected: &[int]) {
check(a, b, expected, |x, y, f| x.intersection(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_intersection(&[], &[], &[]);
check_intersection(&[1, 2, 3], &[], &[]);
check_intersection(&[], &[1, 2, 3], &[]);
check_intersection(&[2], &[1, 2, 3], &[2]);
check_intersection(&[1, 2, 3], &[2], &[2]);
check_intersection(&[11, 1, 3, 77, 103, 5, -5],
&[2, 11, 77, -9, -42, 5, 3],
&[3, 5, 11, 77]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_difference() {
fn check_difference(a: &[int], b: &[int], expected: &[int]) {
check(a, b, expected, |x, y, f| x.difference(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_difference(&[], &[], &[]);
check_difference(&[1, 12], &[], &[1, 12]);
check_difference(&[], &[1, 2, 3, 9], &[]);
check_difference(&[1, 3, 5, 9, 11],
&[3, 9],
&[1, 5, 11]);
check_difference(&[-5, 11, 22, 33, 40, 42],
&[-12, -5, 14, 23, 34, 38, 39, 50],
&[11, 22, 33, 40, 42]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_symmetric_difference() {
fn check_symmetric_difference(a: &[int], b: &[int],
expected: &[int]) {
check(a, b, expected, |x, y, f| x.symmetric_difference(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_symmetric_difference(&[], &[], &[]);
check_symmetric_difference(&[1, 2, 3], &[2], &[1, 3]);
check_symmetric_difference(&[2], &[1, 2, 3], &[1, 3]);
check_symmetric_difference(&[1, 3, 5, 9, 11],
&[-2, 3, 9, 14, 22],
&[-2, 1, 5, 11, 14, 22]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_union() {
fn check_union(a: &[int], b: &[int],
expected: &[int]) {
check(a, b, expected, |x, y, f| x.union(y).all(f))
}
2014-11-17 21:39:01 +13:00
check_union(&[], &[], &[]);
check_union(&[1, 2, 3], &[2], &[1, 2, 3]);
check_union(&[2], &[1, 2, 3], &[1, 2, 3]);
check_union(&[1, 3, 5, 9, 11, 16, 19, 24],
&[-2, 1, 5, 9, 13, 19],
&[-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]);
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
#[test]
fn test_zip() {
let mut x = BTreeSet::new();
x.insert(5u);
x.insert(12u);
x.insert(11u);
let mut y = BTreeSet::new();
y.insert("foo");
y.insert("bar");
let x = x;
let y = y;
let mut z = x.iter().zip(y.iter());
// FIXME: #5801: this needs a type hint to compile...
let result: Option<(&uint, & &'static str)> = z.next();
assert_eq!(result.unwrap(), (&5u, &("bar")));
let result: Option<(&uint, & &'static str)> = z.next();
assert_eq!(result.unwrap(), (&11u, &("foo")));
let result: Option<(&uint, & &'static str)> = z.next();
assert!(result.is_none());
}
#[test]
fn test_from_iter() {
let xs = [1i, 2, 3, 4, 5, 6, 7, 8, 9];
let set: BTreeSet<int> = xs.iter().map(|&x| x).collect();
for x in xs.iter() {
assert!(set.contains(x));
}
}
#[test]
fn test_show() {
let mut set: BTreeSet<int> = BTreeSet::new();
let empty: BTreeSet<int> = BTreeSet::new();
set.insert(1);
set.insert(2);
let set_str = format!("{}", set);
assert!(set_str == "{1, 2}");
assert_eq!(format!("{}", empty), "{}");
complete btree rewrite Replaces BTree with BTreeMap and BTreeSet, which are completely new implementations. BTreeMap's internal Node representation is particularly inefficient at the moment to make this first implementation easy to reason about and fairly safe. Both collections are also currently missing some of the tooling specific to sorted collections, which is planned as future work pending reform of these APIs. General implementation issues are discussed with TODOs internally Perf results on x86_64 Linux: test treemap::bench::find_rand_100 ... bench: 76 ns/iter (+/- 4) test treemap::bench::find_rand_10_000 ... bench: 163 ns/iter (+/- 6) test treemap::bench::find_seq_100 ... bench: 77 ns/iter (+/- 3) test treemap::bench::find_seq_10_000 ... bench: 115 ns/iter (+/- 1) test treemap::bench::insert_rand_100 ... bench: 111 ns/iter (+/- 1) test treemap::bench::insert_rand_10_000 ... bench: 996 ns/iter (+/- 18) test treemap::bench::insert_seq_100 ... bench: 486 ns/iter (+/- 20) test treemap::bench::insert_seq_10_000 ... bench: 800 ns/iter (+/- 15) test btree::map::bench::find_rand_100 ... bench: 74 ns/iter (+/- 4) test btree::map::bench::find_rand_10_000 ... bench: 153 ns/iter (+/- 5) test btree::map::bench::find_seq_100 ... bench: 82 ns/iter (+/- 1) test btree::map::bench::find_seq_10_000 ... bench: 108 ns/iter (+/- 0) test btree::map::bench::insert_rand_100 ... bench: 220 ns/iter (+/- 1) test btree::map::bench::insert_rand_10_000 ... bench: 620 ns/iter (+/- 16) test btree::map::bench::insert_seq_100 ... bench: 411 ns/iter (+/- 12) test btree::map::bench::insert_seq_10_000 ... bench: 534 ns/iter (+/- 14) BTreeMap still has a lot of room for optimization, but it's already beating out TreeMap on most access patterns. [breaking-change]
2014-09-16 10:49:26 -04:00
}
}