// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! Random number generation. The key functions are `random()` and `Rng::gen()`. These are polymorphic and so can be used to generate any type that implements `Rand`. Type inference means that often a simple call to `rand::random()` or `rng.gen()` will suffice, but sometimes an annotation is required, e.g. `rand::random::()`. See the `distributions` submodule for sampling random numbers from distributions like normal and exponential. # Examples ~~~ {.rust} use std::rand; use std::rand::Rng; fn main() { let mut rng = rand::rng(); if rng.gen() { // bool printfln!("int: %d, uint: %u", rng.gen(), rng.gen()) } } ~~~ ~~~ {.rust} use std::rand; fn main () { let tuple_ptr = rand::random::<~(f64, char)>(); printfln!(tuple_ptr) } ~~~ */ use cast; use cmp; use container::Container; use int; use iter::{Iterator, range, range_step}; use local_data; use prelude::*; use str; use sys; use u32; use u64; use uint; use vec; use libc::size_t; pub mod distributions; /// A type that can be randomly generated using an Rng pub trait Rand { /// Generates a random instance of this type using the specified source of /// randomness fn rand(rng: &mut R) -> Self; } impl Rand for int { #[inline] fn rand(rng: &mut R) -> int { if int::bits == 32 { rng.next() as int } else { rng.gen::() as int } } } impl Rand for i8 { #[inline] fn rand(rng: &mut R) -> i8 { rng.next() as i8 } } impl Rand for i16 { #[inline] fn rand(rng: &mut R) -> i16 { rng.next() as i16 } } impl Rand for i32 { #[inline] fn rand(rng: &mut R) -> i32 { rng.next() as i32 } } impl Rand for i64 { #[inline] fn rand(rng: &mut R) -> i64 { (rng.next() as i64 << 32) | rng.next() as i64 } } impl Rand for uint { #[inline] fn rand(rng: &mut R) -> uint { if uint::bits == 32 { rng.next() as uint } else { rng.gen::() as uint } } } impl Rand for u8 { #[inline] fn rand(rng: &mut R) -> u8 { rng.next() as u8 } } impl Rand for u16 { #[inline] fn rand(rng: &mut R) -> u16 { rng.next() as u16 } } impl Rand for u32 { #[inline] fn rand(rng: &mut R) -> u32 { rng.next() } } impl Rand for u64 { #[inline] fn rand(rng: &mut R) -> u64 { (rng.next() as u64 << 32) | rng.next() as u64 } } impl Rand for float { #[inline] fn rand(rng: &mut R) -> float { rng.gen::() as float } } impl Rand for f32 { #[inline] fn rand(rng: &mut R) -> f32 { rng.gen::() as f32 } } static SCALE : f64 = (u32::max_value as f64) + 1.0f64; impl Rand for f64 { #[inline] fn rand(rng: &mut R) -> f64 { let u1 = rng.next() as f64; let u2 = rng.next() as f64; let u3 = rng.next() as f64; ((u1 / SCALE + u2) / SCALE + u3) / SCALE } } impl Rand for bool { #[inline] fn rand(rng: &mut R) -> bool { rng.next() & 1u32 == 1u32 } } macro_rules! tuple_impl { // use variables to indicate the arity of the tuple ($($tyvar:ident),* ) => { // the trailing commas are for the 1 tuple impl< $( $tyvar : Rand ),* > Rand for ( $( $tyvar ),* , ) { #[inline] fn rand(_rng: &mut R) -> ( $( $tyvar ),* , ) { ( // use the $tyvar's to get the appropriate number of // repeats (they're not actually needed) $( _rng.gen::<$tyvar>() ),* , ) } } } } impl Rand for () { #[inline] fn rand(_: &mut R) -> () { () } } tuple_impl!{A} tuple_impl!{A, B} tuple_impl!{A, B, C} tuple_impl!{A, B, C, D} tuple_impl!{A, B, C, D, E} tuple_impl!{A, B, C, D, E, F} tuple_impl!{A, B, C, D, E, F, G} tuple_impl!{A, B, C, D, E, F, G, H} tuple_impl!{A, B, C, D, E, F, G, H, I} tuple_impl!{A, B, C, D, E, F, G, H, I, J} impl Rand for Option { #[inline] fn rand(rng: &mut R) -> Option { if rng.gen() { Some(rng.gen()) } else { None } } } impl Rand for ~T { #[inline] fn rand(rng: &mut R) -> ~T { ~rng.gen() } } impl Rand for @T { #[inline] fn rand(rng: &mut R) -> @T { @rng.gen() } } #[abi = "cdecl"] pub mod rustrt { use libc::size_t; extern { pub fn rand_seed_size() -> size_t; pub fn rand_gen_seed(buf: *mut u8, sz: size_t); } } /// A value with a particular weight compared to other values pub struct Weighted { /// The numerical weight of this item weight: uint, /// The actual item which is being weighted item: T, } /// A random number generator pub trait Rng { /// Return the next random integer fn next(&mut self) -> u32; /// Return a random value of a Rand type. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// let rng = rand::task_rng(); /// let x: uint = rng.gen(); /// printfln!(x); /// printfln!(rng.gen::<(float, bool)>()); /// } /// ~~~ #[inline(always)] fn gen(&mut self) -> T { Rand::rand(self) } /// Return a random vector of the specified length. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// let rng = rand::task_rng(); /// let x: ~[uint] = rng.gen_vec(10); /// printfln!(x); /// printfln!(rng.gen_vec::<(float, bool)>(5)); /// } /// ~~~ fn gen_vec(&mut self, len: uint) -> ~[T] { vec::from_fn(len, |_| self.gen()) } /// Generate a random primitive integer in the range [`low`, /// `high`). Fails if `low >= high`. /// /// This gives a uniform distribution (assuming this RNG is itself /// uniform), even for edge cases like `gen_integer_range(0u8, /// 170)`, which a naive modulo operation would return numbers /// less than 85 with double the probability to those greater than /// 85. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// let rng = rand::task_rng(); /// let n: uint = rng.gen_integer_range(0u, 10); /// printfln!(n); /// let m: i16 = rng.gen_integer_range(-40, 400); /// printfln!(m); /// } /// ~~~ fn gen_integer_range(&mut self, low: T, high: T) -> T { assert!(low < high, "RNG.gen_integer_range called with low >= high"); let range = (high - low).to_u64(); let accept_zone = u64::max_value - u64::max_value % range; loop { let rand = self.gen::(); if rand < accept_zone { return low + NumCast::from(rand % range); } } } /// Return a bool with a 1 in n chance of true /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// printfln!("%b", rng.gen_weighted_bool(3)); /// } /// ~~~ fn gen_weighted_bool(&mut self, n: uint) -> bool { n == 0 || self.gen_integer_range(0, n) == 0 } /// Return a random string of the specified length composed of /// A-Z,a-z,0-9. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// println(rand::task_rng().gen_ascii_str(10)); /// } /// ~~~ fn gen_ascii_str(&mut self, len: uint) -> ~str { static GEN_ASCII_STR_CHARSET: &'static [u8] = bytes!("ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"); let mut s = str::with_capacity(len); for _ in range(0, len) { s.push_char(self.choose(GEN_ASCII_STR_CHARSET) as char) } s } /// Choose an item randomly, failing if `values` is empty. fn choose(&mut self, values: &[T]) -> T { self.choose_option(values).expect("Rng.choose: `values` is empty").clone() } /// Choose `Some(&item)` randomly, returning `None` if values is /// empty. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// printfln!(rand::task_rng().choose_option([1,2,4,8,16,32])); /// printfln!(rand::task_rng().choose_option([])); /// } /// ~~~ fn choose_option<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> { if values.is_empty() { None } else { Some(&values[self.gen_integer_range(0u, values.len())]) } } /// Choose an item respecting the relative weights, failing if the sum of /// the weights is 0 /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// let x = [rand::Weighted {weight: 4, item: 'a'}, /// rand::Weighted {weight: 2, item: 'b'}, /// rand::Weighted {weight: 2, item: 'c'}]; /// printfln!("%c", rng.choose_weighted(x)); /// } /// ~~~ fn choose_weighted(&mut self, v: &[Weighted]) -> T { self.choose_weighted_option(v).expect("Rng.choose_weighted: total weight is 0") } /// Choose Some(item) respecting the relative weights, returning none if /// the sum of the weights is 0 /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// let x = [rand::Weighted {weight: 4, item: 'a'}, /// rand::Weighted {weight: 2, item: 'b'}, /// rand::Weighted {weight: 2, item: 'c'}]; /// printfln!(rng.choose_weighted_option(x)); /// } /// ~~~ fn choose_weighted_option(&mut self, v: &[Weighted]) -> Option { let mut total = 0u; for item in v.iter() { total += item.weight; } if total == 0u { return None; } let chosen = self.gen_integer_range(0u, total); let mut so_far = 0u; for item in v.iter() { so_far += item.weight; if so_far > chosen { return Some(item.item.clone()); } } unreachable!(); } /// Return a vec containing copies of the items, in order, where /// the weight of the item determines how many copies there are /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// use std::rand::Rng; /// /// fn main() { /// let mut rng = rand::rng(); /// let x = [rand::Weighted {weight: 4, item: 'a'}, /// rand::Weighted {weight: 2, item: 'b'}, /// rand::Weighted {weight: 2, item: 'c'}]; /// printfln!(rng.weighted_vec(x)); /// } /// ~~~ fn weighted_vec(&mut self, v: &[Weighted]) -> ~[T] { let mut r = ~[]; for item in v.iter() { for _ in range(0u, item.weight) { r.push(item.item.clone()); } } r } /// Shuffle a vec /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// printfln!(rand::task_rng().shuffle(~[1,2,3])); /// } /// ~~~ fn shuffle(&mut self, values: ~[T]) -> ~[T] { let mut v = values; self.shuffle_mut(v); v } /// Shuffle a mutable vector in place. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// let rng = rand::task_rng(); /// let mut y = [1,2,3]; /// rng.shuffle_mut(y); /// printfln!(y); /// rng.shuffle_mut(y); /// printfln!(y); /// } /// ~~~ fn shuffle_mut(&mut self, values: &mut [T]) { let mut i = values.len(); while i >= 2u { // invariant: elements with index >= i have been locked in place. i -= 1u; // lock element i in place. values.swap(i, self.gen_integer_range(0u, i + 1u)); } } /// Randomly sample up to `n` elements from an iterator. /// /// # Example /// /// ~~~ {.rust} /// use std::rand; /// /// fn main() { /// let rng = rand::task_rng(); /// let sample = rng.sample(range(1, 100), 5); /// printfln!(sample); /// } /// ~~~ fn sample>(&mut self, iter: T, n: uint) -> ~[A] { let mut reservoir : ~[A] = vec::with_capacity(n); for (i, elem) in iter.enumerate() { if i < n { reservoir.push(elem); loop } let k = self.gen_integer_range(0, i + 1); if k < reservoir.len() { reservoir[k] = elem } } reservoir } } /// Create a random number generator with a default algorithm and seed. /// /// It returns the cryptographically-safest `Rng` algorithm currently /// available in Rust. If you require a specifically seeded `Rng` for /// consistency over time you should pick one algorithm and create the /// `Rng` yourself. pub fn rng() -> IsaacRng { IsaacRng::new() } /// Create a weak random number generator with a default algorithm and seed. /// /// It returns the fastest `Rng` algorithm currently available in Rust without /// consideration for cryptography or security. If you require a specifically /// seeded `Rng` for consistency over time you should pick one algorithm and /// create the `Rng` yourself. pub fn weak_rng() -> XorShiftRng { XorShiftRng::new() } static RAND_SIZE_LEN: u32 = 8; static RAND_SIZE: u32 = 1 << RAND_SIZE_LEN; /// A random number generator that uses the [ISAAC /// algorithm](http://en.wikipedia.org/wiki/ISAAC_%28cipher%29). /// /// The ISAAC algorithm is suitable for cryptographic purposes. pub struct IsaacRng { priv cnt: u32, priv rsl: [u32, .. RAND_SIZE], priv mem: [u32, .. RAND_SIZE], priv a: u32, priv b: u32, priv c: u32 } impl IsaacRng { /// Create an ISAAC random number generator with a random seed. pub fn new() -> IsaacRng { IsaacRng::new_seeded(seed()) } /// Create an ISAAC random number generator with a seed. This can be any /// length, although the maximum number of bytes used is 1024 and any more /// will be silently ignored. A generator constructed with a given seed /// will generate the same sequence of values as all other generators /// constructed with the same seed. pub fn new_seeded(seed: &[u8]) -> IsaacRng { let mut rng = IsaacRng { cnt: 0, rsl: [0, .. RAND_SIZE], mem: [0, .. RAND_SIZE], a: 0, b: 0, c: 0 }; let array_size = sys::size_of_val(&rng.rsl); let copy_length = cmp::min(array_size, seed.len()); // manually create a &mut [u8] slice of randrsl to copy into. let dest = unsafe { cast::transmute((&mut rng.rsl, array_size)) }; vec::bytes::copy_memory(dest, seed, copy_length); rng.init(true); rng } /// Create an ISAAC random number generator using the default /// fixed seed. pub fn new_unseeded() -> IsaacRng { let mut rng = IsaacRng { cnt: 0, rsl: [0, .. RAND_SIZE], mem: [0, .. RAND_SIZE], a: 0, b: 0, c: 0 }; rng.init(false); rng } /// Initialises `self`. If `use_rsl` is true, then use the current value /// of `rsl` as a seed, otherwise construct one algorithmically (not /// randomly). fn init(&mut self, use_rsl: bool) { let mut a = 0x9e3779b9; let mut b = a; let mut c = a; let mut d = a; let mut e = a; let mut f = a; let mut g = a; let mut h = a; macro_rules! mix( () => {{ a^=b<<11; d+=a; b+=c; b^=c>>2; e+=b; c+=d; c^=d<<8; f+=c; d+=e; d^=e>>16; g+=d; e+=f; e^=f<<10; h+=e; f+=g; f^=g>>4; a+=f; g+=h; g^=h<<8; b+=g; h+=a; h^=a>>9; c+=h; a+=b; }} ); do 4.times { mix!(); } if use_rsl { macro_rules! memloop ( ($arr:expr) => {{ for i in range_step(0u32, RAND_SIZE, 8) { a+=$arr[i ]; b+=$arr[i+1]; c+=$arr[i+2]; d+=$arr[i+3]; e+=$arr[i+4]; f+=$arr[i+5]; g+=$arr[i+6]; h+=$arr[i+7]; mix!(); self.mem[i ]=a; self.mem[i+1]=b; self.mem[i+2]=c; self.mem[i+3]=d; self.mem[i+4]=e; self.mem[i+5]=f; self.mem[i+6]=g; self.mem[i+7]=h; } }} ); memloop!(self.rsl); memloop!(self.mem); } else { for i in range_step(0u32, RAND_SIZE, 8) { mix!(); self.mem[i ]=a; self.mem[i+1]=b; self.mem[i+2]=c; self.mem[i+3]=d; self.mem[i+4]=e; self.mem[i+5]=f; self.mem[i+6]=g; self.mem[i+7]=h; } } self.isaac(); } /// Refills the output buffer (`self.rsl`) #[inline] fn isaac(&mut self) { self.c += 1; // abbreviations let mut a = self.a; let mut b = self.b + self.c; static MIDPOINT: uint = RAND_SIZE as uint / 2; macro_rules! ind (($x:expr) => { self.mem[($x >> 2) & (RAND_SIZE - 1)] }); macro_rules! rngstep( ($j:expr, $shift:expr) => {{ let base = $j; let mix = if $shift < 0 { a >> -$shift as uint } else { a << $shift as uint }; let x = self.mem[base + mr_offset]; a = (a ^ mix) + self.mem[base + m2_offset]; let y = ind!(x) + a + b; self.mem[base + mr_offset] = y; b = ind!(y >> RAND_SIZE_LEN) + x; self.rsl[base + mr_offset] = b; }} ); let r = [(0, MIDPOINT), (MIDPOINT, 0)]; for &(mr_offset, m2_offset) in r.iter() { for i in range_step(0u, MIDPOINT, 4) { rngstep!(i + 0, 13); rngstep!(i + 1, -6); rngstep!(i + 2, 2); rngstep!(i + 3, -16); } } self.a = a; self.b = b; self.cnt = RAND_SIZE; } } impl Rng for IsaacRng { #[inline] fn next(&mut self) -> u32 { if self.cnt == 0 { // make some more numbers self.isaac(); } self.cnt -= 1; self.rsl[self.cnt] } } /// An [Xorshift random number /// generator](http://en.wikipedia.org/wiki/Xorshift). /// /// The Xorshift algorithm is not suitable for cryptographic purposes /// but is very fast. If you do not know for sure that it fits your /// requirements, use a more secure one such as `IsaacRng`. pub struct XorShiftRng { priv x: u32, priv y: u32, priv z: u32, priv w: u32, } impl Rng for XorShiftRng { #[inline] fn next(&mut self) -> u32 { let x = self.x; let t = x ^ (x << 11); self.x = self.y; self.y = self.z; self.z = self.w; let w = self.w; self.w = w ^ (w >> 19) ^ (t ^ (t >> 8)); self.w } } impl XorShiftRng { /// Create an xor shift random number generator with a random seed. pub fn new() -> XorShiftRng { #[fixed_stack_segment]; #[inline(never)]; // generate seeds the same way as seed(), except we have a spceific size let mut s = [0u8, ..16]; loop { do s.as_mut_buf |p, sz| { unsafe { rustrt::rand_gen_seed(p, sz as size_t); } } if !s.iter().all(|x| *x == 0) { break; } } let s: &[u32, ..4] = unsafe { cast::transmute(&s) }; XorShiftRng::new_seeded(s[0], s[1], s[2], s[3]) } /** * Create a random number generator using the specified seed. A generator * constructed with a given seed will generate the same sequence of values * as all other generators constructed with the same seed. */ pub fn new_seeded(x: u32, y: u32, z: u32, w: u32) -> XorShiftRng { XorShiftRng { x: x, y: y, z: z, w: w, } } } /// Create a new random seed. pub fn seed() -> ~[u8] { #[fixed_stack_segment]; #[inline(never)]; unsafe { let n = rustrt::rand_seed_size() as uint; let mut s = vec::from_elem(n, 0_u8); do s.as_mut_buf |p, sz| { rustrt::rand_gen_seed(p, sz as size_t) } s } } // used to make space in TLS for a random number generator local_data_key!(tls_rng_state: @@mut IsaacRng) /** * Gives back a lazily initialized task-local random number generator, * seeded by the system. Intended to be used in method chaining style, ie * `task_rng().gen::()`. */ #[inline] pub fn task_rng() -> @mut IsaacRng { let r = local_data::get(tls_rng_state, |k| k.map(|&k| *k)); match r { None => { let rng = @@mut IsaacRng::new_seeded(seed()); local_data::set(tls_rng_state, rng); *rng } Some(rng) => *rng } } // Allow direct chaining with `task_rng` impl Rng for @mut R { #[inline] fn next(&mut self) -> u32 { (**self).next() } } /** * Returns a random value of a Rand type, using the task's random number * generator. */ #[inline] pub fn random() -> T { task_rng().gen() } #[cfg(test)] mod test { use iter::{Iterator, range}; use option::{Option, Some}; use super::*; #[test] fn test_rng_seeded() { let seed = seed(); let mut ra = IsaacRng::new_seeded(seed); let mut rb = IsaacRng::new_seeded(seed); assert_eq!(ra.gen_ascii_str(100u), rb.gen_ascii_str(100u)); } #[test] fn test_rng_seeded_custom_seed() { // much shorter than generated seeds which are 1024 bytes let seed = [2u8, 32u8, 4u8, 32u8, 51u8]; let mut ra = IsaacRng::new_seeded(seed); let mut rb = IsaacRng::new_seeded(seed); assert_eq!(ra.gen_ascii_str(100u), rb.gen_ascii_str(100u)); } #[test] fn test_rng_seeded_custom_seed2() { let seed = [2u8, 32u8, 4u8, 32u8, 51u8]; let mut ra = IsaacRng::new_seeded(seed); // Regression test that isaac is actually using the above vector let r = ra.next(); error!("%?", r); assert!(r == 890007737u32 // on x86_64 || r == 2935188040u32); // on x86 } #[test] fn test_gen_integer_range() { let mut r = rng(); for _ in range(0, 1000) { let a = r.gen_integer_range(-3i, 42); assert!(a >= -3 && a < 42); assert_eq!(r.gen_integer_range(0, 1), 0); assert_eq!(r.gen_integer_range(-12, -11), -12); } for _ in range(0, 1000) { let a = r.gen_integer_range(10, 42); assert!(a >= 10 && a < 42); assert_eq!(r.gen_integer_range(0, 1), 0); assert_eq!(r.gen_integer_range(3_000_000u, 3_000_001), 3_000_000); } } #[test] #[should_fail] fn test_gen_integer_range_fail_int() { let mut r = rng(); r.gen_integer_range(5i, -2); } #[test] #[should_fail] fn test_gen_integer_range_fail_uint() { let mut r = rng(); r.gen_integer_range(5u, 2u); } #[test] fn test_gen_float() { let mut r = rng(); let a = r.gen::(); let b = r.gen::(); debug!((a, b)); } #[test] fn test_gen_weighted_bool() { let mut r = rng(); assert_eq!(r.gen_weighted_bool(0u), true); assert_eq!(r.gen_weighted_bool(1u), true); } #[test] fn test_gen_ascii_str() { let mut r = rng(); debug!(r.gen_ascii_str(10u)); debug!(r.gen_ascii_str(10u)); debug!(r.gen_ascii_str(10u)); assert_eq!(r.gen_ascii_str(0u).len(), 0u); assert_eq!(r.gen_ascii_str(10u).len(), 10u); assert_eq!(r.gen_ascii_str(16u).len(), 16u); } #[test] fn test_gen_vec() { let mut r = rng(); assert_eq!(r.gen_vec::(0u).len(), 0u); assert_eq!(r.gen_vec::(10u).len(), 10u); assert_eq!(r.gen_vec::(16u).len(), 16u); } #[test] fn test_choose() { let mut r = rng(); assert_eq!(r.choose([1, 1, 1]), 1); } #[test] fn test_choose_option() { let mut r = rng(); let v: &[int] = &[]; assert!(r.choose_option(v).is_none()); let i = 1; let v = [1,1,1]; assert_eq!(r.choose_option(v), Some(&i)); } #[test] fn test_choose_weighted() { let mut r = rng(); assert!(r.choose_weighted([ Weighted { weight: 1u, item: 42 }, ]) == 42); assert!(r.choose_weighted([ Weighted { weight: 0u, item: 42 }, Weighted { weight: 1u, item: 43 }, ]) == 43); } #[test] fn test_choose_weighted_option() { let mut r = rng(); assert!(r.choose_weighted_option([ Weighted { weight: 1u, item: 42 }, ]) == Some(42)); assert!(r.choose_weighted_option([ Weighted { weight: 0u, item: 42 }, Weighted { weight: 1u, item: 43 }, ]) == Some(43)); let v: Option = r.choose_weighted_option([]); assert!(v.is_none()); } #[test] fn test_weighted_vec() { let mut r = rng(); let empty: ~[int] = ~[]; assert_eq!(r.weighted_vec([]), empty); assert!(r.weighted_vec([ Weighted { weight: 0u, item: 3u }, Weighted { weight: 1u, item: 2u }, Weighted { weight: 2u, item: 1u }, ]) == ~[2u, 1u, 1u]); } #[test] fn test_shuffle() { let mut r = rng(); let empty: ~[int] = ~[]; assert_eq!(r.shuffle(~[]), empty); assert_eq!(r.shuffle(~[1, 1, 1]), ~[1, 1, 1]); } #[test] fn test_task_rng() { let mut r = task_rng(); r.gen::(); assert_eq!(r.shuffle(~[1, 1, 1]), ~[1, 1, 1]); assert_eq!(r.gen_integer_range(0u, 1u), 0u); } #[test] fn test_random() { // not sure how to test this aside from just getting some values let _n : uint = random(); let _f : f32 = random(); let _o : Option> = random(); let _many : ((), (~uint, @int, ~Option<~(@u32, ~(@bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (float,)))) = random(); } #[test] fn compare_isaac_implementation() { #[fixed_stack_segment]; #[inline(never)]; // This is to verify that the implementation of the ISAAC rng is // correct (i.e. matches the output of the upstream implementation, // which is in the runtime) use libc::size_t; #[abi = "cdecl"] mod rustrt { use libc::size_t; #[allow(non_camel_case_types)] // runtime type pub enum rust_rng {} extern { pub fn rand_new_seeded(buf: *u8, sz: size_t) -> *rust_rng; pub fn rand_next(rng: *rust_rng) -> u32; pub fn rand_free(rng: *rust_rng); } } // run against several seeds do 10.times { unsafe { let seed = super::seed(); let rt_rng = do seed.as_imm_buf |p, sz| { rustrt::rand_new_seeded(p, sz as size_t) }; let mut rng = IsaacRng::new_seeded(seed); do 10000.times { assert_eq!(rng.next(), rustrt::rand_next(rt_rng)); } rustrt::rand_free(rt_rng); } } } #[test] fn test_sample() { let MIN_VAL = 1; let MAX_VAL = 100; let mut r = rng(); let vals = range(MIN_VAL, MAX_VAL).to_owned_vec(); let small_sample = r.sample(vals.iter(), 5); let large_sample = r.sample(vals.iter(), vals.len() + 5); assert_eq!(small_sample.len(), 5); assert_eq!(large_sample.len(), vals.len()); assert!(small_sample.iter().all(|e| { **e >= MIN_VAL && **e <= MAX_VAL })); } } #[cfg(test)] mod bench { use extra::test::BenchHarness; use rand::*; use sys::size_of; #[bench] fn rand_xorshift(bh: &mut BenchHarness) { let mut rng = XorShiftRng::new(); do bh.iter { rng.gen::(); } bh.bytes = size_of::() as u64; } #[bench] fn rand_isaac(bh: &mut BenchHarness) { let mut rng = IsaacRng::new(); do bh.iter { rng.gen::(); } bh.bytes = size_of::() as u64; } #[bench] fn rand_shuffle_100(bh: &mut BenchHarness) { let mut rng = XorShiftRng::new(); let x : &mut[uint] = [1,..100]; do bh.iter { rng.shuffle_mut(x); } } }