f27ad3d3e9
compiletest: compact "linux" "macos" etc.as "unix". liballoc: remove a superfluous "use". libcollections: remove invocations of deprecated methods in favor of their suggested replacements and use "_" for a loop counter. libcoretest: remove invocations of deprecated methods; also add "allow(deprecated)" for testing a deprecated method itself. libglob: use "cfg_attr". libgraphviz: add a test for one of data constructors. libgreen: remove a superfluous "use". libnum: "allow(type_overflow)" for type cast into u8 in a test code. librustc: names of static variables should be in upper case. libserialize: v[i] instead of get(). libstd/ascii: to_lowercase() instead of to_lower(). libstd/bitflags: modify AnotherSetOfFlags to use i8 as its backend. It will serve better for testing various aspects of bitflags!. libstd/collections: "allow(deprecated)" for testing a deprecated method itself. libstd/io: remove invocations of deprecated methods and superfluous "use". Also add #[test] where it was missing. libstd/num: introduce a helper function to effectively remove invocations of a deprecated method. libstd/path and rand: remove invocations of deprecated methods and superfluous "use". libstd/task and libsync/comm: "allow(deprecated)" for testing a deprecated method itself. libsync/deque: remove superfluous "unsafe". libsync/mutex and once: names of static variables should be in upper case. libterm: introduce a helper function to effectively remove invocations of a deprecated method. We still see a few warnings about using obsoleted native::task::spawn() in the test modules for libsync. I'm not sure how I should replace them with std::task::TaksBuilder and native::task::NativeTaskBuilder (dependency to libstd?) Signed-off-by: NODA, Kai <nodakai@gmail.com>
424 lines
14 KiB
Rust
424 lines
14 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*! Non-blocking access to stdin, stdout, and stderr.
|
|
|
|
This module provides bindings to the local event loop's TTY interface, using it
|
|
to offer synchronous but non-blocking versions of stdio. These handles can be
|
|
inspected for information about terminal dimensions or for related information
|
|
about the stream or terminal to which it is attached.
|
|
|
|
# Example
|
|
|
|
```rust
|
|
# #![allow(unused_must_use)]
|
|
use std::io;
|
|
|
|
let mut out = io::stdout();
|
|
out.write(b"Hello, world!");
|
|
```
|
|
|
|
*/
|
|
|
|
use failure::local_stderr;
|
|
use fmt;
|
|
use io::{Reader, Writer, IoResult, IoError, OtherIoError,
|
|
standard_error, EndOfFile, LineBufferedWriter, BufferedReader};
|
|
use iter::Iterator;
|
|
use kinds::Send;
|
|
use libc;
|
|
use option::{Option, Some, None};
|
|
use boxed::Box;
|
|
use result::{Ok, Err};
|
|
use rt;
|
|
use rt::local::Local;
|
|
use rt::task::Task;
|
|
use rt::rtio::{DontClose, IoFactory, LocalIo, RtioFileStream, RtioTTY};
|
|
use slice::ImmutableSlice;
|
|
use str::StrSlice;
|
|
use uint;
|
|
|
|
// And so begins the tale of acquiring a uv handle to a stdio stream on all
|
|
// platforms in all situations. Our story begins by splitting the world into two
|
|
// categories, windows and unix. Then one day the creators of unix said let
|
|
// there be redirection! And henceforth there was redirection away from the
|
|
// console for standard I/O streams.
|
|
//
|
|
// After this day, the world split into four factions:
|
|
//
|
|
// 1. Unix with stdout on a terminal.
|
|
// 2. Unix with stdout redirected.
|
|
// 3. Windows with stdout on a terminal.
|
|
// 4. Windows with stdout redirected.
|
|
//
|
|
// Many years passed, and then one day the nation of libuv decided to unify this
|
|
// world. After months of toiling, uv created three ideas: TTY, Pipe, File.
|
|
// These three ideas propagated throughout the lands and the four great factions
|
|
// decided to settle among them.
|
|
//
|
|
// The groups of 1, 2, and 3 all worked very hard towards the idea of TTY. Upon
|
|
// doing so, they even enhanced themselves further then their Pipe/File
|
|
// brethren, becoming the dominant powers.
|
|
//
|
|
// The group of 4, however, decided to work independently. They abandoned the
|
|
// common TTY belief throughout, and even abandoned the fledgling Pipe belief.
|
|
// The members of the 4th faction decided to only align themselves with File.
|
|
//
|
|
// tl;dr; TTY works on everything but when windows stdout is redirected, in that
|
|
// case pipe also doesn't work, but magically file does!
|
|
enum StdSource {
|
|
TTY(Box<RtioTTY + Send>),
|
|
File(Box<RtioFileStream + Send>),
|
|
}
|
|
|
|
fn src<T>(fd: libc::c_int, readable: bool, f: |StdSource| -> T) -> T {
|
|
LocalIo::maybe_raise(|io| {
|
|
Ok(match io.tty_open(fd, readable) {
|
|
Ok(tty) => f(TTY(tty)),
|
|
Err(_) => f(File(io.fs_from_raw_fd(fd, DontClose))),
|
|
})
|
|
}).map_err(IoError::from_rtio_error).unwrap()
|
|
}
|
|
|
|
local_data_key!(local_stdout: Box<Writer + Send>)
|
|
|
|
/// Creates a new non-blocking handle to the stdin of the current process.
|
|
///
|
|
/// The returned handled is buffered by default with a `BufferedReader`. If
|
|
/// buffered access is not desired, the `stdin_raw` function is provided to
|
|
/// provided unbuffered access to stdin.
|
|
///
|
|
/// Care should be taken when creating multiple handles to the stdin of a
|
|
/// process. Because this is a buffered reader by default, it's possible for
|
|
/// pending input to be unconsumed in one reader and unavailable to other
|
|
/// readers. It is recommended that only one handle at a time is created for the
|
|
/// stdin of a process.
|
|
///
|
|
/// See `stdout()` for more notes about this function.
|
|
pub fn stdin() -> BufferedReader<StdReader> {
|
|
// The default buffer capacity is 64k, but apparently windows doesn't like
|
|
// 64k reads on stdin. See #13304 for details, but the idea is that on
|
|
// windows we use a slightly smaller buffer that's been seen to be
|
|
// acceptable.
|
|
if cfg!(windows) {
|
|
BufferedReader::with_capacity(8 * 1024, stdin_raw())
|
|
} else {
|
|
BufferedReader::new(stdin_raw())
|
|
}
|
|
}
|
|
|
|
/// Creates a new non-blocking handle to the stdin of the current process.
|
|
///
|
|
/// Unlike `stdin()`, the returned reader is *not* a buffered reader.
|
|
///
|
|
/// See `stdout()` for more notes about this function.
|
|
pub fn stdin_raw() -> StdReader {
|
|
src(libc::STDIN_FILENO, true, |src| StdReader { inner: src })
|
|
}
|
|
|
|
/// Creates a line-buffered handle to the stdout of the current process.
|
|
///
|
|
/// Note that this is a fairly expensive operation in that at least one memory
|
|
/// allocation is performed. Additionally, this must be called from a runtime
|
|
/// task context because the stream returned will be a non-blocking object using
|
|
/// the local scheduler to perform the I/O.
|
|
///
|
|
/// Care should be taken when creating multiple handles to an output stream for
|
|
/// a single process. While usage is still safe, the output may be surprising if
|
|
/// no synchronization is performed to ensure a sane output.
|
|
pub fn stdout() -> LineBufferedWriter<StdWriter> {
|
|
LineBufferedWriter::new(stdout_raw())
|
|
}
|
|
|
|
/// Creates an unbuffered handle to the stdout of the current process
|
|
///
|
|
/// See notes in `stdout()` for more information.
|
|
pub fn stdout_raw() -> StdWriter {
|
|
src(libc::STDOUT_FILENO, false, |src| StdWriter { inner: src })
|
|
}
|
|
|
|
/// Creates a line-buffered handle to the stderr of the current process.
|
|
///
|
|
/// See `stdout()` for notes about this function.
|
|
pub fn stderr() -> LineBufferedWriter<StdWriter> {
|
|
LineBufferedWriter::new(stderr_raw())
|
|
}
|
|
|
|
/// Creates an unbuffered handle to the stderr of the current process
|
|
///
|
|
/// See notes in `stdout()` for more information.
|
|
pub fn stderr_raw() -> StdWriter {
|
|
src(libc::STDERR_FILENO, false, |src| StdWriter { inner: src })
|
|
}
|
|
|
|
/// Resets the task-local stdout handle to the specified writer
|
|
///
|
|
/// This will replace the current task's stdout handle, returning the old
|
|
/// handle. All future calls to `print` and friends will emit their output to
|
|
/// this specified handle.
|
|
///
|
|
/// Note that this does not need to be called for all new tasks; the default
|
|
/// output handle is to the process's stdout stream.
|
|
pub fn set_stdout(stdout: Box<Writer + Send>) -> Option<Box<Writer + Send>> {
|
|
local_stdout.replace(Some(stdout)).and_then(|mut s| {
|
|
let _ = s.flush();
|
|
Some(s)
|
|
})
|
|
}
|
|
|
|
/// Resets the task-local stderr handle to the specified writer
|
|
///
|
|
/// This will replace the current task's stderr handle, returning the old
|
|
/// handle. Currently, the stderr handle is used for printing failure messages
|
|
/// during task failure.
|
|
///
|
|
/// Note that this does not need to be called for all new tasks; the default
|
|
/// output handle is to the process's stderr stream.
|
|
pub fn set_stderr(stderr: Box<Writer + Send>) -> Option<Box<Writer + Send>> {
|
|
local_stderr.replace(Some(stderr)).and_then(|mut s| {
|
|
let _ = s.flush();
|
|
Some(s)
|
|
})
|
|
}
|
|
|
|
// Helper to access the local task's stdout handle
|
|
//
|
|
// Note that this is not a safe function to expose because you can create an
|
|
// aliased pointer very easily:
|
|
//
|
|
// with_task_stdout(|io1| {
|
|
// with_task_stdout(|io2| {
|
|
// // io1 aliases io2
|
|
// })
|
|
// })
|
|
fn with_task_stdout(f: |&mut Writer| -> IoResult<()>) {
|
|
let result = if Local::exists(None::<Task>) {
|
|
let mut my_stdout = local_stdout.replace(None).unwrap_or_else(|| {
|
|
box stdout() as Box<Writer + Send>
|
|
});
|
|
let result = f(&mut *my_stdout);
|
|
local_stdout.replace(Some(my_stdout));
|
|
result
|
|
} else {
|
|
let mut io = rt::Stdout;
|
|
f(&mut io as &mut Writer)
|
|
};
|
|
match result {
|
|
Ok(()) => {}
|
|
Err(e) => fail!("failed printing to stdout: {}", e),
|
|
}
|
|
}
|
|
|
|
/// Flushes the local task's stdout handle.
|
|
///
|
|
/// By default, this stream is a line-buffering stream, so flushing may be
|
|
/// necessary to ensure that all output is printed to the screen (if there are
|
|
/// no newlines printed).
|
|
///
|
|
/// Note that logging macros do not use this stream. Using the logging macros
|
|
/// will emit output to stderr, and while they are line buffered the log
|
|
/// messages are always terminated in a newline (no need to flush).
|
|
pub fn flush() {
|
|
with_task_stdout(|io| io.flush())
|
|
}
|
|
|
|
/// Prints a string to the stdout of the current process. No newline is emitted
|
|
/// after the string is printed.
|
|
pub fn print(s: &str) {
|
|
with_task_stdout(|io| io.write(s.as_bytes()))
|
|
}
|
|
|
|
/// Prints a string to the stdout of the current process. A literal
|
|
/// `\n` character is printed to the console after the string.
|
|
pub fn println(s: &str) {
|
|
with_task_stdout(|io| {
|
|
io.write(s.as_bytes()).and_then(|()| io.write([b'\n']))
|
|
})
|
|
}
|
|
|
|
/// Similar to `print`, but takes a `fmt::Arguments` structure to be compatible
|
|
/// with the `format_args!` macro.
|
|
pub fn print_args(fmt: &fmt::Arguments) {
|
|
with_task_stdout(|io| write!(io, "{}", fmt))
|
|
}
|
|
|
|
/// Similar to `println`, but takes a `fmt::Arguments` structure to be
|
|
/// compatible with the `format_args!` macro.
|
|
pub fn println_args(fmt: &fmt::Arguments) {
|
|
with_task_stdout(|io| writeln!(io, "{}", fmt))
|
|
}
|
|
|
|
/// Representation of a reader of a standard input stream
|
|
pub struct StdReader {
|
|
inner: StdSource
|
|
}
|
|
|
|
impl StdReader {
|
|
/// Returns whether this stream is attached to a TTY instance or not.
|
|
pub fn isatty(&self) -> bool {
|
|
match self.inner {
|
|
TTY(..) => true,
|
|
File(..) => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Reader for StdReader {
|
|
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
|
|
let ret = match self.inner {
|
|
TTY(ref mut tty) => {
|
|
// Flush the task-local stdout so that weird issues like a
|
|
// print!'d prompt not being shown until after the user hits
|
|
// enter.
|
|
flush();
|
|
tty.read(buf)
|
|
},
|
|
File(ref mut file) => file.read(buf).map(|i| i as uint),
|
|
}.map_err(IoError::from_rtio_error);
|
|
match ret {
|
|
// When reading a piped stdin, libuv will return 0-length reads when
|
|
// stdin reaches EOF. For pretty much all other streams it will
|
|
// return an actual EOF error, but apparently for stdin it's a
|
|
// little different. Hence, here we convert a 0 length read to an
|
|
// end-of-file indicator so the caller knows to stop reading.
|
|
Ok(0) => { Err(standard_error(EndOfFile)) }
|
|
ret @ Ok(..) | ret @ Err(..) => ret,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Representation of a writer to a standard output stream
|
|
pub struct StdWriter {
|
|
inner: StdSource
|
|
}
|
|
|
|
impl StdWriter {
|
|
/// Gets the size of this output window, if possible. This is typically used
|
|
/// when the writer is attached to something like a terminal, this is used
|
|
/// to fetch the dimensions of the terminal.
|
|
///
|
|
/// If successful, returns `Ok((width, height))`.
|
|
///
|
|
/// # Error
|
|
///
|
|
/// This function will return an error if the output stream is not actually
|
|
/// connected to a TTY instance, or if querying the TTY instance fails.
|
|
pub fn winsize(&mut self) -> IoResult<(int, int)> {
|
|
match self.inner {
|
|
TTY(ref mut tty) => {
|
|
tty.get_winsize().map_err(IoError::from_rtio_error)
|
|
}
|
|
File(..) => {
|
|
Err(IoError {
|
|
kind: OtherIoError,
|
|
desc: "stream is not a tty",
|
|
detail: None,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Controls whether this output stream is a "raw stream" or simply a normal
|
|
/// stream.
|
|
///
|
|
/// # Error
|
|
///
|
|
/// This function will return an error if the output stream is not actually
|
|
/// connected to a TTY instance, or if querying the TTY instance fails.
|
|
pub fn set_raw(&mut self, raw: bool) -> IoResult<()> {
|
|
match self.inner {
|
|
TTY(ref mut tty) => {
|
|
tty.set_raw(raw).map_err(IoError::from_rtio_error)
|
|
}
|
|
File(..) => {
|
|
Err(IoError {
|
|
kind: OtherIoError,
|
|
desc: "stream is not a tty",
|
|
detail: None,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns whether this stream is attached to a TTY instance or not.
|
|
pub fn isatty(&self) -> bool {
|
|
match self.inner {
|
|
TTY(..) => true,
|
|
File(..) => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Writer for StdWriter {
|
|
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
|
|
// As with stdin on windows, stdout often can't handle writes of large
|
|
// sizes. For an example, see #14940. For this reason, chunk the output
|
|
// buffer on windows, but on unix we can just write the whole buffer all
|
|
// at once.
|
|
//
|
|
// For some other references, it appears that this problem has been
|
|
// encountered by others [1] [2]. We choose the number 8KB just because
|
|
// libuv does the same.
|
|
//
|
|
// [1]: https://tahoe-lafs.org/trac/tahoe-lafs/ticket/1232
|
|
// [2]: http://www.mail-archive.com/log4net-dev@logging.apache.org/msg00661.html
|
|
let max_size = if cfg!(windows) {8192} else {uint::MAX};
|
|
for chunk in buf.chunks(max_size) {
|
|
try!(match self.inner {
|
|
TTY(ref mut tty) => tty.write(chunk),
|
|
File(ref mut file) => file.write(chunk),
|
|
}.map_err(IoError::from_rtio_error))
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use prelude::*;
|
|
|
|
#[test]
|
|
fn smoke() {
|
|
// Just make sure we can acquire handles
|
|
stdin();
|
|
stdout();
|
|
stderr();
|
|
}
|
|
|
|
#[test]
|
|
fn capture_stdout() {
|
|
use io::{ChanReader, ChanWriter};
|
|
|
|
let (tx, rx) = channel();
|
|
let (mut r, w) = (ChanReader::new(rx), ChanWriter::new(tx));
|
|
spawn(proc() {
|
|
set_stdout(box w);
|
|
println!("hello!");
|
|
});
|
|
assert_eq!(r.read_to_string().unwrap(), "hello!\n".to_string());
|
|
}
|
|
|
|
#[test]
|
|
fn capture_stderr() {
|
|
use realstd::comm::channel;
|
|
use realstd::io::{ChanReader, ChanWriter, Reader};
|
|
|
|
let (tx, rx) = channel();
|
|
let (mut r, w) = (ChanReader::new(rx), ChanWriter::new(tx));
|
|
spawn(proc() {
|
|
::realstd::io::stdio::set_stderr(box w);
|
|
fail!("my special message");
|
|
});
|
|
let s = r.read_to_string().unwrap();
|
|
assert!(s.as_slice().contains("my special message"));
|
|
}
|
|
}
|