rust/src/libstd/rand/mod.rs
Huon Wilson fb923c7d3f std: merge rand::{Rng,RngUtil} with default methods.
Also, documentation & general clean-up:
- remove `gen_char_from`: better served by `sample` or `choose`.
- `gen_bytes` generalised to `gen_vec`.
- `gen_int_range`/`gen_uint_range` merged into `gen_integer_range` and
  made to be properly uniformly distributed. Fixes #8644.

Minor adjustments to other functions.
2013-09-23 00:11:42 +10:00

1148 lines
30 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Random number generation.
The key functions are `random()` and `Rng::gen()`. These are polymorphic
and so can be used to generate any type that implements `Rand`. Type inference
means that often a simple call to `rand::random()` or `rng.gen()` will
suffice, but sometimes an annotation is required, e.g. `rand::random::<float>()`.
See the `distributions` submodule for sampling random numbers from
distributions like normal and exponential.
# Examples
~~~ {.rust}
use std::rand;
use std::rand::Rng;
fn main() {
let mut rng = rand::rng();
if rng.gen() { // bool
printfln!("int: %d, uint: %u", rng.gen(), rng.gen())
}
}
~~~
~~~ {.rust}
use std::rand;
fn main () {
let tuple_ptr = rand::random::<~(f64, char)>();
printfln!(tuple_ptr)
}
~~~
*/
use cast;
use cmp;
use container::Container;
use int;
use iter::{Iterator, range, range_step};
use local_data;
use prelude::*;
use str;
use sys;
use u32;
use u64;
use uint;
use vec;
use libc::size_t;
pub mod distributions;
/// A type that can be randomly generated using an Rng
pub trait Rand {
/// Generates a random instance of this type using the specified source of
/// randomness
fn rand<R: Rng>(rng: &mut R) -> Self;
}
impl Rand for int {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> int {
if int::bits == 32 {
rng.next() as int
} else {
rng.gen::<i64>() as int
}
}
}
impl Rand for i8 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i8 {
rng.next() as i8
}
}
impl Rand for i16 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i16 {
rng.next() as i16
}
}
impl Rand for i32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i32 {
rng.next() as i32
}
}
impl Rand for i64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i64 {
(rng.next() as i64 << 32) | rng.next() as i64
}
}
impl Rand for uint {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> uint {
if uint::bits == 32 {
rng.next() as uint
} else {
rng.gen::<u64>() as uint
}
}
}
impl Rand for u8 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u8 {
rng.next() as u8
}
}
impl Rand for u16 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u16 {
rng.next() as u16
}
}
impl Rand for u32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u32 {
rng.next()
}
}
impl Rand for u64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u64 {
(rng.next() as u64 << 32) | rng.next() as u64
}
}
impl Rand for float {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> float {
rng.gen::<f64>() as float
}
}
impl Rand for f32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> f32 {
rng.gen::<f64>() as f32
}
}
static SCALE : f64 = (u32::max_value as f64) + 1.0f64;
impl Rand for f64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> f64 {
let u1 = rng.next() as f64;
let u2 = rng.next() as f64;
let u3 = rng.next() as f64;
((u1 / SCALE + u2) / SCALE + u3) / SCALE
}
}
impl Rand for bool {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> bool {
rng.next() & 1u32 == 1u32
}
}
macro_rules! tuple_impl {
// use variables to indicate the arity of the tuple
($($tyvar:ident),* ) => {
// the trailing commas are for the 1 tuple
impl<
$( $tyvar : Rand ),*
> Rand for ( $( $tyvar ),* , ) {
#[inline]
fn rand<R: Rng>(_rng: &mut R) -> ( $( $tyvar ),* , ) {
(
// use the $tyvar's to get the appropriate number of
// repeats (they're not actually needed)
$(
_rng.gen::<$tyvar>()
),*
,
)
}
}
}
}
impl Rand for () {
#[inline]
fn rand<R: Rng>(_: &mut R) -> () { () }
}
tuple_impl!{A}
tuple_impl!{A, B}
tuple_impl!{A, B, C}
tuple_impl!{A, B, C, D}
tuple_impl!{A, B, C, D, E}
tuple_impl!{A, B, C, D, E, F}
tuple_impl!{A, B, C, D, E, F, G}
tuple_impl!{A, B, C, D, E, F, G, H}
tuple_impl!{A, B, C, D, E, F, G, H, I}
tuple_impl!{A, B, C, D, E, F, G, H, I, J}
impl<T:Rand> Rand for Option<T> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Option<T> {
if rng.gen() {
Some(rng.gen())
} else {
None
}
}
}
impl<T: Rand> Rand for ~T {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> ~T { ~rng.gen() }
}
impl<T: Rand + 'static> Rand for @T {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> @T { @rng.gen() }
}
#[abi = "cdecl"]
pub mod rustrt {
use libc::size_t;
extern {
pub fn rand_seed_size() -> size_t;
pub fn rand_gen_seed(buf: *mut u8, sz: size_t);
}
}
/// A value with a particular weight compared to other values
pub struct Weighted<T> {
/// The numerical weight of this item
weight: uint,
/// The actual item which is being weighted
item: T,
}
/// A random number generator
pub trait Rng {
/// Return the next random integer
fn next(&mut self) -> u32;
/// Return a random value of a Rand type.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// let rng = rand::task_rng();
/// let x: uint = rng.gen();
/// printfln!(x);
/// printfln!(rng.gen::<(float, bool)>());
/// }
/// ~~~
#[inline(always)]
fn gen<T: Rand>(&mut self) -> T {
Rand::rand(self)
}
/// Return a random vector of the specified length.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// let rng = rand::task_rng();
/// let x: ~[uint] = rng.gen_vec(10);
/// printfln!(x);
/// printfln!(rng.gen_vec::<(float, bool)>(5));
/// }
/// ~~~
fn gen_vec<T: Rand>(&mut self, len: uint) -> ~[T] {
vec::from_fn(len, |_| self.gen())
}
/// Generate a random primitive integer in the range [`low`,
/// `high`). Fails if `low >= high`.
///
/// This gives a uniform distribution (assuming this RNG is itself
/// uniform), even for edge cases like `gen_integer_range(0u8,
/// 170)`, which a naive modulo operation would return numbers
/// less than 85 with double the probability to those greater than
/// 85.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// let rng = rand::task_rng();
/// let n: uint = rng.gen_integer_range(0u, 10);
/// printfln!(n);
/// let m: i16 = rng.gen_integer_range(-40, 400);
/// printfln!(m);
/// }
/// ~~~
fn gen_integer_range<T: Rand + Int>(&mut self, low: T, high: T) -> T {
assert!(low < high, "RNG.gen_integer_range called with low >= high");
let range = (high - low).to_u64();
let accept_zone = u64::max_value - u64::max_value % range;
loop {
let rand = self.gen::<u64>();
if rand < accept_zone {
return low + NumCast::from(rand % range);
}
}
}
/// Return a bool with a 1 in n chance of true
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
/// use std::rand::Rng;
///
/// fn main() {
/// let mut rng = rand::rng();
/// printfln!("%b", rng.gen_weighted_bool(3));
/// }
/// ~~~
fn gen_weighted_bool(&mut self, n: uint) -> bool {
n == 0 || self.gen_integer_range(0, n) == 0
}
/// Return a random string of the specified length composed of
/// A-Z,a-z,0-9.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// println(rand::task_rng().gen_ascii_str(10));
/// }
/// ~~~
fn gen_ascii_str(&mut self, len: uint) -> ~str {
static GEN_ASCII_STR_CHARSET: &'static [u8] = bytes!("ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789");
let mut s = str::with_capacity(len);
for _ in range(0, len) {
s.push_char(self.choose(GEN_ASCII_STR_CHARSET) as char)
}
s
}
/// Choose an item randomly, failing if `values` is empty.
fn choose<T: Clone>(&mut self, values: &[T]) -> T {
self.choose_option(values).expect("Rng.choose: `values` is empty").clone()
}
/// Choose `Some(&item)` randomly, returning `None` if values is
/// empty.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// printfln!(rand::task_rng().choose_option([1,2,4,8,16,32]));
/// printfln!(rand::task_rng().choose_option([]));
/// }
/// ~~~
fn choose_option<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
if values.is_empty() {
None
} else {
Some(&values[self.gen_integer_range(0u, values.len())])
}
}
/// Choose an item respecting the relative weights, failing if the sum of
/// the weights is 0
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
/// use std::rand::Rng;
///
/// fn main() {
/// let mut rng = rand::rng();
/// let x = [rand::Weighted {weight: 4, item: 'a'},
/// rand::Weighted {weight: 2, item: 'b'},
/// rand::Weighted {weight: 2, item: 'c'}];
/// printfln!("%c", rng.choose_weighted(x));
/// }
/// ~~~
fn choose_weighted<T:Clone>(&mut self, v: &[Weighted<T>]) -> T {
self.choose_weighted_option(v).expect("Rng.choose_weighted: total weight is 0")
}
/// Choose Some(item) respecting the relative weights, returning none if
/// the sum of the weights is 0
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
/// use std::rand::Rng;
///
/// fn main() {
/// let mut rng = rand::rng();
/// let x = [rand::Weighted {weight: 4, item: 'a'},
/// rand::Weighted {weight: 2, item: 'b'},
/// rand::Weighted {weight: 2, item: 'c'}];
/// printfln!(rng.choose_weighted_option(x));
/// }
/// ~~~
fn choose_weighted_option<T:Clone>(&mut self, v: &[Weighted<T>])
-> Option<T> {
let mut total = 0u;
for item in v.iter() {
total += item.weight;
}
if total == 0u {
return None;
}
let chosen = self.gen_integer_range(0u, total);
let mut so_far = 0u;
for item in v.iter() {
so_far += item.weight;
if so_far > chosen {
return Some(item.item.clone());
}
}
unreachable!();
}
/// Return a vec containing copies of the items, in order, where
/// the weight of the item determines how many copies there are
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
/// use std::rand::Rng;
///
/// fn main() {
/// let mut rng = rand::rng();
/// let x = [rand::Weighted {weight: 4, item: 'a'},
/// rand::Weighted {weight: 2, item: 'b'},
/// rand::Weighted {weight: 2, item: 'c'}];
/// printfln!(rng.weighted_vec(x));
/// }
/// ~~~
fn weighted_vec<T:Clone>(&mut self, v: &[Weighted<T>]) -> ~[T] {
let mut r = ~[];
for item in v.iter() {
for _ in range(0u, item.weight) {
r.push(item.item.clone());
}
}
r
}
/// Shuffle a vec
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// printfln!(rand::task_rng().shuffle(~[1,2,3]));
/// }
/// ~~~
fn shuffle<T>(&mut self, values: ~[T]) -> ~[T] {
let mut v = values;
self.shuffle_mut(v);
v
}
/// Shuffle a mutable vector in place.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// let rng = rand::task_rng();
/// let mut y = [1,2,3];
/// rng.shuffle_mut(y);
/// printfln!(y);
/// rng.shuffle_mut(y);
/// printfln!(y);
/// }
/// ~~~
fn shuffle_mut<T>(&mut self, values: &mut [T]) {
let mut i = values.len();
while i >= 2u {
// invariant: elements with index >= i have been locked in place.
i -= 1u;
// lock element i in place.
values.swap(i, self.gen_integer_range(0u, i + 1u));
}
}
/// Randomly sample up to `n` elements from an iterator.
///
/// # Example
///
/// ~~~ {.rust}
/// use std::rand;
///
/// fn main() {
/// let rng = rand::task_rng();
/// let sample = rng.sample(range(1, 100), 5);
/// printfln!(sample);
/// }
/// ~~~
fn sample<A, T: Iterator<A>>(&mut self, iter: T, n: uint) -> ~[A] {
let mut reservoir : ~[A] = vec::with_capacity(n);
for (i, elem) in iter.enumerate() {
if i < n {
reservoir.push(elem);
loop
}
let k = self.gen_integer_range(0, i + 1);
if k < reservoir.len() {
reservoir[k] = elem
}
}
reservoir
}
}
/// Create a random number generator with a default algorithm and seed.
///
/// It returns the cryptographically-safest `Rng` algorithm currently
/// available in Rust. If you require a specifically seeded `Rng` for
/// consistency over time you should pick one algorithm and create the
/// `Rng` yourself.
pub fn rng() -> IsaacRng {
IsaacRng::new()
}
/// Create a weak random number generator with a default algorithm and seed.
///
/// It returns the fastest `Rng` algorithm currently available in Rust without
/// consideration for cryptography or security. If you require a specifically
/// seeded `Rng` for consistency over time you should pick one algorithm and
/// create the `Rng` yourself.
pub fn weak_rng() -> XorShiftRng {
XorShiftRng::new()
}
static RAND_SIZE_LEN: u32 = 8;
static RAND_SIZE: u32 = 1 << RAND_SIZE_LEN;
/// A random number generator that uses the [ISAAC
/// algorithm](http://en.wikipedia.org/wiki/ISAAC_%28cipher%29).
///
/// The ISAAC algorithm is suitable for cryptographic purposes.
pub struct IsaacRng {
priv cnt: u32,
priv rsl: [u32, .. RAND_SIZE],
priv mem: [u32, .. RAND_SIZE],
priv a: u32,
priv b: u32,
priv c: u32
}
impl IsaacRng {
/// Create an ISAAC random number generator with a random seed.
pub fn new() -> IsaacRng {
IsaacRng::new_seeded(seed())
}
/// Create an ISAAC random number generator with a seed. This can be any
/// length, although the maximum number of bytes used is 1024 and any more
/// will be silently ignored. A generator constructed with a given seed
/// will generate the same sequence of values as all other generators
/// constructed with the same seed.
pub fn new_seeded(seed: &[u8]) -> IsaacRng {
let mut rng = IsaacRng {
cnt: 0,
rsl: [0, .. RAND_SIZE],
mem: [0, .. RAND_SIZE],
a: 0, b: 0, c: 0
};
let array_size = sys::size_of_val(&rng.rsl);
let copy_length = cmp::min(array_size, seed.len());
// manually create a &mut [u8] slice of randrsl to copy into.
let dest = unsafe { cast::transmute((&mut rng.rsl, array_size)) };
vec::bytes::copy_memory(dest, seed, copy_length);
rng.init(true);
rng
}
/// Create an ISAAC random number generator using the default
/// fixed seed.
pub fn new_unseeded() -> IsaacRng {
let mut rng = IsaacRng {
cnt: 0,
rsl: [0, .. RAND_SIZE],
mem: [0, .. RAND_SIZE],
a: 0, b: 0, c: 0
};
rng.init(false);
rng
}
/// Initialises `self`. If `use_rsl` is true, then use the current value
/// of `rsl` as a seed, otherwise construct one algorithmically (not
/// randomly).
fn init(&mut self, use_rsl: bool) {
let mut a = 0x9e3779b9;
let mut b = a;
let mut c = a;
let mut d = a;
let mut e = a;
let mut f = a;
let mut g = a;
let mut h = a;
macro_rules! mix(
() => {{
a^=b<<11; d+=a; b+=c;
b^=c>>2; e+=b; c+=d;
c^=d<<8; f+=c; d+=e;
d^=e>>16; g+=d; e+=f;
e^=f<<10; h+=e; f+=g;
f^=g>>4; a+=f; g+=h;
g^=h<<8; b+=g; h+=a;
h^=a>>9; c+=h; a+=b;
}}
);
do 4.times { mix!(); }
if use_rsl {
macro_rules! memloop (
($arr:expr) => {{
for i in range_step(0u32, RAND_SIZE, 8) {
a+=$arr[i ]; b+=$arr[i+1];
c+=$arr[i+2]; d+=$arr[i+3];
e+=$arr[i+4]; f+=$arr[i+5];
g+=$arr[i+6]; h+=$arr[i+7];
mix!();
self.mem[i ]=a; self.mem[i+1]=b;
self.mem[i+2]=c; self.mem[i+3]=d;
self.mem[i+4]=e; self.mem[i+5]=f;
self.mem[i+6]=g; self.mem[i+7]=h;
}
}}
);
memloop!(self.rsl);
memloop!(self.mem);
} else {
for i in range_step(0u32, RAND_SIZE, 8) {
mix!();
self.mem[i ]=a; self.mem[i+1]=b;
self.mem[i+2]=c; self.mem[i+3]=d;
self.mem[i+4]=e; self.mem[i+5]=f;
self.mem[i+6]=g; self.mem[i+7]=h;
}
}
self.isaac();
}
/// Refills the output buffer (`self.rsl`)
#[inline]
fn isaac(&mut self) {
self.c += 1;
// abbreviations
let mut a = self.a;
let mut b = self.b + self.c;
static MIDPOINT: uint = RAND_SIZE as uint / 2;
macro_rules! ind (($x:expr) => {
self.mem[($x >> 2) & (RAND_SIZE - 1)]
});
macro_rules! rngstep(
($j:expr, $shift:expr) => {{
let base = $j;
let mix = if $shift < 0 {
a >> -$shift as uint
} else {
a << $shift as uint
};
let x = self.mem[base + mr_offset];
a = (a ^ mix) + self.mem[base + m2_offset];
let y = ind!(x) + a + b;
self.mem[base + mr_offset] = y;
b = ind!(y >> RAND_SIZE_LEN) + x;
self.rsl[base + mr_offset] = b;
}}
);
let r = [(0, MIDPOINT), (MIDPOINT, 0)];
for &(mr_offset, m2_offset) in r.iter() {
for i in range_step(0u, MIDPOINT, 4) {
rngstep!(i + 0, 13);
rngstep!(i + 1, -6);
rngstep!(i + 2, 2);
rngstep!(i + 3, -16);
}
}
self.a = a;
self.b = b;
self.cnt = RAND_SIZE;
}
}
impl Rng for IsaacRng {
#[inline]
fn next(&mut self) -> u32 {
if self.cnt == 0 {
// make some more numbers
self.isaac();
}
self.cnt -= 1;
self.rsl[self.cnt]
}
}
/// An [Xorshift random number
/// generator](http://en.wikipedia.org/wiki/Xorshift).
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng`.
pub struct XorShiftRng {
priv x: u32,
priv y: u32,
priv z: u32,
priv w: u32,
}
impl Rng for XorShiftRng {
#[inline]
fn next(&mut self) -> u32 {
let x = self.x;
let t = x ^ (x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
let w = self.w;
self.w = w ^ (w >> 19) ^ (t ^ (t >> 8));
self.w
}
}
impl XorShiftRng {
/// Create an xor shift random number generator with a random seed.
pub fn new() -> XorShiftRng {
#[fixed_stack_segment]; #[inline(never)];
// generate seeds the same way as seed(), except we have a spceific size
let mut s = [0u8, ..16];
loop {
do s.as_mut_buf |p, sz| {
unsafe {
rustrt::rand_gen_seed(p, sz as size_t);
}
}
if !s.iter().all(|x| *x == 0) {
break;
}
}
let s: &[u32, ..4] = unsafe { cast::transmute(&s) };
XorShiftRng::new_seeded(s[0], s[1], s[2], s[3])
}
/**
* Create a random number generator using the specified seed. A generator
* constructed with a given seed will generate the same sequence of values
* as all other generators constructed with the same seed.
*/
pub fn new_seeded(x: u32, y: u32, z: u32, w: u32) -> XorShiftRng {
XorShiftRng {
x: x,
y: y,
z: z,
w: w,
}
}
}
/// Create a new random seed.
pub fn seed() -> ~[u8] {
#[fixed_stack_segment]; #[inline(never)];
unsafe {
let n = rustrt::rand_seed_size() as uint;
let mut s = vec::from_elem(n, 0_u8);
do s.as_mut_buf |p, sz| {
rustrt::rand_gen_seed(p, sz as size_t)
}
s
}
}
// used to make space in TLS for a random number generator
local_data_key!(tls_rng_state: @@mut IsaacRng)
/**
* Gives back a lazily initialized task-local random number generator,
* seeded by the system. Intended to be used in method chaining style, ie
* `task_rng().gen::<int>()`.
*/
#[inline]
pub fn task_rng() -> @mut IsaacRng {
let r = local_data::get(tls_rng_state, |k| k.map(|&k| *k));
match r {
None => {
let rng = @@mut IsaacRng::new_seeded(seed());
local_data::set(tls_rng_state, rng);
*rng
}
Some(rng) => *rng
}
}
// Allow direct chaining with `task_rng`
impl<R: Rng> Rng for @mut R {
#[inline]
fn next(&mut self) -> u32 {
(**self).next()
}
}
/**
* Returns a random value of a Rand type, using the task's random number
* generator.
*/
#[inline]
pub fn random<T: Rand>() -> T {
task_rng().gen()
}
#[cfg(test)]
mod test {
use iter::{Iterator, range};
use option::{Option, Some};
use super::*;
#[test]
fn test_rng_seeded() {
let seed = seed();
let mut ra = IsaacRng::new_seeded(seed);
let mut rb = IsaacRng::new_seeded(seed);
assert_eq!(ra.gen_ascii_str(100u), rb.gen_ascii_str(100u));
}
#[test]
fn test_rng_seeded_custom_seed() {
// much shorter than generated seeds which are 1024 bytes
let seed = [2u8, 32u8, 4u8, 32u8, 51u8];
let mut ra = IsaacRng::new_seeded(seed);
let mut rb = IsaacRng::new_seeded(seed);
assert_eq!(ra.gen_ascii_str(100u), rb.gen_ascii_str(100u));
}
#[test]
fn test_rng_seeded_custom_seed2() {
let seed = [2u8, 32u8, 4u8, 32u8, 51u8];
let mut ra = IsaacRng::new_seeded(seed);
// Regression test that isaac is actually using the above vector
let r = ra.next();
error!("%?", r);
assert!(r == 890007737u32 // on x86_64
|| r == 2935188040u32); // on x86
}
#[test]
fn test_gen_integer_range() {
let mut r = rng();
for _ in range(0, 1000) {
let a = r.gen_integer_range(-3i, 42);
assert!(a >= -3 && a < 42);
assert_eq!(r.gen_integer_range(0, 1), 0);
assert_eq!(r.gen_integer_range(-12, -11), -12);
}
for _ in range(0, 1000) {
let a = r.gen_integer_range(10, 42);
assert!(a >= 10 && a < 42);
assert_eq!(r.gen_integer_range(0, 1), 0);
assert_eq!(r.gen_integer_range(3_000_000u, 3_000_001), 3_000_000);
}
}
#[test]
#[should_fail]
fn test_gen_integer_range_fail_int() {
let mut r = rng();
r.gen_integer_range(5i, -2);
}
#[test]
#[should_fail]
fn test_gen_integer_range_fail_uint() {
let mut r = rng();
r.gen_integer_range(5u, 2u);
}
#[test]
fn test_gen_float() {
let mut r = rng();
let a = r.gen::<float>();
let b = r.gen::<float>();
debug!((a, b));
}
#[test]
fn test_gen_weighted_bool() {
let mut r = rng();
assert_eq!(r.gen_weighted_bool(0u), true);
assert_eq!(r.gen_weighted_bool(1u), true);
}
#[test]
fn test_gen_ascii_str() {
let mut r = rng();
debug!(r.gen_ascii_str(10u));
debug!(r.gen_ascii_str(10u));
debug!(r.gen_ascii_str(10u));
assert_eq!(r.gen_ascii_str(0u).len(), 0u);
assert_eq!(r.gen_ascii_str(10u).len(), 10u);
assert_eq!(r.gen_ascii_str(16u).len(), 16u);
}
#[test]
fn test_gen_vec() {
let mut r = rng();
assert_eq!(r.gen_vec::<u8>(0u).len(), 0u);
assert_eq!(r.gen_vec::<u8>(10u).len(), 10u);
assert_eq!(r.gen_vec::<f64>(16u).len(), 16u);
}
#[test]
fn test_choose() {
let mut r = rng();
assert_eq!(r.choose([1, 1, 1]), 1);
}
#[test]
fn test_choose_option() {
let mut r = rng();
let v: &[int] = &[];
assert!(r.choose_option(v).is_none());
let i = 1;
let v = [1,1,1];
assert_eq!(r.choose_option(v), Some(&i));
}
#[test]
fn test_choose_weighted() {
let mut r = rng();
assert!(r.choose_weighted([
Weighted { weight: 1u, item: 42 },
]) == 42);
assert!(r.choose_weighted([
Weighted { weight: 0u, item: 42 },
Weighted { weight: 1u, item: 43 },
]) == 43);
}
#[test]
fn test_choose_weighted_option() {
let mut r = rng();
assert!(r.choose_weighted_option([
Weighted { weight: 1u, item: 42 },
]) == Some(42));
assert!(r.choose_weighted_option([
Weighted { weight: 0u, item: 42 },
Weighted { weight: 1u, item: 43 },
]) == Some(43));
let v: Option<int> = r.choose_weighted_option([]);
assert!(v.is_none());
}
#[test]
fn test_weighted_vec() {
let mut r = rng();
let empty: ~[int] = ~[];
assert_eq!(r.weighted_vec([]), empty);
assert!(r.weighted_vec([
Weighted { weight: 0u, item: 3u },
Weighted { weight: 1u, item: 2u },
Weighted { weight: 2u, item: 1u },
]) == ~[2u, 1u, 1u]);
}
#[test]
fn test_shuffle() {
let mut r = rng();
let empty: ~[int] = ~[];
assert_eq!(r.shuffle(~[]), empty);
assert_eq!(r.shuffle(~[1, 1, 1]), ~[1, 1, 1]);
}
#[test]
fn test_task_rng() {
let mut r = task_rng();
r.gen::<int>();
assert_eq!(r.shuffle(~[1, 1, 1]), ~[1, 1, 1]);
assert_eq!(r.gen_integer_range(0u, 1u), 0u);
}
#[test]
fn test_random() {
// not sure how to test this aside from just getting some values
let _n : uint = random();
let _f : f32 = random();
let _o : Option<Option<i8>> = random();
let _many : ((),
(~uint, @int, ~Option<~(@u32, ~(@bool,))>),
(u8, i8, u16, i16, u32, i32, u64, i64),
(f32, (f64, (float,)))) = random();
}
#[test]
fn compare_isaac_implementation() {
#[fixed_stack_segment]; #[inline(never)];
// This is to verify that the implementation of the ISAAC rng is
// correct (i.e. matches the output of the upstream implementation,
// which is in the runtime)
use libc::size_t;
#[abi = "cdecl"]
mod rustrt {
use libc::size_t;
#[allow(non_camel_case_types)] // runtime type
pub enum rust_rng {}
extern {
pub fn rand_new_seeded(buf: *u8, sz: size_t) -> *rust_rng;
pub fn rand_next(rng: *rust_rng) -> u32;
pub fn rand_free(rng: *rust_rng);
}
}
// run against several seeds
do 10.times {
unsafe {
let seed = super::seed();
let rt_rng = do seed.as_imm_buf |p, sz| {
rustrt::rand_new_seeded(p, sz as size_t)
};
let mut rng = IsaacRng::new_seeded(seed);
do 10000.times {
assert_eq!(rng.next(), rustrt::rand_next(rt_rng));
}
rustrt::rand_free(rt_rng);
}
}
}
#[test]
fn test_sample() {
let MIN_VAL = 1;
let MAX_VAL = 100;
let mut r = rng();
let vals = range(MIN_VAL, MAX_VAL).to_owned_vec();
let small_sample = r.sample(vals.iter(), 5);
let large_sample = r.sample(vals.iter(), vals.len() + 5);
assert_eq!(small_sample.len(), 5);
assert_eq!(large_sample.len(), vals.len());
assert!(small_sample.iter().all(|e| {
**e >= MIN_VAL && **e <= MAX_VAL
}));
}
}
#[cfg(test)]
mod bench {
use extra::test::BenchHarness;
use rand::*;
use sys::size_of;
#[bench]
fn rand_xorshift(bh: &mut BenchHarness) {
let mut rng = XorShiftRng::new();
do bh.iter {
rng.gen::<uint>();
}
bh.bytes = size_of::<uint>() as u64;
}
#[bench]
fn rand_isaac(bh: &mut BenchHarness) {
let mut rng = IsaacRng::new();
do bh.iter {
rng.gen::<uint>();
}
bh.bytes = size_of::<uint>() as u64;
}
#[bench]
fn rand_shuffle_100(bh: &mut BenchHarness) {
let mut rng = XorShiftRng::new();
let x : &mut[uint] = [1,..100];
do bh.iter {
rng.shuffle_mut(x);
}
}
}