rust/src/librustc_traits/implied_outlives_bounds.rs
2019-06-14 18:58:32 +03:00

176 lines
7.0 KiB
Rust

//! Provider for the `implied_outlives_bounds` query.
//! Do not call this query directory. See [`rustc::traits::query::implied_outlives_bounds`].
use rustc::hir;
use rustc::infer::InferCtxt;
use rustc::infer::canonical::{self, Canonical};
use rustc::traits::{TraitEngine, TraitEngineExt};
use rustc::traits::query::outlives_bounds::OutlivesBound;
use rustc::traits::query::{CanonicalTyGoal, Fallible, NoSolution};
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::ty::outlives::Component;
use rustc::ty::query::Providers;
use rustc::ty::wf;
use smallvec::{SmallVec, smallvec};
use syntax::source_map::DUMMY_SP;
use rustc::traits::FulfillmentContext;
crate fn provide(p: &mut Providers<'_>) {
*p = Providers {
implied_outlives_bounds,
..*p
};
}
fn implied_outlives_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
goal: CanonicalTyGoal<'tcx>,
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>,
NoSolution,
> {
tcx.infer_ctxt()
.enter_canonical_trait_query(&goal, |infcx, _fulfill_cx, key| {
let (param_env, ty) = key.into_parts();
compute_implied_outlives_bounds(&infcx, param_env, ty)
})
}
fn compute_implied_outlives_bounds<'tcx>(
infcx: &InferCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
) -> Fallible<Vec<OutlivesBound<'tcx>>> {
let tcx = infcx.tcx;
// Sometimes when we ask what it takes for T: WF, we get back that
// U: WF is required; in that case, we push U onto this stack and
// process it next. Currently (at least) these resulting
// predicates are always guaranteed to be a subset of the original
// type, so we need not fear non-termination.
let mut wf_types = vec![ty];
let mut implied_bounds = vec![];
let mut fulfill_cx = FulfillmentContext::new();
while let Some(ty) = wf_types.pop() {
// Compute the obligations for `ty` to be well-formed. If `ty` is
// an unresolved inference variable, just substituted an empty set
// -- because the return type here is going to be things we *add*
// to the environment, it's always ok for this set to be smaller
// than the ultimate set. (Note: normally there won't be
// unresolved inference variables here anyway, but there might be
// during typeck under some circumstances.)
let obligations =
wf::obligations(infcx, param_env, hir::DUMMY_HIR_ID, ty, DUMMY_SP).unwrap_or(vec![]);
// N.B., all of these predicates *ought* to be easily proven
// true. In fact, their correctness is (mostly) implied by
// other parts of the program. However, in #42552, we had
// an annoying scenario where:
//
// - Some `T::Foo` gets normalized, resulting in a
// variable `_1` and a `T: Trait<Foo=_1>` constraint
// (not sure why it couldn't immediately get
// solved). This result of `_1` got cached.
// - These obligations were dropped on the floor here,
// rather than being registered.
// - Then later we would get a request to normalize
// `T::Foo` which would result in `_1` being used from
// the cache, but hence without the `T: Trait<Foo=_1>`
// constraint. As a result, `_1` never gets resolved,
// and we get an ICE (in dropck).
//
// Therefore, we register any predicates involving
// inference variables. We restrict ourselves to those
// involving inference variables both for efficiency and
// to avoids duplicate errors that otherwise show up.
fulfill_cx.register_predicate_obligations(
infcx,
obligations
.iter()
.filter(|o| o.predicate.has_infer_types())
.cloned(),
);
// From the full set of obligations, just filter down to the
// region relationships.
implied_bounds.extend(obligations.into_iter().flat_map(|obligation| {
assert!(!obligation.has_escaping_bound_vars());
match obligation.predicate {
ty::Predicate::Trait(..) |
ty::Predicate::Subtype(..) |
ty::Predicate::Projection(..) |
ty::Predicate::ClosureKind(..) |
ty::Predicate::ObjectSafe(..) |
ty::Predicate::ConstEvaluatable(..) => vec![],
ty::Predicate::WellFormed(subty) => {
wf_types.push(subty);
vec![]
}
ty::Predicate::RegionOutlives(ref data) => match data.no_bound_vars() {
None => vec![],
Some(ty::OutlivesPredicate(r_a, r_b)) => {
vec![OutlivesBound::RegionSubRegion(r_b, r_a)]
}
},
ty::Predicate::TypeOutlives(ref data) => match data.no_bound_vars() {
None => vec![],
Some(ty::OutlivesPredicate(ty_a, r_b)) => {
let ty_a = infcx.resolve_vars_if_possible(&ty_a);
let mut components = smallvec![];
tcx.push_outlives_components(ty_a, &mut components);
implied_bounds_from_components(r_b, components)
}
},
}
}));
}
// Ensure that those obligations that we had to solve
// get solved *here*.
match fulfill_cx.select_all_or_error(infcx) {
Ok(()) => Ok(implied_bounds),
Err(_) => Err(NoSolution),
}
}
/// When we have an implied bound that `T: 'a`, we can further break
/// this down to determine what relationships would have to hold for
/// `T: 'a` to hold. We get to assume that the caller has validated
/// those relationships.
fn implied_bounds_from_components(
sub_region: ty::Region<'tcx>,
sup_components: SmallVec<[Component<'tcx>; 4]>,
) -> Vec<OutlivesBound<'tcx>> {
sup_components
.into_iter()
.filter_map(|component| {
match component {
Component::Region(r) =>
Some(OutlivesBound::RegionSubRegion(sub_region, r)),
Component::Param(p) =>
Some(OutlivesBound::RegionSubParam(sub_region, p)),
Component::Projection(p) =>
Some(OutlivesBound::RegionSubProjection(sub_region, p)),
Component::EscapingProjection(_) =>
// If the projection has escaping regions, don't
// try to infer any implied bounds even for its
// free components. This is conservative, because
// the caller will still have to prove that those
// free components outlive `sub_region`. But the
// idea is that the WAY that the caller proves
// that may change in the future and we want to
// give ourselves room to get smarter here.
None,
Component::UnresolvedInferenceVariable(..) =>
None,
}
})
.collect()
}