rust/src/libsyntax/parse/parser.rs
Huon Wilson ec790d6fcc Tweak chained comparison errors.
Lower case and give a more precise span: from operator to operator, not
just the last one.
2015-01-25 00:35:06 +11:00

6041 lines
226 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::PathParsingMode::*;
use abi;
use ast::{AssociatedType, BareFnTy};
use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier};
use ast::{ProvidedMethod, Public, Unsafety};
use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue};
use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, BiLt, BiGt, Block};
use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause};
use ast::{Crate, CrateConfig, Decl, DeclItem};
use ast::{DeclLocal, DefaultBlock, DefaultReturn};
use ast::{UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf};
use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
use ast::{ExprBreak, ExprCall, ExprCast};
use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex};
use ast::{ExprLit, ExprLoop, ExprMac, ExprRange};
use ast::{ExprMethodCall, ExprParen, ExprPath, ExprQPath};
use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary};
use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl};
use ast::{FnUnboxedClosureKind, FnMutUnboxedClosureKind};
use ast::{FnOnceUnboxedClosureKind};
use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod, FunctionRetTy};
use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic};
use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst};
use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy};
use ast::{ItemExternCrate, ItemUse};
use ast::{LifetimeDef, Lit, Lit_};
use ast::{LitBool, LitChar, LitByte, LitBinary};
use ast::{LitStr, LitInt, Local, LocalLet};
use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces};
use ast::{MutImmutable, MutMutable, Mac_, MacInvocTT, MatchSource};
use ast::{Method, MutTy, BiMul, Mutability};
use ast::{MethodImplItem, NamedField, UnNeg, NoReturn, NodeId, UnNot};
use ast::{Pat, PatEnum, PatIdent, PatLit, PatRange, PatRegion, PatStruct};
use ast::{PatTup, PatBox, PatWild, PatWildMulti, PatWildSingle};
use ast::{PolyTraitRef};
use ast::{QPath, RequiredMethod};
use ast::{Return, BiShl, BiShr, Stmt, StmtDecl};
use ast::{StmtExpr, StmtSemi, StmtMac, StructDef, StructField};
use ast::{StructVariantKind, BiSub, StrStyle};
use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue};
use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef};
use ast::{TtDelimited, TtSequence, TtToken};
use ast::{TupleVariantKind, Ty, Ty_, TypeBinding};
use ast::{TyFixedLengthVec, TyBareFn};
use ast::{TyTypeof, TyInfer, TypeMethod};
use ast::{TyParam, TyParamBound, TyParen, TyPath, TyPolyTraitRef, TyPtr, TyQPath};
use ast::{TyRptr, TyTup, TyU32, TyVec, UnUniq};
use ast::{TypeImplItem, TypeTraitItem, Typedef, UnboxedClosureKind};
use ast::{UnnamedField, UnsafeBlock};
use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple};
use ast::{Visibility, WhereClause};
use ast;
use ast_util::{self, AS_PREC, ident_to_path, operator_prec};
use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp};
use diagnostic;
use ext::tt::macro_parser;
use parse;
use parse::attr::ParserAttr;
use parse::classify;
use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed};
use parse::lexer::{Reader, TokenAndSpan};
use parse::obsolete::{ParserObsoleteMethods, ObsoleteSyntax};
use parse::token::{self, MatchNt, SubstNt, SpecialVarNt, InternedString};
use parse::token::{keywords, special_idents, SpecialMacroVar};
use parse::{new_sub_parser_from_file, ParseSess};
use print::pprust;
use ptr::P;
use owned_slice::OwnedSlice;
use std::collections::HashSet;
use std::io::fs::PathExtensions;
use std::iter;
use std::mem;
use std::num::Float;
use std::rc::Rc;
use std::slice;
bitflags! {
flags Restrictions: u8 {
const UNRESTRICTED = 0b0000,
const RESTRICTION_STMT_EXPR = 0b0001,
const RESTRICTION_NO_BAR_OP = 0b0010,
const RESTRICTION_NO_STRUCT_LITERAL = 0b0100,
}
}
type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >);
/// How to parse a path. There are four different kinds of paths, all of which
/// are parsed somewhat differently.
#[derive(Copy, PartialEq)]
pub enum PathParsingMode {
/// A path with no type parameters; e.g. `foo::bar::Baz`
NoTypesAllowed,
/// A path with a lifetime and type parameters, with no double colons
/// before the type parameters; e.g. `foo::bar<'a>::Baz<T>`
LifetimeAndTypesWithoutColons,
/// A path with a lifetime and type parameters with double colons before
/// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>`
LifetimeAndTypesWithColons,
}
/// How to parse a bound, whether to allow bound modifiers such as `?`.
#[derive(Copy, PartialEq)]
pub enum BoundParsingMode {
Bare,
Modified,
}
/// The `Err` case indicates a failure to parse any kind of item.
/// The attributes are returned.
type MaybeItem = Result<P<Item>, Vec<Attribute>>;
/// Possibly accept an `token::Interpolated` expression (a pre-parsed expression
/// dropped into the token stream, which happens while parsing the result of
/// macro expansion). Placement of these is not as complex as I feared it would
/// be. The important thing is to make sure that lookahead doesn't balk at
/// `token::Interpolated` tokens.
macro_rules! maybe_whole_expr {
($p:expr) => (
{
let found = match $p.token {
token::Interpolated(token::NtExpr(ref e)) => {
Some((*e).clone())
}
token::Interpolated(token::NtPath(_)) => {
// FIXME: The following avoids an issue with lexical borrowck scopes,
// but the clone is unfortunate.
let pt = match $p.token {
token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(),
_ => unreachable!()
};
let span = $p.span;
Some($p.mk_expr(span.lo, span.hi, ExprPath(pt)))
}
token::Interpolated(token::NtBlock(_)) => {
// FIXME: The following avoids an issue with lexical borrowck scopes,
// but the clone is unfortunate.
let b = match $p.token {
token::Interpolated(token::NtBlock(ref b)) => (*b).clone(),
_ => unreachable!()
};
let span = $p.span;
Some($p.mk_expr(span.lo, span.hi, ExprBlock(b)))
}
_ => None
};
match found {
Some(e) => {
$p.bump();
return e;
}
None => ()
}
}
)
}
/// As maybe_whole_expr, but for things other than expressions
macro_rules! maybe_whole {
($p:expr, $constructor:ident) => (
{
let found = match ($p).token {
token::Interpolated(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
if let Some(token::Interpolated(token::$constructor(x))) = found {
return x.clone();
}
}
);
(no_clone $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
token::Interpolated(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
if let Some(token::Interpolated(token::$constructor(x))) = found {
return x;
}
}
);
(deref $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
token::Interpolated(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
if let Some(token::Interpolated(token::$constructor(x))) = found {
return (*x).clone();
}
}
);
(Some $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
token::Interpolated(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
if let Some(token::Interpolated(token::$constructor(x))) = found {
return Some(x.clone());
}
}
);
(pair_empty $p:expr, $constructor:ident) => (
{
let found = match ($p).token {
token::Interpolated(token::$constructor(_)) => {
Some(($p).bump_and_get())
}
_ => None
};
if let Some(token::Interpolated(token::$constructor(x))) = found {
return (Vec::new(), x);
}
}
)
}
fn maybe_append(mut lhs: Vec<Attribute>, rhs: Option<Vec<Attribute>>)
-> Vec<Attribute> {
match rhs {
Some(ref attrs) => lhs.extend(attrs.iter().map(|a| a.clone())),
None => {}
}
lhs
}
/* ident is handled by common.rs */
pub struct Parser<'a> {
pub sess: &'a ParseSess,
/// the current token:
pub token: token::Token,
/// the span of the current token:
pub span: Span,
/// the span of the prior token:
pub last_span: Span,
pub cfg: CrateConfig,
/// the previous token or None (only stashed sometimes).
pub last_token: Option<Box<token::Token>>,
pub buffer: [TokenAndSpan; 4],
pub buffer_start: isize,
pub buffer_end: isize,
pub tokens_consumed: usize,
pub restrictions: Restrictions,
pub quote_depth: usize, // not (yet) related to the quasiquoter
pub reader: Box<Reader+'a>,
pub interner: Rc<token::IdentInterner>,
/// The set of seen errors about obsolete syntax. Used to suppress
/// extra detail when the same error is seen twice
pub obsolete_set: HashSet<ObsoleteSyntax>,
/// Used to determine the path to externally loaded source files
pub mod_path_stack: Vec<InternedString>,
/// Stack of spans of open delimiters. Used for error message.
pub open_braces: Vec<Span>,
/// Flag if this parser "owns" the directory that it is currently parsing
/// in. This will affect how nested files are looked up.
pub owns_directory: bool,
/// Name of the root module this parser originated from. If `None`, then the
/// name is not known. This does not change while the parser is descending
/// into modules, and sub-parsers have new values for this name.
pub root_module_name: Option<String>,
pub expected_tokens: Vec<TokenType>,
}
#[derive(PartialEq, Eq, Clone)]
pub enum TokenType {
Token(token::Token),
Operator,
}
impl TokenType {
fn to_string(&self) -> String {
match *self {
TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)),
TokenType::Operator => "an operator".to_string(),
}
}
}
fn is_plain_ident_or_underscore(t: &token::Token) -> bool {
t.is_plain_ident() || *t == token::Underscore
}
impl<'a> Parser<'a> {
pub fn new(sess: &'a ParseSess,
cfg: ast::CrateConfig,
mut rdr: Box<Reader+'a>)
-> Parser<'a>
{
let tok0 = rdr.real_token();
let span = tok0.sp;
let placeholder = TokenAndSpan {
tok: token::Underscore,
sp: span,
};
Parser {
reader: rdr,
interner: token::get_ident_interner(),
sess: sess,
cfg: cfg,
token: tok0.tok,
span: span,
last_span: span,
last_token: None,
buffer: [
placeholder.clone(),
placeholder.clone(),
placeholder.clone(),
placeholder.clone(),
],
buffer_start: 0,
buffer_end: 0,
tokens_consumed: 0,
restrictions: UNRESTRICTED,
quote_depth: 0,
obsolete_set: HashSet::new(),
mod_path_stack: Vec::new(),
open_braces: Vec::new(),
owns_directory: true,
root_module_name: None,
expected_tokens: Vec::new(),
}
}
/// Convert a token to a string using self's reader
pub fn token_to_string(token: &token::Token) -> String {
pprust::token_to_string(token)
}
/// Convert the current token to a string using self's reader
pub fn this_token_to_string(&self) -> String {
Parser::token_to_string(&self.token)
}
pub fn unexpected_last(&self, t: &token::Token) -> ! {
let token_str = Parser::token_to_string(t);
let last_span = self.last_span;
self.span_fatal(last_span, &format!("unexpected token: `{}`",
token_str)[]);
}
pub fn unexpected(&self) -> ! {
let this_token = self.this_token_to_string();
self.fatal(&format!("unexpected token: `{}`", this_token)[]);
}
/// Expect and consume the token t. Signal an error if
/// the next token is not t.
pub fn expect(&mut self, t: &token::Token) {
if self.expected_tokens.is_empty() {
if self.token == *t {
self.bump();
} else {
let token_str = Parser::token_to_string(t);
let this_token_str = self.this_token_to_string();
self.fatal(&format!("expected `{}`, found `{}`",
token_str,
this_token_str)[])
}
} else {
self.expect_one_of(slice::ref_slice(t), &[]);
}
}
/// Expect next token to be edible or inedible token. If edible,
/// then consume it; if inedible, then return without consuming
/// anything. Signal a fatal error if next token is unexpected.
pub fn expect_one_of(&mut self,
edible: &[token::Token],
inedible: &[token::Token]) {
fn tokens_to_string(tokens: &[TokenType]) -> String {
let mut i = tokens.iter();
// This might be a sign we need a connect method on Iterator.
let b = i.next()
.map_or("".to_string(), |t| t.to_string());
i.enumerate().fold(b, |mut b, (i, ref a)| {
if tokens.len() > 2 && i == tokens.len() - 2 {
b.push_str(", or ");
} else if tokens.len() == 2 && i == tokens.len() - 2 {
b.push_str(" or ");
} else {
b.push_str(", ");
}
b.push_str(&*a.to_string());
b
})
}
if edible.contains(&self.token) {
self.bump();
} else if inedible.contains(&self.token) {
// leave it in the input
} else {
let mut expected = edible.iter().map(|x| TokenType::Token(x.clone()))
.collect::<Vec<_>>();
expected.extend(inedible.iter().map(|x| TokenType::Token(x.clone())));
expected.push_all(&*self.expected_tokens);
expected.sort_by(|a, b| a.to_string().cmp(&b.to_string()));
expected.dedup();
let expect = tokens_to_string(&expected[]);
let actual = self.this_token_to_string();
self.fatal(
&(if expected.len() != 1 {
(format!("expected one of {}, found `{}`",
expect,
actual))
} else {
(format!("expected {}, found `{}`",
expect,
actual))
}[])
)
}
}
/// Check for erroneous `ident { }`; if matches, signal error and
/// recover (without consuming any expected input token). Returns
/// true if and only if input was consumed for recovery.
pub fn check_for_erroneous_unit_struct_expecting(&mut self, expected: &[token::Token]) -> bool {
if self.token == token::OpenDelim(token::Brace)
&& expected.iter().all(|t| *t != token::OpenDelim(token::Brace))
&& self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) {
// matched; signal non-fatal error and recover.
let span = self.span;
self.span_err(span,
"unit-like struct construction is written with no trailing `{ }`");
self.eat(&token::OpenDelim(token::Brace));
self.eat(&token::CloseDelim(token::Brace));
true
} else {
false
}
}
/// Commit to parsing a complete expression `e` expected to be
/// followed by some token from the set edible + inedible. Recover
/// from anticipated input errors, discarding erroneous characters.
pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token], inedible: &[token::Token]) {
debug!("commit_expr {:?}", e);
if let ExprPath(..) = e.node {
// might be unit-struct construction; check for recoverableinput error.
let mut expected = edible.iter().map(|x| x.clone()).collect::<Vec<_>>();
expected.push_all(inedible);
self.check_for_erroneous_unit_struct_expecting(&expected[]);
}
self.expect_one_of(edible, inedible)
}
pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) {
self.commit_expr(e, &[edible], &[])
}
/// Commit to parsing a complete statement `s`, which expects to be
/// followed by some token from the set edible + inedible. Check
/// for recoverable input errors, discarding erroneous characters.
pub fn commit_stmt(&mut self, edible: &[token::Token], inedible: &[token::Token]) {
if self.last_token
.as_ref()
.map_or(false, |t| t.is_ident() || t.is_path()) {
let mut expected = edible.iter().map(|x| x.clone()).collect::<Vec<_>>();
expected.push_all(&inedible[]);
self.check_for_erroneous_unit_struct_expecting(
&expected[]);
}
self.expect_one_of(edible, inedible)
}
pub fn commit_stmt_expecting(&mut self, edible: token::Token) {
self.commit_stmt(&[edible], &[])
}
pub fn parse_ident(&mut self) -> ast::Ident {
self.check_strict_keywords();
self.check_reserved_keywords();
match self.token {
token::Ident(i, _) => {
self.bump();
i
}
token::Interpolated(token::NtIdent(..)) => {
self.bug("ident interpolation not converted to real token");
}
_ => {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected ident, found `{}`",
token_str)[])
}
}
}
pub fn parse_path_list_item(&mut self) -> ast::PathListItem {
let lo = self.span.lo;
let node = if self.eat_keyword(keywords::Mod) {
let span = self.last_span;
self.span_warn(span, "deprecated syntax; use the `self` keyword now");
ast::PathListMod { id: ast::DUMMY_NODE_ID }
} else if self.eat_keyword(keywords::Self) {
ast::PathListMod { id: ast::DUMMY_NODE_ID }
} else {
let ident = self.parse_ident();
ast::PathListIdent { name: ident, id: ast::DUMMY_NODE_ID }
};
let hi = self.last_span.hi;
spanned(lo, hi, node)
}
/// Check if the next token is `tok`, and return `true` if so.
///
/// This method is will automatically add `tok` to `expected_tokens` if `tok` is not
/// encountered.
pub fn check(&mut self, tok: &token::Token) -> bool {
let is_present = self.token == *tok;
if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); }
is_present
}
/// Consume token 'tok' if it exists. Returns true if the given
/// token was present, false otherwise.
pub fn eat(&mut self, tok: &token::Token) -> bool {
let is_present = self.check(tok);
if is_present { self.bump() }
is_present
}
/// If the next token is the given keyword, eat it and return
/// true. Otherwise, return false.
pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool {
if self.token.is_keyword(kw) {
self.bump();
true
} else {
false
}
}
/// If the given word is not a keyword, signal an error.
/// If the next token is not the given word, signal an error.
/// Otherwise, eat it.
pub fn expect_keyword(&mut self, kw: keywords::Keyword) {
if !self.eat_keyword(kw) {
let id_interned_str = token::get_name(kw.to_name());
let token_str = self.this_token_to_string();
self.fatal(&format!("expected `{}`, found `{}`",
id_interned_str, token_str)[])
}
}
/// Signal an error if the given string is a strict keyword
pub fn check_strict_keywords(&mut self) {
if self.token.is_strict_keyword() {
let token_str = self.this_token_to_string();
let span = self.span;
self.span_err(span,
&format!("expected identifier, found keyword `{}`",
token_str)[]);
}
}
/// Signal an error if the current token is a reserved keyword
pub fn check_reserved_keywords(&mut self) {
if self.token.is_reserved_keyword() {
let token_str = self.this_token_to_string();
self.fatal(&format!("`{}` is a reserved keyword",
token_str)[])
}
}
/// Expect and consume an `&`. If `&&` is seen, replace it with a single
/// `&` and continue. If an `&` is not seen, signal an error.
fn expect_and(&mut self) {
match self.token {
token::BinOp(token::And) => self.bump(),
token::AndAnd => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::BinOp(token::And), lo, span.hi)
}
_ => {
let token_str = self.this_token_to_string();
let found_token =
Parser::token_to_string(&token::BinOp(token::And));
self.fatal(&format!("expected `{}`, found `{}`",
found_token,
token_str)[])
}
}
}
/// Expect and consume a `|`. If `||` is seen, replace it with a single
/// `|` and continue. If a `|` is not seen, signal an error.
fn expect_or(&mut self) {
match self.token {
token::BinOp(token::Or) => self.bump(),
token::OrOr => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::BinOp(token::Or), lo, span.hi)
}
_ => {
let found_token = self.this_token_to_string();
let token_str =
Parser::token_to_string(&token::BinOp(token::Or));
self.fatal(&format!("expected `{}`, found `{}`",
token_str,
found_token)[])
}
}
}
pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
match suffix {
None => {/* everything ok */}
Some(suf) => {
let text = suf.as_str();
if text.is_empty() {
self.span_bug(sp, "found empty literal suffix in Some")
}
self.span_err(sp, &*format!("{} with a suffix is illegal", kind));
}
}
}
/// Attempt to consume a `<`. If `<<` is seen, replace it with a single
/// `<` and continue. If a `<` is not seen, return false.
///
/// This is meant to be used when parsing generics on a path to get the
/// starting token.
fn eat_lt(&mut self) -> bool {
match self.token {
token::Lt => { self.bump(); true }
token::BinOp(token::Shl) => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::Lt, lo, span.hi);
true
}
_ => false,
}
}
fn expect_lt(&mut self) {
if !self.eat_lt() {
let found_token = self.this_token_to_string();
let token_str = Parser::token_to_string(&token::Lt);
self.fatal(&format!("expected `{}`, found `{}`",
token_str,
found_token)[])
}
}
/// Parse a sequence bracketed by `|` and `|`, stopping before the `|`.
fn parse_seq_to_before_or<T, F>(&mut self,
sep: &token::Token,
mut f: F)
-> Vec<T> where
F: FnMut(&mut Parser) -> T,
{
let mut first = true;
let mut vector = Vec::new();
while self.token != token::BinOp(token::Or) &&
self.token != token::OrOr {
if first {
first = false
} else {
self.expect(sep)
}
vector.push(f(self))
}
vector
}
/// Expect and consume a GT. if a >> is seen, replace it
/// with a single > and continue. If a GT is not seen,
/// signal an error.
pub fn expect_gt(&mut self) {
match self.token {
token::Gt => self.bump(),
token::BinOp(token::Shr) => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::Gt, lo, span.hi)
}
token::BinOpEq(token::Shr) => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::Ge, lo, span.hi)
}
token::Ge => {
let span = self.span;
let lo = span.lo + BytePos(1);
self.replace_token(token::Eq, lo, span.hi)
}
_ => {
let gt_str = Parser::token_to_string(&token::Gt);
let this_token_str = self.this_token_to_string();
self.fatal(&format!("expected `{}`, found `{}`",
gt_str,
this_token_str)[])
}
}
}
pub fn parse_seq_to_before_gt_or_return<T, F>(&mut self,
sep: Option<token::Token>,
mut f: F)
-> (OwnedSlice<T>, bool) where
F: FnMut(&mut Parser) -> Option<T>,
{
let mut v = Vec::new();
// This loop works by alternating back and forth between parsing types
// and commas. For example, given a string `A, B,>`, the parser would
// first parse `A`, then a comma, then `B`, then a comma. After that it
// would encounter a `>` and stop. This lets the parser handle trailing
// commas in generic parameters, because it can stop either after
// parsing a type or after parsing a comma.
for i in iter::count(0us, 1) {
if self.check(&token::Gt)
|| self.token == token::BinOp(token::Shr)
|| self.token == token::Ge
|| self.token == token::BinOpEq(token::Shr) {
break;
}
if i % 2 == 0 {
match f(self) {
Some(result) => v.push(result),
None => return (OwnedSlice::from_vec(v), true)
}
} else {
sep.as_ref().map(|t| self.expect(t));
}
}
return (OwnedSlice::from_vec(v), false);
}
/// Parse a sequence bracketed by '<' and '>', stopping
/// before the '>'.
pub fn parse_seq_to_before_gt<T, F>(&mut self,
sep: Option<token::Token>,
mut f: F)
-> OwnedSlice<T> where
F: FnMut(&mut Parser) -> T,
{
let (result, returned) = self.parse_seq_to_before_gt_or_return(sep, |p| Some(f(p)));
assert!(!returned);
return result;
}
pub fn parse_seq_to_gt<T, F>(&mut self,
sep: Option<token::Token>,
f: F)
-> OwnedSlice<T> where
F: FnMut(&mut Parser) -> T,
{
let v = self.parse_seq_to_before_gt(sep, f);
self.expect_gt();
return v;
}
pub fn parse_seq_to_gt_or_return<T, F>(&mut self,
sep: Option<token::Token>,
f: F)
-> (OwnedSlice<T>, bool) where
F: FnMut(&mut Parser) -> Option<T>,
{
let (v, returned) = self.parse_seq_to_before_gt_or_return(sep, f);
if !returned {
self.expect_gt();
}
return (v, returned);
}
/// Parse a sequence, including the closing delimiter. The function
/// f must consume tokens until reaching the next separator or
/// closing bracket.
pub fn parse_seq_to_end<T, F>(&mut self,
ket: &token::Token,
sep: SeqSep,
f: F)
-> Vec<T> where
F: FnMut(&mut Parser) -> T,
{
let val = self.parse_seq_to_before_end(ket, sep, f);
self.bump();
val
}
/// Parse a sequence, not including the closing delimiter. The function
/// f must consume tokens until reaching the next separator or
/// closing bracket.
pub fn parse_seq_to_before_end<T, F>(&mut self,
ket: &token::Token,
sep: SeqSep,
mut f: F)
-> Vec<T> where
F: FnMut(&mut Parser) -> T,
{
let mut first: bool = true;
let mut v = vec!();
while self.token != *ket {
match sep.sep {
Some(ref t) => {
if first { first = false; }
else { self.expect(t); }
}
_ => ()
}
if sep.trailing_sep_allowed && self.check(ket) { break; }
v.push(f(self));
}
return v;
}
/// Parse a sequence, including the closing delimiter. The function
/// f must consume tokens until reaching the next separator or
/// closing bracket.
pub fn parse_unspanned_seq<T, F>(&mut self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: F)
-> Vec<T> where
F: FnMut(&mut Parser) -> T,
{
self.expect(bra);
let result = self.parse_seq_to_before_end(ket, sep, f);
self.bump();
result
}
/// Parse a sequence parameter of enum variant. For consistency purposes,
/// these should not be empty.
pub fn parse_enum_variant_seq<T, F>(&mut self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: F)
-> Vec<T> where
F: FnMut(&mut Parser) -> T,
{
let result = self.parse_unspanned_seq(bra, ket, sep, f);
if result.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
"nullary enum variants are written with no trailing `( )`");
}
result
}
// NB: Do not use this function unless you actually plan to place the
// spanned list in the AST.
pub fn parse_seq<T, F>(&mut self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: F)
-> Spanned<Vec<T>> where
F: FnMut(&mut Parser) -> T,
{
let lo = self.span.lo;
self.expect(bra);
let result = self.parse_seq_to_before_end(ket, sep, f);
let hi = self.span.hi;
self.bump();
spanned(lo, hi, result)
}
/// Advance the parser by one token
pub fn bump(&mut self) {
self.last_span = self.span;
// Stash token for error recovery (sometimes; clone is not necessarily cheap).
self.last_token = if self.token.is_ident() || self.token.is_path() {
Some(box self.token.clone())
} else {
None
};
let next = if self.buffer_start == self.buffer_end {
self.reader.real_token()
} else {
// Avoid token copies with `replace`.
let buffer_start = self.buffer_start as usize;
let next_index = (buffer_start + 1) & 3 as usize;
self.buffer_start = next_index as isize;
let placeholder = TokenAndSpan {
tok: token::Underscore,
sp: self.span,
};
mem::replace(&mut self.buffer[buffer_start], placeholder)
};
self.span = next.sp;
self.token = next.tok;
self.tokens_consumed += 1us;
self.expected_tokens.clear();
// check after each token
self.check_unknown_macro_variable();
}
/// Advance the parser by one token and return the bumped token.
pub fn bump_and_get(&mut self) -> token::Token {
let old_token = mem::replace(&mut self.token, token::Underscore);
self.bump();
old_token
}
/// EFFECT: replace the current token and span with the given one
pub fn replace_token(&mut self,
next: token::Token,
lo: BytePos,
hi: BytePos) {
self.last_span = mk_sp(self.span.lo, lo);
self.token = next;
self.span = mk_sp(lo, hi);
}
pub fn buffer_length(&mut self) -> isize {
if self.buffer_start <= self.buffer_end {
return self.buffer_end - self.buffer_start;
}
return (4 - self.buffer_start) + self.buffer_end;
}
pub fn look_ahead<R, F>(&mut self, distance: usize, f: F) -> R where
F: FnOnce(&token::Token) -> R,
{
let dist = distance as isize;
while self.buffer_length() < dist {
self.buffer[self.buffer_end as usize] = self.reader.real_token();
self.buffer_end = (self.buffer_end + 1) & 3;
}
f(&self.buffer[((self.buffer_start + dist - 1) & 3) as usize].tok)
}
pub fn fatal(&self, m: &str) -> ! {
self.sess.span_diagnostic.span_fatal(self.span, m)
}
pub fn span_fatal(&self, sp: Span, m: &str) -> ! {
self.sess.span_diagnostic.span_fatal(sp, m)
}
pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> ! {
self.span_err(sp, m);
self.span_help(sp, help);
panic!(diagnostic::FatalError);
}
pub fn span_note(&self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_note(sp, m)
}
pub fn span_help(&self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_help(sp, m)
}
pub fn bug(&self, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(self.span, m)
}
pub fn warn(&self, m: &str) {
self.sess.span_diagnostic.span_warn(self.span, m)
}
pub fn span_warn(&self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_warn(sp, m)
}
pub fn span_err(&self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_err(sp, m)
}
pub fn span_bug(&self, sp: Span, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(sp, m)
}
pub fn abort_if_errors(&self) {
self.sess.span_diagnostic.handler().abort_if_errors();
}
pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString {
token::get_ident(id)
}
/// Is the current token one of the keywords that signals a bare function
/// type?
pub fn token_is_bare_fn_keyword(&mut self) -> bool {
self.token.is_keyword(keywords::Fn) ||
self.token.is_keyword(keywords::Unsafe) ||
self.token.is_keyword(keywords::Extern)
}
/// Is the current token one of the keywords that signals a closure type?
pub fn token_is_closure_keyword(&mut self) -> bool {
self.token.is_keyword(keywords::Unsafe)
}
pub fn get_lifetime(&mut self) -> ast::Ident {
match self.token {
token::Lifetime(ref ident) => *ident,
_ => self.bug("not a lifetime"),
}
}
pub fn parse_for_in_type(&mut self) -> Ty_ {
/*
Parses whatever can come after a `for` keyword in a type.
The `for` has already been consumed.
Deprecated:
- for <'lt> |S| -> T
Eventually:
- for <'lt> [unsafe] [extern "ABI"] fn (S) -> T
- for <'lt> path::foo(a, b)
*/
// parse <'lt>
let lifetime_defs = self.parse_late_bound_lifetime_defs();
// examine next token to decide to do
if self.eat_keyword(keywords::Proc) {
self.parse_proc_type(lifetime_defs)
} else if self.token_is_bare_fn_keyword() || self.token_is_closure_keyword() {
self.parse_ty_bare_fn_or_ty_closure(lifetime_defs)
} else if self.check(&token::ModSep) ||
self.token.is_ident() ||
self.token.is_path()
{
let trait_ref = self.parse_trait_ref();
let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs,
trait_ref: trait_ref };
let other_bounds = if self.eat(&token::BinOp(token::Plus)) {
self.parse_ty_param_bounds(BoundParsingMode::Bare)
} else {
OwnedSlice::empty()
};
let all_bounds =
Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter()
.chain(other_bounds.into_vec().into_iter())
.collect();
ast::TyPolyTraitRef(all_bounds)
} else {
self.parse_ty_closure(lifetime_defs)
}
}
pub fn parse_ty_path(&mut self) -> Ty_ {
let path = self.parse_path(LifetimeAndTypesWithoutColons);
TyPath(path, ast::DUMMY_NODE_ID)
}
/// parse a TyBareFn type:
pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> Ty_ {
/*
[unsafe] [extern "ABI"] fn <'lt> (S) -> T
^~~~^ ^~~~^ ^~~~^ ^~^ ^
| | | | |
| | | | Return type
| | | Argument types
| | Lifetimes
| ABI
Function Style
*/
let unsafety = self.parse_unsafety();
let abi = if self.eat_keyword(keywords::Extern) {
self.parse_opt_abi().unwrap_or(abi::C)
} else {
abi::Rust
};
self.expect_keyword(keywords::Fn);
let lifetime_defs = self.parse_legacy_lifetime_defs(lifetime_defs);
let (inputs, variadic) = self.parse_fn_args(false, true);
let ret_ty = self.parse_ret_ty();
let decl = P(FnDecl {
inputs: inputs,
output: ret_ty,
variadic: variadic
});
TyBareFn(P(BareFnTy {
abi: abi,
unsafety: unsafety,
lifetimes: lifetime_defs,
decl: decl
}))
}
/// Parses a procedure type (`proc`). The initial `proc` keyword must
/// already have been parsed.
pub fn parse_proc_type(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> Ty_ {
/*
proc <'lt> (S) [:Bounds] -> T
^~~^ ^~~~^ ^ ^~~~~~~~^ ^
| | | | |
| | | | Return type
| | | Bounds
| | Argument types
| Legacy lifetimes
the `proc` keyword (already consumed)
*/
let proc_span = self.last_span;
// To be helpful, parse the proc as ever
let _ = self.parse_legacy_lifetime_defs(lifetime_defs);
let _ = self.parse_fn_args(false, false);
let _ = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare);
let _ = self.parse_ret_ty();
self.obsolete(proc_span, ObsoleteSyntax::ProcType);
TyInfer
}
/// Parses an optional unboxed closure kind (`&:`, `&mut:`, or `:`).
pub fn parse_optional_unboxed_closure_kind(&mut self)
-> Option<UnboxedClosureKind> {
if self.check(&token::BinOp(token::And)) &&
self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) &&
self.look_ahead(2, |t| *t == token::Colon) {
self.bump();
self.bump();
self.bump();
return Some(FnMutUnboxedClosureKind)
}
if self.token == token::BinOp(token::And) &&
self.look_ahead(1, |t| *t == token::Colon) {
self.bump();
self.bump();
return Some(FnUnboxedClosureKind)
}
if self.eat(&token::Colon) {
return Some(FnOnceUnboxedClosureKind)
}
return None
}
pub fn parse_ty_bare_fn_or_ty_closure(&mut self, lifetime_defs: Vec<LifetimeDef>) -> Ty_ {
// Both bare fns and closures can begin with stuff like unsafe
// and extern. So we just scan ahead a few tokens to see if we see
// a `fn`.
//
// Closure: [unsafe] <'lt> |S| [:Bounds] -> T
// Fn: [unsafe] [extern "ABI"] fn <'lt> (S) -> T
if self.token.is_keyword(keywords::Fn) {
self.parse_ty_bare_fn(lifetime_defs)
} else if self.token.is_keyword(keywords::Extern) {
self.parse_ty_bare_fn(lifetime_defs)
} else if self.token.is_keyword(keywords::Unsafe) {
if self.look_ahead(1, |t| t.is_keyword(keywords::Fn) ||
t.is_keyword(keywords::Extern)) {
self.parse_ty_bare_fn(lifetime_defs)
} else {
self.parse_ty_closure(lifetime_defs)
}
} else {
self.parse_ty_closure(lifetime_defs)
}
}
/// Parse a TyClosure type
pub fn parse_ty_closure(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> Ty_ {
/*
[unsafe] <'lt> |S| [:Bounds] -> T
^~~~~~~^ ^~~~^ ^ ^~~~~~~~^ ^
| | | | |
| | | | Return type
| | | Closure bounds
| | Argument types
| Deprecated lifetime defs
|
Function Style
*/
let ty_closure_span = self.last_span;
// To be helpful, parse the closure type as ever
let _ = self.parse_unsafety();
let _ = self.parse_legacy_lifetime_defs(lifetime_defs);
if !self.eat(&token::OrOr) {
self.expect_or();
let _ = self.parse_seq_to_before_or(
&token::Comma,
|p| p.parse_arg_general(false));
self.expect_or();
}
let _ = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare);
let _ = self.parse_ret_ty();
self.obsolete(ty_closure_span, ObsoleteSyntax::ClosureType);
TyInfer
}
pub fn parse_unsafety(&mut self) -> Unsafety {
if self.eat_keyword(keywords::Unsafe) {
return Unsafety::Unsafe;
} else {
return Unsafety::Normal;
}
}
/// Parses `[ 'for' '<' lifetime_defs '>' ]'
fn parse_legacy_lifetime_defs(&mut self,
lifetime_defs: Vec<ast::LifetimeDef>)
-> Vec<ast::LifetimeDef>
{
if self.token == token::Lt {
self.bump();
if lifetime_defs.is_empty() {
self.warn("deprecated syntax; use the `for` keyword now \
(e.g. change `fn<'a>` to `for<'a> fn`)");
let lifetime_defs = self.parse_lifetime_defs();
self.expect_gt();
lifetime_defs
} else {
self.fatal("cannot use new `for` keyword and older syntax together");
}
} else {
lifetime_defs
}
}
/// Parses `type Foo;` in a trait declaration only. The `type` keyword has
/// already been parsed.
fn parse_associated_type(&mut self, attrs: Vec<Attribute>)
-> AssociatedType
{
let ty_param = self.parse_ty_param();
self.expect(&token::Semi);
AssociatedType {
attrs: attrs,
ty_param: ty_param,
}
}
/// Parses `type Foo = TYPE;` in an implementation declaration only. The
/// `type` keyword has already been parsed.
fn parse_typedef(&mut self, attrs: Vec<Attribute>, vis: Visibility)
-> Typedef {
let lo = self.span.lo;
let ident = self.parse_ident();
self.expect(&token::Eq);
let typ = self.parse_ty_sum();
let hi = self.span.hi;
self.expect(&token::Semi);
Typedef {
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
ident: ident,
vis: vis,
attrs: attrs,
typ: typ,
}
}
/// Parse the items in a trait declaration
pub fn parse_trait_items(&mut self) -> Vec<TraitItem> {
self.parse_unspanned_seq(
&token::OpenDelim(token::Brace),
&token::CloseDelim(token::Brace),
seq_sep_none(),
|p| {
let attrs = p.parse_outer_attributes();
if p.eat_keyword(keywords::Type) {
TypeTraitItem(P(p.parse_associated_type(attrs)))
} else {
let lo = p.span.lo;
let vis = p.parse_visibility();
let style = p.parse_unsafety();
let abi = if p.eat_keyword(keywords::Extern) {
p.parse_opt_abi().unwrap_or(abi::C)
} else {
abi::Rust
};
p.expect_keyword(keywords::Fn);
let ident = p.parse_ident();
let mut generics = p.parse_generics();
let (explicit_self, d) = p.parse_fn_decl_with_self(|p| {
// This is somewhat dubious; We don't want to allow
// argument names to be left off if there is a
// definition...
p.parse_arg_general(false)
});
p.parse_where_clause(&mut generics);
let hi = p.last_span.hi;
match p.token {
token::Semi => {
p.bump();
debug!("parse_trait_methods(): parsing required method");
RequiredMethod(TypeMethod {
ident: ident,
attrs: attrs,
unsafety: style,
decl: d,
generics: generics,
abi: abi,
explicit_self: explicit_self,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
vis: vis,
})
}
token::OpenDelim(token::Brace) => {
debug!("parse_trait_methods(): parsing provided method");
let (inner_attrs, body) =
p.parse_inner_attrs_and_block();
let mut attrs = attrs;
attrs.push_all(&inner_attrs[]);
ProvidedMethod(P(ast::Method {
attrs: attrs,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
node: ast::MethDecl(ident,
generics,
abi,
explicit_self,
style,
d,
body,
vis)
}))
}
_ => {
let token_str = p.this_token_to_string();
p.fatal(&format!("expected `;` or `{{`, found `{}`",
token_str)[])
}
}
}
})
}
/// Parse a possibly mutable type
pub fn parse_mt(&mut self) -> MutTy {
let mutbl = self.parse_mutability();
let t = self.parse_ty();
MutTy { ty: t, mutbl: mutbl }
}
/// Parse optional return type [ -> TY ] in function decl
pub fn parse_ret_ty(&mut self) -> FunctionRetTy {
if self.eat(&token::RArrow) {
if self.eat(&token::Not) {
NoReturn(self.span)
} else {
let t = self.parse_ty();
// We used to allow `fn foo() -> &T + U`, but don't
// anymore. If we see it, report a useful error. This
// only makes sense because `parse_ret_ty` is only
// used in fn *declarations*, not fn types or where
// clauses (i.e., not when parsing something like
// `FnMut() -> T + Send`, where the `+` is legal).
if self.token == token::BinOp(token::Plus) {
self.warn("deprecated syntax: `()` are required, see RFC 438 for details");
}
Return(t)
}
} else {
let pos = self.span.lo;
DefaultReturn(mk_sp(pos, pos))
}
}
/// Parse a type in a context where `T1+T2` is allowed.
pub fn parse_ty_sum(&mut self) -> P<Ty> {
let lo = self.span.lo;
let lhs = self.parse_ty();
if !self.eat(&token::BinOp(token::Plus)) {
return lhs;
}
let bounds = self.parse_ty_param_bounds(BoundParsingMode::Bare);
// In type grammar, `+` is treated like a binary operator,
// and hence both L and R side are required.
if bounds.len() == 0 {
let last_span = self.last_span;
self.span_err(last_span,
"at least one type parameter bound \
must be specified");
}
let sp = mk_sp(lo, self.last_span.hi);
let sum = ast::TyObjectSum(lhs, bounds);
P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp})
}
/// Parse a type.
pub fn parse_ty(&mut self) -> P<Ty> {
maybe_whole!(no_clone self, NtTy);
let lo = self.span.lo;
let t = if self.check(&token::OpenDelim(token::Paren)) {
self.bump();
// (t) is a parenthesized ty
// (t,) is the type of a tuple with only one field,
// of type t
let mut ts = vec![];
let mut last_comma = false;
while self.token != token::CloseDelim(token::Paren) {
ts.push(self.parse_ty_sum());
if self.check(&token::Comma) {
last_comma = true;
self.bump();
} else {
last_comma = false;
break;
}
}
self.expect(&token::CloseDelim(token::Paren));
if ts.len() == 1 && !last_comma {
TyParen(ts.into_iter().nth(0).unwrap())
} else {
TyTup(ts)
}
} else if self.check(&token::BinOp(token::Star)) {
// STAR POINTER (bare pointer?)
self.bump();
TyPtr(self.parse_ptr())
} else if self.check(&token::OpenDelim(token::Bracket)) {
// VECTOR
self.expect(&token::OpenDelim(token::Bracket));
let t = self.parse_ty_sum();
// Parse the `; e` in `[ i32; e ]`
// where `e` is a const expression
let t = match self.maybe_parse_fixed_length_of_vec() {
None => TyVec(t),
Some(suffix) => TyFixedLengthVec(t, suffix)
};
self.expect(&token::CloseDelim(token::Bracket));
t
} else if self.check(&token::BinOp(token::And)) ||
self.token == token::AndAnd {
// BORROWED POINTER
self.expect_and();
self.parse_borrowed_pointee()
} else if self.token.is_keyword(keywords::For) {
self.parse_for_in_type()
} else if self.token_is_bare_fn_keyword() ||
self.token_is_closure_keyword() {
// BARE FUNCTION OR CLOSURE
self.parse_ty_bare_fn_or_ty_closure(Vec::new())
} else if self.check(&token::BinOp(token::Or)) ||
self.token == token::OrOr ||
(self.token == token::Lt &&
self.look_ahead(1, |t| {
*t == token::Gt || t.is_lifetime()
})) {
// CLOSURE
self.parse_ty_closure(Vec::new())
} else if self.eat_keyword(keywords::Typeof) {
// TYPEOF
// In order to not be ambiguous, the type must be surrounded by parens.
self.expect(&token::OpenDelim(token::Paren));
let e = self.parse_expr();
self.expect(&token::CloseDelim(token::Paren));
TyTypeof(e)
} else if self.eat_keyword(keywords::Proc) {
self.parse_proc_type(Vec::new())
} else if self.eat_lt() {
// QUALIFIED PATH `<TYPE as TRAIT_REF>::item`
let self_type = self.parse_ty_sum();
self.expect_keyword(keywords::As);
let trait_ref = self.parse_trait_ref();
self.expect(&token::Gt);
self.expect(&token::ModSep);
let item_name = self.parse_ident();
TyQPath(P(QPath {
self_type: self_type,
trait_ref: P(trait_ref),
item_path: ast::PathSegment {
identifier: item_name,
parameters: ast::PathParameters::none()
}
}))
} else if self.check(&token::ModSep) ||
self.token.is_ident() ||
self.token.is_path() {
// NAMED TYPE
self.parse_ty_path()
} else if self.eat(&token::Underscore) {
// TYPE TO BE INFERRED
TyInfer
} else {
let this_token_str = self.this_token_to_string();
let msg = format!("expected type, found `{}`", this_token_str);
self.fatal(&msg[]);
};
let sp = mk_sp(lo, self.last_span.hi);
P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp})
}
pub fn parse_borrowed_pointee(&mut self) -> Ty_ {
// look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
let opt_lifetime = self.parse_opt_lifetime();
let mt = self.parse_mt();
return TyRptr(opt_lifetime, mt);
}
pub fn parse_ptr(&mut self) -> MutTy {
let mutbl = if self.eat_keyword(keywords::Mut) {
MutMutable
} else if self.eat_keyword(keywords::Const) {
MutImmutable
} else {
let span = self.last_span;
self.span_err(span,
"bare raw pointers are no longer allowed, you should \
likely use `*mut T`, but otherwise `*T` is now \
known as `*const T`");
MutImmutable
};
let t = self.parse_ty();
MutTy { ty: t, mutbl: mutbl }
}
pub fn is_named_argument(&mut self) -> bool {
let offset = match self.token {
token::BinOp(token::And) => 1,
token::AndAnd => 1,
_ if self.token.is_keyword(keywords::Mut) => 1,
_ => 0
};
debug!("parser is_named_argument offset:{}", offset);
if offset == 0 {
is_plain_ident_or_underscore(&self.token)
&& self.look_ahead(1, |t| *t == token::Colon)
} else {
self.look_ahead(offset, |t| is_plain_ident_or_underscore(t))
&& self.look_ahead(offset + 1, |t| *t == token::Colon)
}
}
/// This version of parse arg doesn't necessarily require
/// identifier names.
pub fn parse_arg_general(&mut self, require_name: bool) -> Arg {
let pat = if require_name || self.is_named_argument() {
debug!("parse_arg_general parse_pat (require_name:{})",
require_name);
let pat = self.parse_pat();
self.expect(&token::Colon);
pat
} else {
debug!("parse_arg_general ident_to_pat");
ast_util::ident_to_pat(ast::DUMMY_NODE_ID,
self.last_span,
special_idents::invalid)
};
let t = self.parse_ty_sum();
Arg {
ty: t,
pat: pat,
id: ast::DUMMY_NODE_ID,
}
}
/// Parse a single function argument
pub fn parse_arg(&mut self) -> Arg {
self.parse_arg_general(true)
}
/// Parse an argument in a lambda header e.g. |arg, arg|
pub fn parse_fn_block_arg(&mut self) -> Arg {
let pat = self.parse_pat();
let t = if self.eat(&token::Colon) {
self.parse_ty_sum()
} else {
P(Ty {
id: ast::DUMMY_NODE_ID,
node: TyInfer,
span: mk_sp(self.span.lo, self.span.hi),
})
};
Arg {
ty: t,
pat: pat,
id: ast::DUMMY_NODE_ID
}
}
pub fn maybe_parse_fixed_length_of_vec(&mut self) -> Option<P<ast::Expr>> {
if self.check(&token::Semi) {
self.bump();
Some(self.parse_expr())
} else {
None
}
}
/// Matches token_lit = LIT_INTEGER | ...
pub fn lit_from_token(&self, tok: &token::Token) -> Lit_ {
match *tok {
token::Interpolated(token::NtExpr(ref v)) => {
match v.node {
ExprLit(ref lit) => { lit.node.clone() }
_ => { self.unexpected_last(tok); }
}
}
token::Literal(lit, suf) => {
let (suffix_illegal, out) = match lit {
token::Byte(i) => (true, LitByte(parse::byte_lit(i.as_str()).0)),
token::Char(i) => (true, LitChar(parse::char_lit(i.as_str()).0)),
// there are some valid suffixes for integer and
// float literals, so all the handling is done
// internally.
token::Integer(s) => {
(false, parse::integer_lit(s.as_str(),
suf.as_ref().map(|s| s.as_str()),
&self.sess.span_diagnostic,
self.last_span))
}
token::Float(s) => {
(false, parse::float_lit(s.as_str(),
suf.as_ref().map(|s| s.as_str()),
&self.sess.span_diagnostic,
self.last_span))
}
token::Str_(s) => {
(true,
LitStr(token::intern_and_get_ident(parse::str_lit(s.as_str()).as_slice()),
ast::CookedStr))
}
token::StrRaw(s, n) => {
(true,
LitStr(
token::intern_and_get_ident(&parse::raw_str_lit(s.as_str())[]),
ast::RawStr(n)))
}
token::Binary(i) =>
(true, LitBinary(parse::binary_lit(i.as_str()))),
token::BinaryRaw(i, _) =>
(true,
LitBinary(Rc::new(i.as_str().as_bytes().iter().map(|&x| x).collect()))),
};
if suffix_illegal {
let sp = self.last_span;
self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf)
}
out
}
_ => { self.unexpected_last(tok); }
}
}
/// Matches lit = true | false | token_lit
pub fn parse_lit(&mut self) -> Lit {
let lo = self.span.lo;
let lit = if self.eat_keyword(keywords::True) {
LitBool(true)
} else if self.eat_keyword(keywords::False) {
LitBool(false)
} else {
let token = self.bump_and_get();
let lit = self.lit_from_token(&token);
lit
};
codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) }
}
/// matches '-' lit | lit
pub fn parse_literal_maybe_minus(&mut self) -> P<Expr> {
let minus_lo = self.span.lo;
let minus_present = self.eat(&token::BinOp(token::Minus));
let lo = self.span.lo;
let literal = P(self.parse_lit());
let hi = self.span.hi;
let expr = self.mk_expr(lo, hi, ExprLit(literal));
if minus_present {
let minus_hi = self.span.hi;
let unary = self.mk_unary(UnNeg, expr);
self.mk_expr(minus_lo, minus_hi, unary)
} else {
expr
}
}
/// Parses a path and optional type parameter bounds, depending on the
/// mode. The `mode` parameter determines whether lifetimes, types, and/or
/// bounds are permitted and whether `::` must precede type parameter
/// groups.
pub fn parse_path(&mut self, mode: PathParsingMode) -> ast::Path {
// Check for a whole path...
let found = match self.token {
token::Interpolated(token::NtPath(_)) => Some(self.bump_and_get()),
_ => None,
};
if let Some(token::Interpolated(token::NtPath(box path))) = found {
return path;
}
let lo = self.span.lo;
let is_global = self.eat(&token::ModSep);
// Parse any number of segments and bound sets. A segment is an
// identifier followed by an optional lifetime and a set of types.
// A bound set is a set of type parameter bounds.
let segments = match mode {
LifetimeAndTypesWithoutColons => {
self.parse_path_segments_without_colons()
}
LifetimeAndTypesWithColons => {
self.parse_path_segments_with_colons()
}
NoTypesAllowed => {
self.parse_path_segments_without_types()
}
};
// Assemble the span.
let span = mk_sp(lo, self.last_span.hi);
// Assemble the result.
ast::Path {
span: span,
global: is_global,
segments: segments,
}
}
/// Examples:
/// - `a::b<T,U>::c<V,W>`
/// - `a::b<T,U>::c(V) -> W`
/// - `a::b<T,U>::c(V)`
pub fn parse_path_segments_without_colons(&mut self) -> Vec<ast::PathSegment> {
let mut segments = Vec::new();
loop {
// First, parse an identifier.
let identifier = self.parse_ident();
// Parse types, optionally.
let parameters = if self.eat_lt() {
let (lifetimes, types, bindings) = self.parse_generic_values_after_lt();
ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
lifetimes: lifetimes,
types: OwnedSlice::from_vec(types),
bindings: OwnedSlice::from_vec(bindings),
})
} else if self.eat(&token::OpenDelim(token::Paren)) {
let inputs = self.parse_seq_to_end(
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_ty_sum());
let output_ty = if self.eat(&token::RArrow) {
Some(self.parse_ty())
} else {
None
};
ast::ParenthesizedParameters(ast::ParenthesizedParameterData {
inputs: inputs,
output: output_ty
})
} else {
ast::PathParameters::none()
};
// Assemble and push the result.
segments.push(ast::PathSegment { identifier: identifier,
parameters: parameters });
// Continue only if we see a `::`
if !self.eat(&token::ModSep) {
return segments;
}
}
}
/// Examples:
/// - `a::b::<T,U>::c`
pub fn parse_path_segments_with_colons(&mut self) -> Vec<ast::PathSegment> {
let mut segments = Vec::new();
loop {
// First, parse an identifier.
let identifier = self.parse_ident();
// If we do not see a `::`, stop.
if !self.eat(&token::ModSep) {
segments.push(ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none()
});
return segments;
}
// Check for a type segment.
if self.eat_lt() {
// Consumed `a::b::<`, go look for types
let (lifetimes, types, bindings) = self.parse_generic_values_after_lt();
segments.push(ast::PathSegment {
identifier: identifier,
parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
lifetimes: lifetimes,
types: OwnedSlice::from_vec(types),
bindings: OwnedSlice::from_vec(bindings),
}),
});
// Consumed `a::b::<T,U>`, check for `::` before proceeding
if !self.eat(&token::ModSep) {
return segments;
}
} else {
// Consumed `a::`, go look for `b`
segments.push(ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none(),
});
}
}
}
/// Examples:
/// - `a::b::c`
pub fn parse_path_segments_without_types(&mut self) -> Vec<ast::PathSegment> {
let mut segments = Vec::new();
loop {
// First, parse an identifier.
let identifier = self.parse_ident();
// Assemble and push the result.
segments.push(ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none()
});
// If we do not see a `::`, stop.
if !self.eat(&token::ModSep) {
return segments;
}
}
}
/// parses 0 or 1 lifetime
pub fn parse_opt_lifetime(&mut self) -> Option<ast::Lifetime> {
match self.token {
token::Lifetime(..) => {
Some(self.parse_lifetime())
}
_ => {
None
}
}
}
/// Parses a single lifetime
/// Matches lifetime = LIFETIME
pub fn parse_lifetime(&mut self) -> ast::Lifetime {
match self.token {
token::Lifetime(i) => {
let span = self.span;
self.bump();
return ast::Lifetime {
id: ast::DUMMY_NODE_ID,
span: span,
name: i.name
};
}
_ => {
self.fatal(&format!("expected a lifetime name")[]);
}
}
}
/// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def =
/// lifetime [':' lifetimes]`
pub fn parse_lifetime_defs(&mut self) -> Vec<ast::LifetimeDef> {
let mut res = Vec::new();
loop {
match self.token {
token::Lifetime(_) => {
let lifetime = self.parse_lifetime();
let bounds =
if self.eat(&token::Colon) {
self.parse_lifetimes(token::BinOp(token::Plus))
} else {
Vec::new()
};
res.push(ast::LifetimeDef { lifetime: lifetime,
bounds: bounds });
}
_ => {
return res;
}
}
match self.token {
token::Comma => { self.bump(); }
token::Gt => { return res; }
token::BinOp(token::Shr) => { return res; }
_ => {
let this_token_str = self.this_token_to_string();
let msg = format!("expected `,` or `>` after lifetime \
name, found `{}`",
this_token_str);
self.fatal(&msg[]);
}
}
}
}
/// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty
/// one too, but putting that in there messes up the grammar....
///
/// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by
/// either a comma or `>`. Used when parsing type parameter lists, where we expect something
/// like `<'a, 'b, T>`.
pub fn parse_lifetimes(&mut self, sep: token::Token) -> Vec<ast::Lifetime> {
let mut res = Vec::new();
loop {
match self.token {
token::Lifetime(_) => {
res.push(self.parse_lifetime());
}
_ => {
return res;
}
}
if self.token != sep {
return res;
}
self.bump();
}
}
/// Parse mutability declaration (mut/const/imm)
pub fn parse_mutability(&mut self) -> Mutability {
if self.eat_keyword(keywords::Mut) {
MutMutable
} else {
MutImmutable
}
}
/// Parse ident COLON expr
pub fn parse_field(&mut self) -> Field {
let lo = self.span.lo;
let i = self.parse_ident();
let hi = self.last_span.hi;
self.expect(&token::Colon);
let e = self.parse_expr();
ast::Field {
ident: spanned(lo, hi, i),
span: mk_sp(lo, e.span.hi),
expr: e,
}
}
pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos, node: Expr_) -> P<Expr> {
P(Expr {
id: ast::DUMMY_NODE_ID,
node: node,
span: mk_sp(lo, hi),
})
}
pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ {
ExprUnary(unop, expr)
}
pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
ExprBinary(binop, lhs, rhs)
}
pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ {
ExprCall(f, args)
}
fn mk_method_call(&mut self,
ident: ast::SpannedIdent,
tps: Vec<P<Ty>>,
args: Vec<P<Expr>>)
-> ast::Expr_ {
ExprMethodCall(ident, tps, args)
}
pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ {
ExprIndex(expr, idx)
}
pub fn mk_range(&mut self,
start: Option<P<Expr>>,
end: Option<P<Expr>>)
-> ast::Expr_ {
ExprRange(start, end)
}
pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent) -> ast::Expr_ {
ExprField(expr, ident)
}
pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<usize>) -> ast::Expr_ {
ExprTupField(expr, idx)
}
pub fn mk_assign_op(&mut self, binop: ast::BinOp,
lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
ExprAssignOp(binop, lhs, rhs)
}
pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos, m: Mac_) -> P<Expr> {
P(Expr {
id: ast::DUMMY_NODE_ID,
node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}),
span: mk_sp(lo, hi),
})
}
pub fn mk_lit_u32(&mut self, i: u32) -> P<Expr> {
let span = &self.span;
let lv_lit = P(codemap::Spanned {
node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)),
span: *span
});
P(Expr {
id: ast::DUMMY_NODE_ID,
node: ExprLit(lv_lit),
span: *span,
})
}
fn expect_open_delim(&mut self) -> token::DelimToken {
match self.token {
token::OpenDelim(delim) => {
self.bump();
delim
},
_ => self.fatal("expected open delimiter"),
}
}
/// At the bottom (top?) of the precedence hierarchy,
/// parse things like parenthesized exprs,
/// macros, return, etc.
pub fn parse_bottom_expr(&mut self) -> P<Expr> {
maybe_whole_expr!(self);
let lo = self.span.lo;
let mut hi = self.span.hi;
let ex: Expr_;
// Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr().
match self.token {
token::OpenDelim(token::Paren) => {
self.bump();
// (e) is parenthesized e
// (e,) is a tuple with only one field, e
let mut es = vec![];
let mut trailing_comma = false;
while self.token != token::CloseDelim(token::Paren) {
es.push(self.parse_expr());
self.commit_expr(&**es.last().unwrap(), &[],
&[token::Comma, token::CloseDelim(token::Paren)]);
if self.check(&token::Comma) {
trailing_comma = true;
self.bump();
} else {
trailing_comma = false;
break;
}
}
self.bump();
hi = self.span.hi;
return if es.len() == 1 && !trailing_comma {
self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap()))
} else {
self.mk_expr(lo, hi, ExprTup(es))
}
},
token::OpenDelim(token::Brace) => {
self.bump();
let blk = self.parse_block_tail(lo, DefaultBlock);
return self.mk_expr(blk.span.lo, blk.span.hi,
ExprBlock(blk));
},
token::BinOp(token::Or) | token::OrOr => {
return self.parse_lambda_expr(CaptureByRef);
},
// FIXME #13626: Should be able to stick in
// token::SELF_KEYWORD_NAME
token::Ident(id @ ast::Ident {
name: ast::Name(token::SELF_KEYWORD_NAME_NUM),
ctxt: _
}, token::Plain) => {
self.bump();
let path = ast_util::ident_to_path(mk_sp(lo, hi), id);
ex = ExprPath(path);
hi = self.last_span.hi;
}
token::OpenDelim(token::Bracket) => {
self.bump();
if self.check(&token::CloseDelim(token::Bracket)) {
// Empty vector.
self.bump();
ex = ExprVec(Vec::new());
} else {
// Nonempty vector.
let first_expr = self.parse_expr();
if self.check(&token::Semi) {
// Repeating vector syntax: [ 0; 512 ]
self.bump();
let count = self.parse_expr();
self.expect(&token::CloseDelim(token::Bracket));
ex = ExprRepeat(first_expr, count);
} else if self.check(&token::Comma) {
// Vector with two or more elements.
self.bump();
let remaining_exprs = self.parse_seq_to_end(
&token::CloseDelim(token::Bracket),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_expr()
);
let mut exprs = vec!(first_expr);
exprs.extend(remaining_exprs.into_iter());
ex = ExprVec(exprs);
} else {
// Vector with one element.
self.expect(&token::CloseDelim(token::Bracket));
ex = ExprVec(vec!(first_expr));
}
}
hi = self.last_span.hi;
}
_ => {
if self.eat_lt() {
// QUALIFIED PATH `<TYPE as TRAIT_REF>::item::<'a, T>`
let self_type = self.parse_ty_sum();
self.expect_keyword(keywords::As);
let trait_ref = self.parse_trait_ref();
self.expect(&token::Gt);
self.expect(&token::ModSep);
let item_name = self.parse_ident();
let parameters = if self.eat(&token::ModSep) {
self.expect_lt();
// Consumed `item::<`, go look for types
let (lifetimes, types, bindings) =
self.parse_generic_values_after_lt();
ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
lifetimes: lifetimes,
types: OwnedSlice::from_vec(types),
bindings: OwnedSlice::from_vec(bindings),
})
} else {
ast::PathParameters::none()
};
let hi = self.span.hi;
return self.mk_expr(lo, hi, ExprQPath(P(QPath {
self_type: self_type,
trait_ref: P(trait_ref),
item_path: ast::PathSegment {
identifier: item_name,
parameters: parameters
}
})));
}
if self.eat_keyword(keywords::Move) {
return self.parse_lambda_expr(CaptureByValue);
}
if self.eat_keyword(keywords::Proc) {
let span = self.last_span;
let _ = self.parse_proc_decl();
let _ = self.parse_expr();
return self.obsolete_expr(span, ObsoleteSyntax::ProcExpr);
}
if self.eat_keyword(keywords::If) {
return self.parse_if_expr();
}
if self.eat_keyword(keywords::For) {
return self.parse_for_expr(None);
}
if self.eat_keyword(keywords::While) {
return self.parse_while_expr(None);
}
if self.token.is_lifetime() {
let lifetime = self.get_lifetime();
self.bump();
self.expect(&token::Colon);
if self.eat_keyword(keywords::While) {
return self.parse_while_expr(Some(lifetime))
}
if self.eat_keyword(keywords::For) {
return self.parse_for_expr(Some(lifetime))
}
if self.eat_keyword(keywords::Loop) {
return self.parse_loop_expr(Some(lifetime))
}
self.fatal("expected `while`, `for`, or `loop` after a label")
}
if self.eat_keyword(keywords::Loop) {
return self.parse_loop_expr(None);
}
if self.eat_keyword(keywords::Continue) {
let lo = self.span.lo;
let ex = if self.token.is_lifetime() {
let lifetime = self.get_lifetime();
self.bump();
ExprAgain(Some(lifetime))
} else {
ExprAgain(None)
};
let hi = self.span.hi;
return self.mk_expr(lo, hi, ex);
}
if self.eat_keyword(keywords::Match) {
return self.parse_match_expr();
}
if self.eat_keyword(keywords::Unsafe) {
return self.parse_block_expr(
lo,
UnsafeBlock(ast::UserProvided));
}
if self.eat_keyword(keywords::Return) {
// RETURN expression
if self.token.can_begin_expr() {
let e = self.parse_expr();
hi = e.span.hi;
ex = ExprRet(Some(e));
} else {
ex = ExprRet(None);
}
} else if self.eat_keyword(keywords::Break) {
// BREAK expression
if self.token.is_lifetime() {
let lifetime = self.get_lifetime();
self.bump();
ex = ExprBreak(Some(lifetime));
} else {
ex = ExprBreak(None);
}
hi = self.span.hi;
} else if self.check(&token::ModSep) ||
self.token.is_ident() &&
!self.token.is_keyword(keywords::True) &&
!self.token.is_keyword(keywords::False) {
let pth =
self.parse_path(LifetimeAndTypesWithColons);
// `!`, as an operator, is prefix, so we know this isn't that
if self.check(&token::Not) {
// MACRO INVOCATION expression
self.bump();
let delim = self.expect_open_delim();
let tts = self.parse_seq_to_end(
&token::CloseDelim(delim),
seq_sep_none(),
|p| p.parse_token_tree());
let hi = self.span.hi;
return self.mk_mac_expr(lo,
hi,
MacInvocTT(pth,
tts,
EMPTY_CTXT));
}
if self.check(&token::OpenDelim(token::Brace)) {
// This is a struct literal, unless we're prohibited
// from parsing struct literals here.
if !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL) {
// It's a struct literal.
self.bump();
let mut fields = Vec::new();
let mut base = None;
while self.token != token::CloseDelim(token::Brace) {
if self.eat(&token::DotDot) {
base = Some(self.parse_expr());
break;
}
fields.push(self.parse_field());
self.commit_expr(&*fields.last().unwrap().expr,
&[token::Comma],
&[token::CloseDelim(token::Brace)]);
}
if fields.len() == 0 && base.is_none() {
let last_span = self.last_span;
self.span_err(last_span,
"structure literal must either \
have at least one field or use \
functional structure update \
syntax");
}
hi = self.span.hi;
self.expect(&token::CloseDelim(token::Brace));
ex = ExprStruct(pth, fields, base);
return self.mk_expr(lo, hi, ex);
}
}
hi = pth.span.hi;
ex = ExprPath(pth);
} else {
// other literal expression
let lit = self.parse_lit();
hi = lit.span.hi;
ex = ExprLit(P(lit));
}
}
}
return self.mk_expr(lo, hi, ex);
}
/// Parse a block or unsafe block
pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode)
-> P<Expr> {
self.expect(&token::OpenDelim(token::Brace));
let blk = self.parse_block_tail(lo, blk_mode);
return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk));
}
/// parse a.b or a(13) or a[4] or just a
pub fn parse_dot_or_call_expr(&mut self) -> P<Expr> {
let b = self.parse_bottom_expr();
self.parse_dot_or_call_expr_with(b)
}
pub fn parse_dot_or_call_expr_with(&mut self, e0: P<Expr>) -> P<Expr> {
let mut e = e0;
let lo = e.span.lo;
let mut hi;
loop {
// expr.f
if self.eat(&token::Dot) {
match self.token {
token::Ident(i, _) => {
let dot = self.last_span.hi;
hi = self.span.hi;
self.bump();
let (_, tys, bindings) = if self.eat(&token::ModSep) {
self.expect_lt();
self.parse_generic_values_after_lt()
} else {
(Vec::new(), Vec::new(), Vec::new())
};
if bindings.len() > 0 {
let last_span = self.last_span;
self.span_err(last_span, "type bindings are only permitted on trait paths");
}
// expr.f() method call
match self.token {
token::OpenDelim(token::Paren) => {
let mut es = self.parse_unspanned_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_expr()
);
hi = self.last_span.hi;
es.insert(0, e);
let id = spanned(dot, hi, i);
let nd = self.mk_method_call(id, tys, es);
e = self.mk_expr(lo, hi, nd);
}
_ => {
if !tys.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
"field expressions may not \
have type parameters");
}
let id = spanned(dot, hi, i);
let field = self.mk_field(e, id);
e = self.mk_expr(lo, hi, field);
}
}
}
token::Literal(token::Integer(n), suf) => {
let sp = self.span;
// A tuple index may not have a suffix
self.expect_no_suffix(sp, "tuple index", suf);
let dot = self.last_span.hi;
hi = self.span.hi;
self.bump();
let index = n.as_str().parse::<usize>();
match index {
Some(n) => {
let id = spanned(dot, hi, n);
let field = self.mk_tup_field(e, id);
e = self.mk_expr(lo, hi, field);
}
None => {
let last_span = self.last_span;
self.span_err(last_span, "invalid tuple or tuple struct index");
}
}
}
token::Literal(token::Float(n), _suf) => {
self.bump();
let last_span = self.last_span;
let fstr = n.as_str();
self.span_err(last_span,
&format!("unexpected token: `{}`", n.as_str())[]);
if fstr.chars().all(|x| "0123456789.".contains_char(x)) {
let float = match fstr.parse::<f64>() {
Some(f) => f,
None => continue,
};
self.span_help(last_span,
&format!("try parenthesizing the first index; e.g., `(foo.{}){}`",
float.trunc() as usize,
&float.fract().to_string()[1..])[]);
}
self.abort_if_errors();
}
_ => self.unexpected()
}
continue;
}
if self.expr_is_complete(&*e) { break; }
match self.token {
// expr(...)
token::OpenDelim(token::Paren) => {
let es = self.parse_unspanned_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_expr()
);
hi = self.last_span.hi;
let nd = self.mk_call(e, es);
e = self.mk_expr(lo, hi, nd);
}
// expr[...]
// Could be either an index expression or a slicing expression.
token::OpenDelim(token::Bracket) => {
let bracket_pos = self.span.lo;
self.bump();
let mut found_dotdot = false;
if self.token == token::DotDot &&
self.look_ahead(1, |t| t == &token::CloseDelim(token::Bracket)) {
// Using expr[..], which is a mistake, should be expr[]
self.bump();
self.bump();
found_dotdot = true;
}
if found_dotdot || self.eat(&token::CloseDelim(token::Bracket)) {
// No expression, expand to a FullRange
// FIXME(#20516) It would be better to use a lang item or
// something for FullRange.
hi = self.last_span.hi;
let range = ExprStruct(ident_to_path(mk_sp(lo, hi),
token::special_idents::FullRange),
vec![],
None);
let ix = self.mk_expr(bracket_pos, hi, range);
let index = self.mk_index(e, ix);
e = self.mk_expr(lo, hi, index)
} else {
let ix = self.parse_expr();
hi = self.span.hi;
self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket));
let index = self.mk_index(e, ix);
e = self.mk_expr(lo, hi, index)
}
if found_dotdot {
self.span_err(e.span, "incorrect slicing expression: `[..]`");
self.span_note(e.span,
"use `&expr[]` to construct a slice of the whole of expr");
}
}
_ => return e
}
}
return e;
}
// Parse unquoted tokens after a `$` in a token tree
fn parse_unquoted(&mut self) -> TokenTree {
let mut sp = self.span;
let (name, namep) = match self.token {
token::Dollar => {
self.bump();
if self.token == token::OpenDelim(token::Paren) {
let Spanned { node: seq, span: seq_span } = self.parse_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_none(),
|p| p.parse_token_tree()
);
let (sep, repeat) = self.parse_sep_and_kleene_op();
let name_num = macro_parser::count_names(seq.as_slice());
return TtSequence(mk_sp(sp.lo, seq_span.hi),
Rc::new(SequenceRepetition {
tts: seq,
separator: sep,
op: repeat,
num_captures: name_num
}));
} else if self.token.is_keyword_allow_following_colon(keywords::Crate) {
self.bump();
return TtToken(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar));
} else {
sp = mk_sp(sp.lo, self.span.hi);
let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain };
let name = self.parse_ident();
(name, namep)
}
}
token::SubstNt(name, namep) => {
self.bump();
(name, namep)
}
_ => unreachable!()
};
// continue by trying to parse the `:ident` after `$name`
if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() &&
!t.is_strict_keyword() &&
!t.is_reserved_keyword()) {
self.bump();
sp = mk_sp(sp.lo, self.span.hi);
let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain };
let nt_kind = self.parse_ident();
TtToken(sp, MatchNt(name, nt_kind, namep, kindp))
} else {
TtToken(sp, SubstNt(name, namep))
}
}
pub fn check_unknown_macro_variable(&mut self) {
if self.quote_depth == 0us {
match self.token {
token::SubstNt(name, _) =>
self.fatal(&format!("unknown macro variable `{}`",
token::get_ident(name))[]),
_ => {}
}
}
}
/// Parse an optional separator followed by a Kleene-style
/// repetition token (+ or *).
pub fn parse_sep_and_kleene_op(&mut self) -> (Option<token::Token>, ast::KleeneOp) {
fn parse_kleene_op(parser: &mut Parser) -> Option<ast::KleeneOp> {
match parser.token {
token::BinOp(token::Star) => {
parser.bump();
Some(ast::ZeroOrMore)
},
token::BinOp(token::Plus) => {
parser.bump();
Some(ast::OneOrMore)
},
_ => None
}
};
match parse_kleene_op(self) {
Some(kleene_op) => return (None, kleene_op),
None => {}
}
let separator = self.bump_and_get();
match parse_kleene_op(self) {
Some(zerok) => (Some(separator), zerok),
None => self.fatal("expected `*` or `+`")
}
}
/// parse a single token tree from the input.
pub fn parse_token_tree(&mut self) -> TokenTree {
// FIXME #6994: currently, this is too eager. It
// parses token trees but also identifies TtSequence's
// and token::SubstNt's; it's too early to know yet
// whether something will be a nonterminal or a seq
// yet.
maybe_whole!(deref self, NtTT);
// this is the fall-through for the 'match' below.
// invariants: the current token is not a left-delimiter,
// not an EOF, and not the desired right-delimiter (if
// it were, parse_seq_to_before_end would have prevented
// reaching this point.
fn parse_non_delim_tt_tok(p: &mut Parser) -> TokenTree {
maybe_whole!(deref p, NtTT);
match p.token {
token::CloseDelim(_) => {
// This is a conservative error: only report the last unclosed delimiter. The
// previous unclosed delimiters could actually be closed! The parser just hasn't
// gotten to them yet.
match p.open_braces.last() {
None => {}
Some(&sp) => p.span_note(sp, "unclosed delimiter"),
};
let token_str = p.this_token_to_string();
p.fatal(&format!("incorrect close delimiter: `{}`",
token_str)[])
},
/* we ought to allow different depths of unquotation */
token::Dollar | token::SubstNt(..) if p.quote_depth > 0us => {
p.parse_unquoted()
}
_ => {
TtToken(p.span, p.bump_and_get())
}
}
}
match self.token {
token::Eof => {
let open_braces = self.open_braces.clone();
for sp in open_braces.iter() {
self.span_help(*sp, "did you mean to close this delimiter?");
}
// There shouldn't really be a span, but it's easier for the test runner
// if we give it one
self.fatal("this file contains an un-closed delimiter ");
},
token::OpenDelim(delim) => {
// The span for beginning of the delimited section
let pre_span = self.span;
// Parse the open delimiter.
self.open_braces.push(self.span);
let open_span = self.span;
self.bump();
// Parse the token trees within the delimiters
let tts = self.parse_seq_to_before_end(
&token::CloseDelim(delim),
seq_sep_none(),
|p| p.parse_token_tree()
);
// Parse the close delimiter.
let close_span = self.span;
self.bump();
self.open_braces.pop().unwrap();
// Expand to cover the entire delimited token tree
let span = Span { hi: self.span.hi, ..pre_span };
TtDelimited(span, Rc::new(Delimited {
delim: delim,
open_span: open_span,
tts: tts,
close_span: close_span,
}))
},
_ => parse_non_delim_tt_tok(self),
}
}
// parse a stream of tokens into a list of TokenTree's,
// up to EOF.
pub fn parse_all_token_trees(&mut self) -> Vec<TokenTree> {
let mut tts = Vec::new();
while self.token != token::Eof {
tts.push(self.parse_token_tree());
}
tts
}
/// Parse a prefix-operator expr
pub fn parse_prefix_expr(&mut self) -> P<Expr> {
let lo = self.span.lo;
let hi;
// Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr()
let ex;
match self.token {
token::Not => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnNot, e);
}
token::BinOp(token::Minus) => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnNeg, e);
}
token::BinOp(token::Star) => {
self.bump();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = self.mk_unary(UnDeref, e);
}
token::BinOp(token::And) | token::AndAnd => {
self.expect_and();
let m = self.parse_mutability();
let e = self.parse_prefix_expr();
hi = e.span.hi;
ex = ExprAddrOf(m, e);
}
token::Ident(_, _) => {
if !self.token.is_keyword(keywords::Box) {
return self.parse_dot_or_call_expr();
}
let lo = self.span.lo;
self.bump();
// Check for a place: `box(PLACE) EXPR`.
if self.eat(&token::OpenDelim(token::Paren)) {
// Support `box() EXPR` as the default.
if !self.eat(&token::CloseDelim(token::Paren)) {
let place = self.parse_expr();
self.expect(&token::CloseDelim(token::Paren));
// Give a suggestion to use `box()` when a parenthesised expression is used
if !self.token.can_begin_expr() {
let span = self.span;
let this_token_to_string = self.this_token_to_string();
self.span_err(span,
&format!("expected expression, found `{}`",
this_token_to_string)[]);
let box_span = mk_sp(lo, self.last_span.hi);
self.span_help(box_span,
"perhaps you meant `box() (foo)` instead?");
self.abort_if_errors();
}
let subexpression = self.parse_prefix_expr();
hi = subexpression.span.hi;
ex = ExprBox(Some(place), subexpression);
return self.mk_expr(lo, hi, ex);
}
}
// Otherwise, we use the unique pointer default.
let subexpression = self.parse_prefix_expr();
hi = subexpression.span.hi;
// FIXME (pnkfelix): After working out kinks with box
// desugaring, should be `ExprBox(None, subexpression)`
// instead.
ex = self.mk_unary(UnUniq, subexpression);
}
_ => return self.parse_dot_or_call_expr()
}
return self.mk_expr(lo, hi, ex);
}
/// Parse an expression of binops
pub fn parse_binops(&mut self) -> P<Expr> {
let prefix_expr = self.parse_prefix_expr();
self.parse_more_binops(prefix_expr, 0)
}
/// Parse an expression of binops of at least min_prec precedence
pub fn parse_more_binops(&mut self, lhs: P<Expr>, min_prec: usize) -> P<Expr> {
if self.expr_is_complete(&*lhs) { return lhs; }
// Prevent dynamic borrow errors later on by limiting the
// scope of the borrows.
if self.token == token::BinOp(token::Or) &&
self.restrictions.contains(RESTRICTION_NO_BAR_OP) {
return lhs;
}
self.expected_tokens.push(TokenType::Operator);
let cur_op_span = self.span;
let cur_opt = self.token.to_binop();
match cur_opt {
Some(cur_op) => {
if ast_util::is_comparison_binop(cur_op) {
self.check_no_chained_comparison(&*lhs, cur_op)
}
let cur_prec = operator_prec(cur_op);
if cur_prec >= min_prec {
self.bump();
let expr = self.parse_prefix_expr();
let rhs = self.parse_more_binops(expr, cur_prec + 1);
let lhs_span = lhs.span;
let rhs_span = rhs.span;
let binary = self.mk_binary(codemap::respan(cur_op_span, cur_op), lhs, rhs);
let bin = self.mk_expr(lhs_span.lo, rhs_span.hi, binary);
self.parse_more_binops(bin, min_prec)
} else {
lhs
}
}
None => {
if AS_PREC >= min_prec && self.eat_keyword(keywords::As) {
let rhs = self.parse_ty();
let _as = self.mk_expr(lhs.span.lo,
rhs.span.hi,
ExprCast(lhs, rhs));
self.parse_more_binops(_as, min_prec)
} else {
lhs
}
}
}
}
/// Produce an error if comparison operators are chained (RFC #558).
/// We only need to check lhs, not rhs, because all comparison ops
/// have same precedence and are left-associative
fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: ast::BinOp_) {
debug_assert!(ast_util::is_comparison_binop(outer_op));
match lhs.node {
ExprBinary(op, _, _) if ast_util::is_comparison_binop(op.node) => {
// respan to include both operators
let op_span = mk_sp(op.span.lo, self.span.hi);
self.span_err(op_span,
"chained comparison operators require parentheses");
if op.node == BiLt && outer_op == BiGt {
self.span_help(op_span,
"use `::<...>` instead of `<...>` if you meant to specify type arguments");
}
}
_ => {}
}
}
/// Parse an assignment expression....
/// actually, this seems to be the main entry point for
/// parsing an arbitrary expression.
pub fn parse_assign_expr(&mut self) -> P<Expr> {
match self.token {
token::DotDot => {
// prefix-form of range notation '..expr'
// This has the same precedence as assignment expressions
// (much lower than other prefix expressions) to be consistent
// with the postfix-form 'expr..'
let lo = self.span.lo;
self.bump();
let rhs = self.parse_binops();
let hi = rhs.span.hi;
let ex = self.mk_range(None, Some(rhs));
self.mk_expr(lo, hi, ex)
}
_ => {
let lhs = self.parse_binops();
self.parse_assign_expr_with(lhs)
}
}
}
pub fn parse_assign_expr_with(&mut self, lhs: P<Expr>) -> P<Expr> {
let restrictions = self.restrictions & RESTRICTION_NO_STRUCT_LITERAL;
let op_span = self.span;
match self.token {
token::Eq => {
self.bump();
let rhs = self.parse_expr_res(restrictions);
self.mk_expr(lhs.span.lo, rhs.span.hi, ExprAssign(lhs, rhs))
}
token::BinOpEq(op) => {
self.bump();
let rhs = self.parse_expr_res(restrictions);
let aop = match op {
token::Plus => BiAdd,
token::Minus => BiSub,
token::Star => BiMul,
token::Slash => BiDiv,
token::Percent => BiRem,
token::Caret => BiBitXor,
token::And => BiBitAnd,
token::Or => BiBitOr,
token::Shl => BiShl,
token::Shr => BiShr
};
let rhs_span = rhs.span;
let span = lhs.span;
let assign_op = self.mk_assign_op(codemap::respan(op_span, aop), lhs, rhs);
self.mk_expr(span.lo, rhs_span.hi, assign_op)
}
// A range expression, either `expr..expr` or `expr..`.
token::DotDot => {
self.bump();
let opt_end = if self.is_at_start_of_range_notation_rhs() {
let end = self.parse_binops();
Some(end)
} else {
None
};
let lo = lhs.span.lo;
let hi = self.span.hi;
let range = self.mk_range(Some(lhs), opt_end);
return self.mk_expr(lo, hi, range);
}
_ => {
lhs
}
}
}
fn is_at_start_of_range_notation_rhs(&self) -> bool {
if self.token.can_begin_expr() {
// parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
if self.token == token::OpenDelim(token::Brace) {
return !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL);
}
true
} else {
false
}
}
/// Parse an 'if' or 'if let' expression ('if' token already eaten)
pub fn parse_if_expr(&mut self) -> P<Expr> {
if self.token.is_keyword(keywords::Let) {
return self.parse_if_let_expr();
}
let lo = self.last_span.lo;
let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let thn = self.parse_block();
let mut els: Option<P<Expr>> = None;
let mut hi = thn.span.hi;
if self.eat_keyword(keywords::Else) {
let elexpr = self.parse_else_expr();
hi = elexpr.span.hi;
els = Some(elexpr);
}
self.mk_expr(lo, hi, ExprIf(cond, thn, els))
}
/// Parse an 'if let' expression ('if' token already eaten)
pub fn parse_if_let_expr(&mut self) -> P<Expr> {
let lo = self.last_span.lo;
self.expect_keyword(keywords::Let);
let pat = self.parse_pat();
self.expect(&token::Eq);
let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let thn = self.parse_block();
let (hi, els) = if self.eat_keyword(keywords::Else) {
let expr = self.parse_else_expr();
(expr.span.hi, Some(expr))
} else {
(thn.span.hi, None)
};
self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els))
}
// `|args| expr`
pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause)
-> P<Expr>
{
let lo = self.span.lo;
let (decl, optional_unboxed_closure_kind) =
self.parse_fn_block_decl();
let body = self.parse_expr();
let fakeblock = P(ast::Block {
id: ast::DUMMY_NODE_ID,
stmts: vec![],
span: body.span,
expr: Some(body),
rules: DefaultBlock,
});
self.mk_expr(
lo,
fakeblock.span.hi,
ExprClosure(capture_clause, optional_unboxed_closure_kind, decl, fakeblock))
}
pub fn parse_else_expr(&mut self) -> P<Expr> {
if self.eat_keyword(keywords::If) {
return self.parse_if_expr();
} else {
let blk = self.parse_block();
return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk));
}
}
/// Parse a 'for' .. 'in' expression ('for' token already eaten)
pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
// Parse: `for <src_pat> in <src_expr> <src_loop_block>`
let lo = self.last_span.lo;
let pat = self.parse_pat();
self.expect_keyword(keywords::In);
let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let loop_block = self.parse_block();
let hi = self.span.hi;
self.mk_expr(lo, hi, ExprForLoop(pat, expr, loop_block, opt_ident))
}
/// Parse a 'while' or 'while let' expression ('while' token already eaten)
pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
if self.token.is_keyword(keywords::Let) {
return self.parse_while_let_expr(opt_ident);
}
let lo = self.last_span.lo;
let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let body = self.parse_block();
let hi = body.span.hi;
return self.mk_expr(lo, hi, ExprWhile(cond, body, opt_ident));
}
/// Parse a 'while let' expression ('while' token already eaten)
pub fn parse_while_let_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
let lo = self.last_span.lo;
self.expect_keyword(keywords::Let);
let pat = self.parse_pat();
self.expect(&token::Eq);
let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
let body = self.parse_block();
let hi = body.span.hi;
return self.mk_expr(lo, hi, ExprWhileLet(pat, expr, body, opt_ident));
}
pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> {
let lo = self.last_span.lo;
let body = self.parse_block();
let hi = body.span.hi;
self.mk_expr(lo, hi, ExprLoop(body, opt_ident))
}
fn parse_match_expr(&mut self) -> P<Expr> {
let lo = self.last_span.lo;
let discriminant = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL);
self.commit_expr_expecting(&*discriminant, token::OpenDelim(token::Brace));
let mut arms: Vec<Arm> = Vec::new();
while self.token != token::CloseDelim(token::Brace) {
arms.push(self.parse_arm());
}
let hi = self.span.hi;
self.bump();
return self.mk_expr(lo, hi, ExprMatch(discriminant, arms, MatchSource::Normal));
}
pub fn parse_arm(&mut self) -> Arm {
let attrs = self.parse_outer_attributes();
let pats = self.parse_pats();
let mut guard = None;
if self.eat_keyword(keywords::If) {
guard = Some(self.parse_expr());
}
self.expect(&token::FatArrow);
let expr = self.parse_expr_res(RESTRICTION_STMT_EXPR);
let require_comma =
!classify::expr_is_simple_block(&*expr)
&& self.token != token::CloseDelim(token::Brace);
if require_comma {
self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]);
} else {
self.eat(&token::Comma);
}
ast::Arm {
attrs: attrs,
pats: pats,
guard: guard,
body: expr,
}
}
/// Parse an expression
pub fn parse_expr(&mut self) -> P<Expr> {
return self.parse_expr_res(UNRESTRICTED);
}
/// Parse an expression, subject to the given restrictions
pub fn parse_expr_res(&mut self, r: Restrictions) -> P<Expr> {
let old = self.restrictions;
self.restrictions = r;
let e = self.parse_assign_expr();
self.restrictions = old;
return e;
}
/// Parse the RHS of a local variable declaration (e.g. '= 14;')
fn parse_initializer(&mut self) -> Option<P<Expr>> {
if self.check(&token::Eq) {
self.bump();
Some(self.parse_expr())
} else {
None
}
}
/// Parse patterns, separated by '|' s
fn parse_pats(&mut self) -> Vec<P<Pat>> {
let mut pats = Vec::new();
loop {
pats.push(self.parse_pat());
if self.check(&token::BinOp(token::Or)) { self.bump(); }
else { return pats; }
};
}
fn parse_pat_vec_elements(
&mut self,
) -> (Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>) {
let mut before = Vec::new();
let mut slice = None;
let mut after = Vec::new();
let mut first = true;
let mut before_slice = true;
while self.token != token::CloseDelim(token::Bracket) {
if first {
first = false;
} else {
self.expect(&token::Comma);
if self.token == token::CloseDelim(token::Bracket)
&& (before_slice || after.len() != 0) {
break
}
}
if before_slice {
if self.check(&token::DotDot) {
self.bump();
if self.check(&token::Comma) ||
self.check(&token::CloseDelim(token::Bracket)) {
slice = Some(P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: PatWild(PatWildMulti),
span: self.span,
}));
before_slice = false;
}
continue
}
}
let subpat = self.parse_pat();
if before_slice && self.check(&token::DotDot) {
self.bump();
slice = Some(subpat);
before_slice = false;
} else if before_slice {
before.push(subpat);
} else {
after.push(subpat);
}
}
(before, slice, after)
}
/// Parse the fields of a struct-like pattern
fn parse_pat_fields(&mut self) -> (Vec<codemap::Spanned<ast::FieldPat>> , bool) {
let mut fields = Vec::new();
let mut etc = false;
let mut first = true;
while self.token != token::CloseDelim(token::Brace) {
if first {
first = false;
} else {
self.expect(&token::Comma);
// accept trailing commas
if self.check(&token::CloseDelim(token::Brace)) { break }
}
let lo = self.span.lo;
let hi;
if self.check(&token::DotDot) {
self.bump();
if self.token != token::CloseDelim(token::Brace) {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected `{}`, found `{}`", "}",
token_str)[])
}
etc = true;
break;
}
// Check if a colon exists one ahead. This means we're parsing a fieldname.
let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
// Parsing a pattern of the form "fieldname: pat"
let fieldname = self.parse_ident();
self.bump();
let pat = self.parse_pat();
hi = pat.span.hi;
(pat, fieldname, false)
} else {
// Parsing a pattern of the form "(box) (ref) (mut) fieldname"
let is_box = self.eat_keyword(keywords::Box);
let boxed_span_lo = self.span.lo;
let is_ref = self.eat_keyword(keywords::Ref);
let is_mut = self.eat_keyword(keywords::Mut);
let fieldname = self.parse_ident();
hi = self.last_span.hi;
let bind_type = match (is_ref, is_mut) {
(true, true) => BindByRef(MutMutable),
(true, false) => BindByRef(MutImmutable),
(false, true) => BindByValue(MutMutable),
(false, false) => BindByValue(MutImmutable),
};
let fieldpath = codemap::Spanned{span:self.last_span, node:fieldname};
let fieldpat = P(ast::Pat{
id: ast::DUMMY_NODE_ID,
node: PatIdent(bind_type, fieldpath, None),
span: mk_sp(boxed_span_lo, hi),
});
let subpat = if is_box {
P(ast::Pat{
id: ast::DUMMY_NODE_ID,
node: PatBox(fieldpat),
span: mk_sp(lo, hi),
})
} else {
fieldpat
};
(subpat, fieldname, true)
};
fields.push(codemap::Spanned { span: mk_sp(lo, hi),
node: ast::FieldPat { ident: fieldname,
pat: subpat,
is_shorthand: is_shorthand }});
}
return (fields, etc);
}
/// Parse a pattern.
pub fn parse_pat(&mut self) -> P<Pat> {
maybe_whole!(self, NtPat);
let lo = self.span.lo;
let mut hi;
let pat;
match self.token {
// parse _
token::Underscore => {
self.bump();
pat = PatWild(PatWildSingle);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::BinOp(token::And) | token::AndAnd => {
// parse &pat and &mut pat
let lo = self.span.lo;
self.expect_and();
let mutability = if self.eat_keyword(keywords::Mut) {
ast::MutMutable
} else {
ast::MutImmutable
};
let sub = self.parse_pat();
pat = PatRegion(sub, mutability);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::OpenDelim(token::Paren) => {
// parse (pat,pat,pat,...) as tuple
self.bump();
if self.check(&token::CloseDelim(token::Paren)) {
self.bump();
pat = PatTup(vec![]);
} else {
let mut fields = vec!(self.parse_pat());
if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) {
while self.check(&token::Comma) {
self.bump();
if self.check(&token::CloseDelim(token::Paren)) { break; }
fields.push(self.parse_pat());
}
}
if fields.len() == 1 { self.expect(&token::Comma); }
self.expect(&token::CloseDelim(token::Paren));
pat = PatTup(fields);
}
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
token::OpenDelim(token::Bracket) => {
// parse [pat,pat,...] as vector pattern
self.bump();
let (before, slice, after) =
self.parse_pat_vec_elements();
self.expect(&token::CloseDelim(token::Bracket));
pat = ast::PatVec(before, slice, after);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
}
_ => {}
}
// at this point, token != _, ~, &, &&, (, [
if (!(self.token.is_ident() || self.token.is_path())
&& self.token != token::ModSep)
|| self.token.is_keyword(keywords::True)
|| self.token.is_keyword(keywords::False) {
// Parse an expression pattern or exp .. exp.
//
// These expressions are limited to literals (possibly
// preceded by unary-minus) or identifiers.
let val = self.parse_literal_maybe_minus();
if (self.check(&token::DotDotDot)) &&
self.look_ahead(1, |t| {
*t != token::Comma && *t != token::CloseDelim(token::Bracket)
}) {
self.bump();
let end = if self.token.is_ident() || self.token.is_path() {
let path = self.parse_path(LifetimeAndTypesWithColons);
let hi = self.span.hi;
self.mk_expr(lo, hi, ExprPath(path))
} else {
self.parse_literal_maybe_minus()
};
pat = PatRange(val, end);
} else {
pat = PatLit(val);
}
} else if self.eat_keyword(keywords::Mut) {
pat = self.parse_pat_ident(BindByValue(MutMutable));
} else if self.eat_keyword(keywords::Ref) {
// parse ref pat
let mutbl = self.parse_mutability();
pat = self.parse_pat_ident(BindByRef(mutbl));
} else if self.eat_keyword(keywords::Box) {
// `box PAT`
//
// FIXME(#13910): Rename to `PatBox` and extend to full DST
// support.
let sub = self.parse_pat();
pat = PatBox(sub);
hi = self.last_span.hi;
return P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi)
})
} else {
let can_be_enum_or_struct = self.look_ahead(1, |t| {
match *t {
token::OpenDelim(_) | token::Lt | token::ModSep => true,
_ => false,
}
});
if self.look_ahead(1, |t| *t == token::DotDotDot) &&
self.look_ahead(2, |t| {
*t != token::Comma && *t != token::CloseDelim(token::Bracket)
}) {
let start = self.parse_expr_res(RESTRICTION_NO_BAR_OP);
self.eat(&token::DotDotDot);
let end = self.parse_expr_res(RESTRICTION_NO_BAR_OP);
pat = PatRange(start, end);
} else if self.token.is_plain_ident() && !can_be_enum_or_struct {
let id = self.parse_ident();
let id_span = self.last_span;
let pth1 = codemap::Spanned{span:id_span, node: id};
if self.eat(&token::Not) {
// macro invocation
let delim = self.expect_open_delim();
let tts = self.parse_seq_to_end(&token::CloseDelim(delim),
seq_sep_none(),
|p| p.parse_token_tree());
let mac = MacInvocTT(ident_to_path(id_span,id), tts, EMPTY_CTXT);
pat = ast::PatMac(codemap::Spanned {node: mac, span: self.span});
} else {
let sub = if self.eat(&token::At) {
// parse foo @ pat
Some(self.parse_pat())
} else {
// or just foo
None
};
pat = PatIdent(BindByValue(MutImmutable), pth1, sub);
}
} else {
// parse an enum pat
let enum_path = self.parse_path(LifetimeAndTypesWithColons);
match self.token {
token::OpenDelim(token::Brace) => {
self.bump();
let (fields, etc) =
self.parse_pat_fields();
self.bump();
pat = PatStruct(enum_path, fields, etc);
}
_ => {
let mut args: Vec<P<Pat>> = Vec::new();
match self.token {
token::OpenDelim(token::Paren) => {
let is_dotdot = self.look_ahead(1, |t| {
match *t {
token::DotDot => true,
_ => false,
}
});
if is_dotdot {
// This is a "top constructor only" pat
self.bump();
self.bump();
self.expect(&token::CloseDelim(token::Paren));
pat = PatEnum(enum_path, None);
} else {
args = self.parse_enum_variant_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_pat()
);
pat = PatEnum(enum_path, Some(args));
}
},
_ => {
if !enum_path.global &&
enum_path.segments.len() == 1 &&
enum_path.segments[0].parameters.is_empty()
{
// it could still be either an enum
// or an identifier pattern, resolve
// will sort it out:
pat = PatIdent(BindByValue(MutImmutable),
codemap::Spanned{
span: enum_path.span,
node: enum_path.segments[0]
.identifier},
None);
} else {
pat = PatEnum(enum_path, Some(args));
}
}
}
}
}
}
}
hi = self.last_span.hi;
P(ast::Pat {
id: ast::DUMMY_NODE_ID,
node: pat,
span: mk_sp(lo, hi),
})
}
/// Parse ident or ident @ pat
/// used by the copy foo and ref foo patterns to give a good
/// error message when parsing mistakes like ref foo(a,b)
fn parse_pat_ident(&mut self,
binding_mode: ast::BindingMode)
-> ast::Pat_ {
if !self.token.is_plain_ident() {
let span = self.span;
let tok_str = self.this_token_to_string();
self.span_fatal(span,
&format!("expected identifier, found `{}`", tok_str)[]);
}
let ident = self.parse_ident();
let last_span = self.last_span;
let name = codemap::Spanned{span: last_span, node: ident};
let sub = if self.eat(&token::At) {
Some(self.parse_pat())
} else {
None
};
// just to be friendly, if they write something like
// ref Some(i)
// we end up here with ( as the current token. This shortly
// leads to a parse error. Note that if there is no explicit
// binding mode then we do not end up here, because the lookahead
// will direct us over to parse_enum_variant()
if self.token == token::OpenDelim(token::Paren) {
let last_span = self.last_span;
self.span_fatal(
last_span,
"expected identifier, found enum pattern");
}
PatIdent(binding_mode, name, sub)
}
/// Parse a local variable declaration
fn parse_local(&mut self) -> P<Local> {
let lo = self.span.lo;
let pat = self.parse_pat();
let mut ty = None;
if self.eat(&token::Colon) {
ty = Some(self.parse_ty_sum());
}
let init = self.parse_initializer();
P(ast::Local {
ty: ty,
pat: pat,
init: init,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, self.last_span.hi),
source: LocalLet,
})
}
/// Parse a "let" stmt
fn parse_let(&mut self) -> P<Decl> {
let lo = self.span.lo;
let local = self.parse_local();
P(spanned(lo, self.last_span.hi, DeclLocal(local)))
}
/// Parse a structure field
fn parse_name_and_ty(&mut self, pr: Visibility,
attrs: Vec<Attribute> ) -> StructField {
let lo = self.span.lo;
if !self.token.is_plain_ident() {
self.fatal("expected ident");
}
let name = self.parse_ident();
self.expect(&token::Colon);
let ty = self.parse_ty_sum();
spanned(lo, self.last_span.hi, ast::StructField_ {
kind: NamedField(name, pr),
id: ast::DUMMY_NODE_ID,
ty: ty,
attrs: attrs,
})
}
/// Get an expected item after attributes error message.
fn expected_item_err(attrs: &[Attribute]) -> &'static str {
match attrs.last() {
Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => {
"expected item after doc comment"
}
_ => "expected item after attributes",
}
}
/// Parse a statement. may include decl.
/// Precondition: any attributes are parsed already
pub fn parse_stmt(&mut self, item_attrs: Vec<Attribute>) -> P<Stmt> {
maybe_whole!(self, NtStmt);
fn check_expected_item(p: &mut Parser, attrs: &[Attribute]) {
// If we have attributes then we should have an item
if !attrs.is_empty() {
let last_span = p.last_span;
p.span_err(last_span, Parser::expected_item_err(attrs));
}
}
let lo = self.span.lo;
if self.token.is_keyword(keywords::Let) {
check_expected_item(self, &item_attrs[]);
self.expect_keyword(keywords::Let);
let decl = self.parse_let();
P(spanned(lo, decl.span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID)))
} else if self.token.is_ident()
&& !self.token.is_any_keyword()
&& self.look_ahead(1, |t| *t == token::Not) {
// it's a macro invocation:
check_expected_item(self, &item_attrs[]);
// Potential trouble: if we allow macros with paths instead of
// idents, we'd need to look ahead past the whole path here...
let pth = self.parse_path(NoTypesAllowed);
self.bump();
let id = match self.token {
token::OpenDelim(_) => token::special_idents::invalid, // no special identifier
_ => self.parse_ident(),
};
// check that we're pointing at delimiters (need to check
// again after the `if`, because of `parse_ident`
// consuming more tokens).
let delim = match self.token {
token::OpenDelim(delim) => delim,
_ => {
// we only expect an ident if we didn't parse one
// above.
let ident_str = if id.name == token::special_idents::invalid.name {
"identifier, "
} else {
""
};
let tok_str = self.this_token_to_string();
self.fatal(&format!("expected {}`(` or `{{`, found `{}`",
ident_str,
tok_str)[])
},
};
let tts = self.parse_unspanned_seq(
&token::OpenDelim(delim),
&token::CloseDelim(delim),
seq_sep_none(),
|p| p.parse_token_tree()
);
let hi = self.span.hi;
let style = if delim == token::Brace {
MacStmtWithBraces
} else {
MacStmtWithoutBraces
};
if id.name == token::special_idents::invalid.name {
P(spanned(lo,
hi,
StmtMac(P(spanned(lo,
hi,
MacInvocTT(pth, tts, EMPTY_CTXT))),
style)))
} else {
// if it has a special ident, it's definitely an item
//
// Require a semicolon or braces.
if style != MacStmtWithBraces {
if !self.eat(&token::Semi) {
let last_span = self.last_span;
self.span_err(last_span,
"macros that expand to items must \
either be surrounded with braces or \
followed by a semicolon");
}
}
P(spanned(lo, hi, StmtDecl(
P(spanned(lo, hi, DeclItem(
self.mk_item(
lo, hi, id /*id is good here*/,
ItemMac(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))),
Inherited, Vec::new(/*no attrs*/))))),
ast::DUMMY_NODE_ID)))
}
} else {
let found_attrs = !item_attrs.is_empty();
let item_err = Parser::expected_item_err(&item_attrs[]);
match self.parse_item_(item_attrs, false) {
Ok(i) => {
let hi = i.span.hi;
let decl = P(spanned(lo, hi, DeclItem(i)));
P(spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID)))
}
Err(_) => {
if found_attrs {
let last_span = self.last_span;
self.span_err(last_span, item_err);
}
// Remainder are line-expr stmts.
let e = self.parse_expr_res(RESTRICTION_STMT_EXPR);
P(spanned(lo, e.span.hi, StmtExpr(e, ast::DUMMY_NODE_ID)))
}
}
}
}
/// Is this expression a successfully-parsed statement?
fn expr_is_complete(&mut self, e: &Expr) -> bool {
self.restrictions.contains(RESTRICTION_STMT_EXPR) &&
!classify::expr_requires_semi_to_be_stmt(e)
}
/// Parse a block. No inner attrs are allowed.
pub fn parse_block(&mut self) -> P<Block> {
maybe_whole!(no_clone self, NtBlock);
let lo = self.span.lo;
if !self.eat(&token::OpenDelim(token::Brace)) {
let sp = self.span;
let tok = self.this_token_to_string();
self.span_fatal_help(sp,
&format!("expected `{{`, found `{}`", tok)[],
"place this code inside a block");
}
return self.parse_block_tail_(lo, DefaultBlock, Vec::new());
}
/// Parse a block. Inner attrs are allowed.
fn parse_inner_attrs_and_block(&mut self)
-> (Vec<Attribute> , P<Block>) {
maybe_whole!(pair_empty self, NtBlock);
let lo = self.span.lo;
self.expect(&token::OpenDelim(token::Brace));
let (inner, next) = self.parse_inner_attrs_and_next();
(inner, self.parse_block_tail_(lo, DefaultBlock, next))
}
/// Precondition: already parsed the '{'.
fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> P<Block> {
self.parse_block_tail_(lo, s, Vec::new())
}
/// Parse the rest of a block expression or function body
fn parse_block_tail_(&mut self, lo: BytePos, s: BlockCheckMode,
first_item_attrs: Vec<Attribute>) -> P<Block> {
let mut stmts = vec![];
let mut expr = None;
let mut attributes_box = first_item_attrs;
while self.token != token::CloseDelim(token::Brace) {
// parsing items even when they're not allowed lets us give
// better error messages and recover more gracefully.
attributes_box.push_all(&self.parse_outer_attributes()[]);
match self.token {
token::Semi => {
if !attributes_box.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(&attributes_box[]));
attributes_box = Vec::new();
}
self.bump(); // empty
}
token::CloseDelim(token::Brace) => {
// fall through and out.
}
_ => {
let stmt = self.parse_stmt(attributes_box);
attributes_box = Vec::new();
stmt.and_then(|Spanned {node, span}| match node {
StmtExpr(e, stmt_id) => {
self.handle_expression_like_statement(e,
stmt_id,
span,
&mut stmts,
&mut expr);
}
StmtMac(mac, MacStmtWithoutBraces) => {
// statement macro without braces; might be an
// expr depending on whether a semicolon follows
match self.token {
token::Semi => {
stmts.push(P(Spanned {
node: StmtMac(mac,
MacStmtWithSemicolon),
span: span,
}));
self.bump();
}
_ => {
let e = self.mk_mac_expr(span.lo,
span.hi,
mac.and_then(|m| m.node));
let e = self.parse_dot_or_call_expr_with(e);
let e = self.parse_more_binops(e, 0);
let e = self.parse_assign_expr_with(e);
self.handle_expression_like_statement(
e,
ast::DUMMY_NODE_ID,
span,
&mut stmts,
&mut expr);
}
}
}
StmtMac(m, style) => {
// statement macro; might be an expr
match self.token {
token::Semi => {
stmts.push(P(Spanned {
node: StmtMac(m,
MacStmtWithSemicolon),
span: span,
}));
self.bump();
}
token::CloseDelim(token::Brace) => {
// if a block ends in `m!(arg)` without
// a `;`, it must be an expr
expr = Some(
self.mk_mac_expr(span.lo,
span.hi,
m.and_then(|x| x.node)));
}
_ => {
stmts.push(P(Spanned {
node: StmtMac(m, style),
span: span
}));
}
}
}
_ => { // all other kinds of statements:
if classify::stmt_ends_with_semi(&node) {
self.commit_stmt_expecting(token::Semi);
}
stmts.push(P(Spanned {
node: node,
span: span
}));
}
})
}
}
}
if !attributes_box.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(&attributes_box[]));
}
let hi = self.span.hi;
self.bump();
P(ast::Block {
stmts: stmts,
expr: expr,
id: ast::DUMMY_NODE_ID,
rules: s,
span: mk_sp(lo, hi),
})
}
fn handle_expression_like_statement(
&mut self,
e: P<Expr>,
stmt_id: NodeId,
span: Span,
stmts: &mut Vec<P<Stmt>>,
last_block_expr: &mut Option<P<Expr>>) {
// expression without semicolon
if classify::expr_requires_semi_to_be_stmt(&*e) {
// Just check for errors and recover; do not eat semicolon yet.
self.commit_stmt(&[],
&[token::Semi, token::CloseDelim(token::Brace)]);
}
match self.token {
token::Semi => {
self.bump();
let span_with_semi = Span {
lo: span.lo,
hi: self.last_span.hi,
expn_id: span.expn_id,
};
stmts.push(P(Spanned {
node: StmtSemi(e, stmt_id),
span: span_with_semi,
}));
}
token::CloseDelim(token::Brace) => *last_block_expr = Some(e),
_ => {
stmts.push(P(Spanned {
node: StmtExpr(e, stmt_id),
span: span
}));
}
}
}
// Parses a sequence of bounds if a `:` is found,
// otherwise returns empty list.
fn parse_colon_then_ty_param_bounds(&mut self,
mode: BoundParsingMode)
-> OwnedSlice<TyParamBound>
{
if !self.eat(&token::Colon) {
OwnedSlice::empty()
} else {
self.parse_ty_param_bounds(mode)
}
}
// matches bounds = ( boundseq )?
// where boundseq = ( polybound + boundseq ) | polybound
// and polybound = ( 'for' '<' 'region '>' )? bound
// and bound = 'region | trait_ref
fn parse_ty_param_bounds(&mut self,
mode: BoundParsingMode)
-> OwnedSlice<TyParamBound>
{
let mut result = vec!();
loop {
let question_span = self.span;
let ate_question = self.eat(&token::Question);
match self.token {
token::Lifetime(lifetime) => {
if ate_question {
self.span_err(question_span,
"`?` may only modify trait bounds, not lifetime bounds");
}
result.push(RegionTyParamBound(ast::Lifetime {
id: ast::DUMMY_NODE_ID,
span: self.span,
name: lifetime.name
}));
self.bump();
}
token::ModSep | token::Ident(..) => {
let poly_trait_ref = self.parse_poly_trait_ref();
let modifier = if ate_question {
if mode == BoundParsingMode::Modified {
TraitBoundModifier::Maybe
} else {
self.span_err(question_span,
"unexpected `?`");
TraitBoundModifier::None
}
} else {
TraitBoundModifier::None
};
result.push(TraitTyParamBound(poly_trait_ref, modifier))
}
_ => break,
}
if !self.eat(&token::BinOp(token::Plus)) {
break;
}
}
return OwnedSlice::from_vec(result);
}
fn trait_ref_from_ident(ident: Ident, span: Span) -> TraitRef {
let segment = ast::PathSegment {
identifier: ident,
parameters: ast::PathParameters::none()
};
let path = ast::Path {
span: span,
global: false,
segments: vec![segment],
};
ast::TraitRef {
path: path,
ref_id: ast::DUMMY_NODE_ID,
}
}
/// Matches typaram = (unbound `?`)? IDENT (`?` unbound)? optbounds ( EQ ty )?
fn parse_ty_param(&mut self) -> TyParam {
// This is a bit hacky. Currently we are only interested in a single
// unbound, and it may only be `Sized`. To avoid backtracking and other
// complications, we parse an ident, then check for `?`. If we find it,
// we use the ident as the unbound, otherwise, we use it as the name of
// type param. Even worse, we need to check for `?` before or after the
// bound.
let mut span = self.span;
let mut ident = self.parse_ident();
let mut unbound = None;
if self.eat(&token::Question) {
let tref = Parser::trait_ref_from_ident(ident, span);
unbound = Some(tref);
span = self.span;
ident = self.parse_ident();
self.obsolete(span, ObsoleteSyntax::Sized);
}
let mut bounds = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified);
if let Some(unbound) = unbound {
let mut bounds_as_vec = bounds.into_vec();
bounds_as_vec.push(TraitTyParamBound(PolyTraitRef { bound_lifetimes: vec![],
trait_ref: unbound },
TraitBoundModifier::Maybe));
bounds = OwnedSlice::from_vec(bounds_as_vec);
};
let default = if self.check(&token::Eq) {
self.bump();
Some(self.parse_ty_sum())
}
else { None };
TyParam {
ident: ident,
id: ast::DUMMY_NODE_ID,
bounds: bounds,
default: default,
span: span,
}
}
/// Parse a set of optional generic type parameter declarations. Where
/// clauses are not parsed here, and must be added later via
/// `parse_where_clause()`.
///
/// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
/// | ( < lifetimes , typaramseq ( , )? > )
/// where typaramseq = ( typaram ) | ( typaram , typaramseq )
pub fn parse_generics(&mut self) -> ast::Generics {
if self.eat(&token::Lt) {
let lifetime_defs = self.parse_lifetime_defs();
let mut seen_default = false;
let ty_params = self.parse_seq_to_gt(Some(token::Comma), |p| {
p.forbid_lifetime();
let ty_param = p.parse_ty_param();
if ty_param.default.is_some() {
seen_default = true;
} else if seen_default {
let last_span = p.last_span;
p.span_err(last_span,
"type parameters with a default must be trailing");
}
ty_param
});
ast::Generics {
lifetimes: lifetime_defs,
ty_params: ty_params,
where_clause: WhereClause {
id: ast::DUMMY_NODE_ID,
predicates: Vec::new(),
}
}
} else {
ast_util::empty_generics()
}
}
fn parse_generic_values_after_lt(&mut self)
-> (Vec<ast::Lifetime>, Vec<P<Ty>>, Vec<P<TypeBinding>>) {
let lifetimes = self.parse_lifetimes(token::Comma);
// First parse types.
let (types, returned) = self.parse_seq_to_gt_or_return(
Some(token::Comma),
|p| {
p.forbid_lifetime();
if p.look_ahead(1, |t| t == &token::Eq) {
None
} else {
Some(p.parse_ty_sum())
}
}
);
// If we found the `>`, don't continue.
if !returned {
return (lifetimes, types.into_vec(), Vec::new());
}
// Then parse type bindings.
let bindings = self.parse_seq_to_gt(
Some(token::Comma),
|p| {
p.forbid_lifetime();
let lo = p.span.lo;
let ident = p.parse_ident();
let found_eq = p.eat(&token::Eq);
if !found_eq {
let span = p.span;
p.span_warn(span, "whoops, no =?");
}
let ty = p.parse_ty();
let hi = p.span.hi;
let span = mk_sp(lo, hi);
return P(TypeBinding{id: ast::DUMMY_NODE_ID,
ident: ident,
ty: ty,
span: span,
});
}
);
(lifetimes, types.into_vec(), bindings.into_vec())
}
fn forbid_lifetime(&mut self) {
if self.token.is_lifetime() {
let span = self.span;
self.span_fatal(span, "lifetime parameters must be declared \
prior to type parameters");
}
}
/// Parses an optional `where` clause and places it in `generics`.
///
/// ```
/// where T : Trait<U, V> + 'b, 'a : 'b
/// ```
fn parse_where_clause(&mut self, generics: &mut ast::Generics) {
if !self.eat_keyword(keywords::Where) {
return
}
let mut parsed_something = false;
loop {
let lo = self.span.lo;
match self.token {
token::OpenDelim(token::Brace) => {
break
}
token::Lifetime(..) => {
let bounded_lifetime =
self.parse_lifetime();
self.eat(&token::Colon);
let bounds =
self.parse_lifetimes(token::BinOp(token::Plus));
let hi = self.span.hi;
let span = mk_sp(lo, hi);
generics.where_clause.predicates.push(ast::WherePredicate::RegionPredicate(
ast::WhereRegionPredicate {
span: span,
lifetime: bounded_lifetime,
bounds: bounds
}
));
parsed_something = true;
}
_ => {
let bounded_ty = self.parse_ty();
if self.eat(&token::Colon) {
let bounds = self.parse_ty_param_bounds(BoundParsingMode::Bare);
let hi = self.span.hi;
let span = mk_sp(lo, hi);
if bounds.len() == 0 {
self.span_err(span,
"each predicate in a `where` clause must have \
at least one bound in it");
}
generics.where_clause.predicates.push(ast::WherePredicate::BoundPredicate(
ast::WhereBoundPredicate {
span: span,
bounded_ty: bounded_ty,
bounds: bounds,
}));
parsed_something = true;
} else if self.eat(&token::Eq) {
// let ty = self.parse_ty();
let hi = self.span.hi;
let span = mk_sp(lo, hi);
// generics.where_clause.predicates.push(
// ast::WherePredicate::EqPredicate(ast::WhereEqPredicate {
// id: ast::DUMMY_NODE_ID,
// span: span,
// path: panic!("NYI"), //bounded_ty,
// ty: ty,
// }));
// parsed_something = true;
// // FIXME(#18433)
self.span_err(span,
"equality constraints are not yet supported \
in where clauses (#20041)");
} else {
let last_span = self.last_span;
self.span_err(last_span,
"unexpected token in `where` clause");
}
}
};
if !self.eat(&token::Comma) {
break
}
}
if !parsed_something {
let last_span = self.last_span;
self.span_err(last_span,
"a `where` clause must have at least one predicate \
in it");
}
}
fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
-> (Vec<Arg> , bool) {
let sp = self.span;
let mut args: Vec<Option<Arg>> =
self.parse_unspanned_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| {
if p.token == token::DotDotDot {
p.bump();
if allow_variadic {
if p.token != token::CloseDelim(token::Paren) {
let span = p.span;
p.span_fatal(span,
"`...` must be last in argument list for variadic function");
}
} else {
let span = p.span;
p.span_fatal(span,
"only foreign functions are allowed to be variadic");
}
None
} else {
Some(p.parse_arg_general(named_args))
}
}
);
let variadic = match args.pop() {
Some(None) => true,
Some(x) => {
// Need to put back that last arg
args.push(x);
false
}
None => false
};
if variadic && args.is_empty() {
self.span_err(sp,
"variadic function must be declared with at least one named argument");
}
let args = args.into_iter().map(|x| x.unwrap()).collect();
(args, variadic)
}
/// Parse the argument list and result type of a function declaration
pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> P<FnDecl> {
let (args, variadic) = self.parse_fn_args(true, allow_variadic);
let ret_ty = self.parse_ret_ty();
P(FnDecl {
inputs: args,
output: ret_ty,
variadic: variadic
})
}
fn is_self_ident(&mut self) -> bool {
match self.token {
token::Ident(id, token::Plain) => id.name == special_idents::self_.name,
_ => false
}
}
fn expect_self_ident(&mut self) -> ast::Ident {
match self.token {
token::Ident(id, token::Plain) if id.name == special_idents::self_.name => {
self.bump();
id
},
_ => {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected `self`, found `{}`",
token_str)[])
}
}
}
/// Parse the argument list and result type of a function
/// that may have a self type.
fn parse_fn_decl_with_self<F>(&mut self, parse_arg_fn: F) -> (ExplicitSelf, P<FnDecl>) where
F: FnMut(&mut Parser) -> Arg,
{
fn maybe_parse_borrowed_explicit_self(this: &mut Parser)
-> ast::ExplicitSelf_ {
// The following things are possible to see here:
//
// fn(&mut self)
// fn(&mut self)
// fn(&'lt self)
// fn(&'lt mut self)
//
// We already know that the current token is `&`.
if this.look_ahead(1, |t| t.is_keyword(keywords::Self)) {
this.bump();
SelfRegion(None, MutImmutable, this.expect_self_ident())
} else if this.look_ahead(1, |t| t.is_mutability()) &&
this.look_ahead(2, |t| t.is_keyword(keywords::Self)) {
this.bump();
let mutability = this.parse_mutability();
SelfRegion(None, mutability, this.expect_self_ident())
} else if this.look_ahead(1, |t| t.is_lifetime()) &&
this.look_ahead(2, |t| t.is_keyword(keywords::Self)) {
this.bump();
let lifetime = this.parse_lifetime();
SelfRegion(Some(lifetime), MutImmutable, this.expect_self_ident())
} else if this.look_ahead(1, |t| t.is_lifetime()) &&
this.look_ahead(2, |t| t.is_mutability()) &&
this.look_ahead(3, |t| t.is_keyword(keywords::Self)) {
this.bump();
let lifetime = this.parse_lifetime();
let mutability = this.parse_mutability();
SelfRegion(Some(lifetime), mutability, this.expect_self_ident())
} else {
SelfStatic
}
}
self.expect(&token::OpenDelim(token::Paren));
// A bit of complexity and lookahead is needed here in order to be
// backwards compatible.
let lo = self.span.lo;
let mut self_ident_lo = self.span.lo;
let mut self_ident_hi = self.span.hi;
let mut mutbl_self = MutImmutable;
let explicit_self = match self.token {
token::BinOp(token::And) => {
let eself = maybe_parse_borrowed_explicit_self(self);
self_ident_lo = self.last_span.lo;
self_ident_hi = self.last_span.hi;
eself
}
token::BinOp(token::Star) => {
// Possibly "*self" or "*mut self" -- not supported. Try to avoid
// emitting cryptic "unexpected token" errors.
self.bump();
let _mutability = if self.token.is_mutability() {
self.parse_mutability()
} else {
MutImmutable
};
if self.is_self_ident() {
let span = self.span;
self.span_err(span, "cannot pass self by unsafe pointer");
self.bump();
}
// error case, making bogus self ident:
SelfValue(special_idents::self_)
}
token::Ident(..) => {
if self.is_self_ident() {
let self_ident = self.expect_self_ident();
// Determine whether this is the fully explicit form, `self:
// TYPE`.
if self.eat(&token::Colon) {
SelfExplicit(self.parse_ty_sum(), self_ident)
} else {
SelfValue(self_ident)
}
} else if self.token.is_mutability() &&
self.look_ahead(1, |t| t.is_keyword(keywords::Self)) {
mutbl_self = self.parse_mutability();
let self_ident = self.expect_self_ident();
// Determine whether this is the fully explicit form,
// `self: TYPE`.
if self.eat(&token::Colon) {
SelfExplicit(self.parse_ty_sum(), self_ident)
} else {
SelfValue(self_ident)
}
} else {
SelfStatic
}
}
_ => SelfStatic,
};
let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi);
// shared fall-through for the three cases below. borrowing prevents simply
// writing this as a closure
macro_rules! parse_remaining_arguments {
($self_id:ident) =>
{
// If we parsed a self type, expect a comma before the argument list.
match self.token {
token::Comma => {
self.bump();
let sep = seq_sep_trailing_allowed(token::Comma);
let mut fn_inputs = self.parse_seq_to_before_end(
&token::CloseDelim(token::Paren),
sep,
parse_arg_fn
);
fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id));
fn_inputs
}
token::CloseDelim(token::Paren) => {
vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id))
}
_ => {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected `,` or `)`, found `{}`",
token_str)[])
}
}
}
}
let fn_inputs = match explicit_self {
SelfStatic => {
let sep = seq_sep_trailing_allowed(token::Comma);
self.parse_seq_to_before_end(&token::CloseDelim(token::Paren), sep, parse_arg_fn)
}
SelfValue(id) => parse_remaining_arguments!(id),
SelfRegion(_,_,id) => parse_remaining_arguments!(id),
SelfExplicit(_,id) => parse_remaining_arguments!(id),
};
self.expect(&token::CloseDelim(token::Paren));
let hi = self.span.hi;
let ret_ty = self.parse_ret_ty();
let fn_decl = P(FnDecl {
inputs: fn_inputs,
output: ret_ty,
variadic: false
});
(spanned(lo, hi, explicit_self), fn_decl)
}
// parse the |arg, arg| header on a lambda
fn parse_fn_block_decl(&mut self)
-> (P<FnDecl>, Option<UnboxedClosureKind>) {
let (optional_unboxed_closure_kind, inputs_captures) = {
if self.eat(&token::OrOr) {
(None, Vec::new())
} else {
self.expect(&token::BinOp(token::Or));
let optional_unboxed_closure_kind =
self.parse_optional_unboxed_closure_kind();
let args = self.parse_seq_to_before_end(
&token::BinOp(token::Or),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_fn_block_arg()
);
self.bump();
(optional_unboxed_closure_kind, args)
}
};
let output = self.parse_ret_ty();
(P(FnDecl {
inputs: inputs_captures,
output: output,
variadic: false
}), optional_unboxed_closure_kind)
}
/// Parses the `(arg, arg) -> return_type` header on a procedure.
fn parse_proc_decl(&mut self) -> P<FnDecl> {
let inputs =
self.parse_unspanned_seq(&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_fn_block_arg());
let output = self.parse_ret_ty();
P(FnDecl {
inputs: inputs,
output: output,
variadic: false
})
}
/// Parse the name and optional generic types of a function header.
fn parse_fn_header(&mut self) -> (Ident, ast::Generics) {
let id = self.parse_ident();
let generics = self.parse_generics();
(id, generics)
}
fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident,
node: Item_, vis: Visibility,
attrs: Vec<Attribute>) -> P<Item> {
P(Item {
ident: ident,
attrs: attrs,
id: ast::DUMMY_NODE_ID,
node: node,
vis: vis,
span: mk_sp(lo, hi)
})
}
/// Parse an item-position function declaration.
fn parse_item_fn(&mut self, unsafety: Unsafety, abi: abi::Abi) -> ItemInfo {
let (ident, mut generics) = self.parse_fn_header();
let decl = self.parse_fn_decl(false);
self.parse_where_clause(&mut generics);
let (inner_attrs, body) = self.parse_inner_attrs_and_block();
(ident, ItemFn(decl, unsafety, abi, generics, body), Some(inner_attrs))
}
/// Parse a method in a trait impl
pub fn parse_method_with_outer_attributes(&mut self) -> P<Method> {
let attrs = self.parse_outer_attributes();
let visa = self.parse_visibility();
self.parse_method(attrs, visa)
}
/// Parse a method in a trait impl, starting with `attrs` attributes.
pub fn parse_method(&mut self,
attrs: Vec<Attribute>,
visa: Visibility)
-> P<Method> {
let lo = self.span.lo;
// code copied from parse_macro_use_or_failure... abstraction!
let (method_, hi, new_attrs) = {
if !self.token.is_any_keyword()
&& self.look_ahead(1, |t| *t == token::Not)
&& (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
|| self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
// method macro.
let pth = self.parse_path(NoTypesAllowed);
self.expect(&token::Not);
// eat a matched-delimiter token tree:
let delim = self.expect_open_delim();
let tts = self.parse_seq_to_end(&token::CloseDelim(delim),
seq_sep_none(),
|p| p.parse_token_tree());
let m_ = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
let m: ast::Mac = codemap::Spanned { node: m_,
span: mk_sp(self.span.lo,
self.span.hi) };
if delim != token::Brace {
self.expect(&token::Semi)
}
(ast::MethMac(m), self.span.hi, attrs)
} else {
let unsafety = self.parse_unsafety();
let abi = if self.eat_keyword(keywords::Extern) {
self.parse_opt_abi().unwrap_or(abi::C)
} else {
abi::Rust
};
self.expect_keyword(keywords::Fn);
let ident = self.parse_ident();
let mut generics = self.parse_generics();
let (explicit_self, decl) = self.parse_fn_decl_with_self(|p| {
p.parse_arg()
});
self.parse_where_clause(&mut generics);
let (inner_attrs, body) = self.parse_inner_attrs_and_block();
let body_span = body.span;
let mut new_attrs = attrs;
new_attrs.push_all(&inner_attrs[]);
(ast::MethDecl(ident,
generics,
abi,
explicit_self,
unsafety,
decl,
body,
visa),
body_span.hi, new_attrs)
}
};
P(ast::Method {
attrs: new_attrs,
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
node: method_,
})
}
/// Parse trait Foo { ... }
fn parse_item_trait(&mut self, unsafety: Unsafety) -> ItemInfo {
let ident = self.parse_ident();
let mut tps = self.parse_generics();
let unbound = self.parse_for_sized();
// Parse supertrait bounds.
let mut bounds = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare);
if let Some(unbound) = unbound {
let mut bounds_as_vec = bounds.into_vec();
bounds_as_vec.push(TraitTyParamBound(PolyTraitRef { bound_lifetimes: vec![],
trait_ref: unbound },
TraitBoundModifier::Maybe));
bounds = OwnedSlice::from_vec(bounds_as_vec);
};
self.parse_where_clause(&mut tps);
let meths = self.parse_trait_items();
(ident, ItemTrait(unsafety, tps, bounds, meths), None)
}
fn parse_impl_items(&mut self) -> (Vec<ImplItem>, Vec<Attribute>) {
let mut impl_items = Vec::new();
self.expect(&token::OpenDelim(token::Brace));
let (inner_attrs, mut method_attrs) =
self.parse_inner_attrs_and_next();
loop {
method_attrs.extend(self.parse_outer_attributes().into_iter());
if method_attrs.is_empty() && self.eat(&token::CloseDelim(token::Brace)) {
break;
}
let vis = self.parse_visibility();
if self.eat_keyword(keywords::Type) {
impl_items.push(TypeImplItem(P(self.parse_typedef(
method_attrs,
vis))))
} else {
impl_items.push(MethodImplItem(self.parse_method(
method_attrs,
vis)));
}
method_attrs = vec![];
}
(impl_items, inner_attrs)
}
/// Parses two variants (with the region/type params always optional):
/// impl<T> Foo { ... }
/// impl<T> ToString for ~[T] { ... }
fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> ItemInfo {
// First, parse type parameters if necessary.
let mut generics = self.parse_generics();
// Special case: if the next identifier that follows is '(', don't
// allow this to be parsed as a trait.
let could_be_trait = self.token != token::OpenDelim(token::Paren);
let neg_span = self.span;
let polarity = if self.eat(&token::Not) {
ast::ImplPolarity::Negative
} else {
ast::ImplPolarity::Positive
};
// Parse the trait.
let mut ty = self.parse_ty_sum();
// Parse traits, if necessary.
let opt_trait = if could_be_trait && self.eat_keyword(keywords::For) {
// New-style trait. Reinterpret the type as a trait.
let opt_trait_ref = match ty.node {
TyPath(ref path, node_id) => {
Some(TraitRef {
path: (*path).clone(),
ref_id: node_id,
})
}
_ => {
self.span_err(ty.span, "not a trait");
None
}
};
ty = self.parse_ty_sum();
opt_trait_ref
} else {
match polarity {
ast::ImplPolarity::Negative => {
// This is a negated type implementation
// `impl !MyType {}`, which is not allowed.
self.span_err(neg_span, "inherent implementation can't be negated");
},
_ => {}
}
None
};
self.parse_where_clause(&mut generics);
let (impl_items, attrs) = self.parse_impl_items();
let ident = ast_util::impl_pretty_name(&opt_trait, &*ty);
(ident,
ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items),
Some(attrs))
}
/// Parse a::B<String,i32>
fn parse_trait_ref(&mut self) -> TraitRef {
ast::TraitRef {
path: self.parse_path(LifetimeAndTypesWithoutColons),
ref_id: ast::DUMMY_NODE_ID,
}
}
fn parse_late_bound_lifetime_defs(&mut self) -> Vec<ast::LifetimeDef> {
if self.eat_keyword(keywords::For) {
self.expect(&token::Lt);
let lifetime_defs = self.parse_lifetime_defs();
self.expect_gt();
lifetime_defs
} else {
Vec::new()
}
}
/// Parse for<'l> a::B<String,i32>
fn parse_poly_trait_ref(&mut self) -> PolyTraitRef {
let lifetime_defs = self.parse_late_bound_lifetime_defs();
ast::PolyTraitRef {
bound_lifetimes: lifetime_defs,
trait_ref: self.parse_trait_ref()
}
}
/// Parse struct Foo { ... }
fn parse_item_struct(&mut self) -> ItemInfo {
let class_name = self.parse_ident();
let mut generics = self.parse_generics();
if self.eat(&token::Colon) {
let ty = self.parse_ty_sum();
self.span_err(ty.span, "`virtual` structs have been removed from the language");
}
// There is a special case worth noting here, as reported in issue #17904.
// If we are parsing a tuple struct it is the case that the where clause
// should follow the field list. Like so:
//
// struct Foo<T>(T) where T: Copy;
//
// If we are parsing a normal record-style struct it is the case
// that the where clause comes before the body, and after the generics.
// So if we look ahead and see a brace or a where-clause we begin
// parsing a record style struct.
//
// Otherwise if we look ahead and see a paren we parse a tuple-style
// struct.
let (fields, ctor_id) = if self.token.is_keyword(keywords::Where) {
self.parse_where_clause(&mut generics);
if self.eat(&token::Semi) {
// If we see a: `struct Foo<T> where T: Copy;` style decl.
(Vec::new(), Some(ast::DUMMY_NODE_ID))
} else {
// If we see: `struct Foo<T> where T: Copy { ... }`
(self.parse_record_struct_body(&class_name), None)
}
// No `where` so: `struct Foo<T>;`
} else if self.eat(&token::Semi) {
(Vec::new(), Some(ast::DUMMY_NODE_ID))
// Record-style struct definition
} else if self.token == token::OpenDelim(token::Brace) {
let fields = self.parse_record_struct_body(&class_name);
(fields, None)
// Tuple-style struct definition with optional where-clause.
} else {
let fields = self.parse_tuple_struct_body(&class_name, &mut generics);
(fields, Some(ast::DUMMY_NODE_ID))
};
(class_name,
ItemStruct(P(ast::StructDef {
fields: fields,
ctor_id: ctor_id,
}), generics),
None)
}
pub fn parse_record_struct_body(&mut self, class_name: &ast::Ident) -> Vec<StructField> {
let mut fields = Vec::new();
if self.eat(&token::OpenDelim(token::Brace)) {
while self.token != token::CloseDelim(token::Brace) {
fields.push(self.parse_struct_decl_field(true));
}
if fields.len() == 0 {
self.fatal(&format!("unit-like struct definition should be \
written as `struct {};`",
token::get_ident(class_name.clone()))[]);
}
self.bump();
} else {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected `where`, or `{}` after struct \
name, found `{}`", "{",
token_str)[]);
}
fields
}
pub fn parse_tuple_struct_body(&mut self,
class_name: &ast::Ident,
generics: &mut ast::Generics)
-> Vec<StructField> {
// This is the case where we find `struct Foo<T>(T) where T: Copy;`
if self.check(&token::OpenDelim(token::Paren)) {
let fields = self.parse_unspanned_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| {
let attrs = p.parse_outer_attributes();
let lo = p.span.lo;
let struct_field_ = ast::StructField_ {
kind: UnnamedField(p.parse_visibility()),
id: ast::DUMMY_NODE_ID,
ty: p.parse_ty_sum(),
attrs: attrs,
};
spanned(lo, p.span.hi, struct_field_)
});
if fields.len() == 0 {
self.fatal(&format!("unit-like struct definition should be \
written as `struct {};`",
token::get_ident(class_name.clone()))[]);
}
self.parse_where_clause(generics);
self.expect(&token::Semi);
fields
// This is the case where we just see struct Foo<T> where T: Copy;
} else if self.token.is_keyword(keywords::Where) {
self.parse_where_clause(generics);
self.expect(&token::Semi);
Vec::new()
// This case is where we see: `struct Foo<T>;`
} else {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected `where`, `{}`, `(`, or `;` after struct \
name, found `{}`", "{", token_str)[]);
}
}
/// Parse a structure field declaration
pub fn parse_single_struct_field(&mut self,
vis: Visibility,
attrs: Vec<Attribute> )
-> StructField {
let a_var = self.parse_name_and_ty(vis, attrs);
match self.token {
token::Comma => {
self.bump();
}
token::CloseDelim(token::Brace) => {}
_ => {
let span = self.span;
let token_str = self.this_token_to_string();
self.span_fatal_help(span,
&format!("expected `,`, or `}}`, found `{}`",
token_str)[],
"struct fields should be separated by commas")
}
}
a_var
}
/// Parse an element of a struct definition
fn parse_struct_decl_field(&mut self, allow_pub: bool) -> StructField {
let attrs = self.parse_outer_attributes();
if self.eat_keyword(keywords::Pub) {
if !allow_pub {
let span = self.last_span;
self.span_err(span, "`pub` is not allowed here");
}
return self.parse_single_struct_field(Public, attrs);
}
return self.parse_single_struct_field(Inherited, attrs);
}
/// Parse visibility: PUB, PRIV, or nothing
fn parse_visibility(&mut self) -> Visibility {
if self.eat_keyword(keywords::Pub) { Public }
else { Inherited }
}
fn parse_for_sized(&mut self) -> Option<ast::TraitRef> {
// FIXME, this should really use TraitBoundModifier, but it will get
// re-jigged shortly in any case, so leaving the hacky version for now.
if self.eat_keyword(keywords::For) {
let span = self.span;
let mut ate_question = false;
if self.eat(&token::Question) {
ate_question = true;
}
let ident = self.parse_ident();
if self.eat(&token::Question) {
if ate_question {
self.span_err(span,
"unexpected `?`");
}
ate_question = true;
}
if !ate_question {
self.span_err(span,
"expected `?Sized` after `for` in trait item");
return None;
}
let _tref = Parser::trait_ref_from_ident(ident, span);
self.obsolete(span, ObsoleteSyntax::ForSized);
None
} else {
None
}
}
/// Given a termination token and a vector of already-parsed
/// attributes (of length 0 or 1), parse all of the items in a module
fn parse_mod_items(&mut self,
term: token::Token,
first_item_attrs: Vec<Attribute>,
inner_lo: BytePos)
-> Mod {
// Parse all of the items up to closing or an attribute.
let mut attrs = first_item_attrs;
attrs.push_all(&self.parse_outer_attributes()[]);
let mut items = vec![];
loop {
match self.parse_item_(attrs, true) {
Err(returned_attrs) => {
attrs = returned_attrs;
break
}
Ok(item) => {
attrs = self.parse_outer_attributes();
items.push(item)
}
}
}
// don't think this other loop is even necessary....
while self.token != term {
let mut attrs = mem::replace(&mut attrs, vec![]);
attrs.push_all(&self.parse_outer_attributes()[]);
debug!("parse_mod_items: parse_item_(attrs={:?})", attrs);
match self.parse_item_(attrs, true /* macros allowed */) {
Ok(item) => items.push(item),
Err(_) => {
let token_str = self.this_token_to_string();
self.fatal(&format!("expected item, found `{}`",
token_str)[])
}
}
}
if !attrs.is_empty() {
// We parsed attributes for the first item but didn't find it
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(&attrs[]));
}
ast::Mod {
inner: mk_sp(inner_lo, self.span.lo),
items: items
}
}
fn parse_item_const(&mut self, m: Option<Mutability>) -> ItemInfo {
let id = self.parse_ident();
self.expect(&token::Colon);
let ty = self.parse_ty_sum();
self.expect(&token::Eq);
let e = self.parse_expr();
self.commit_expr_expecting(&*e, token::Semi);
let item = match m {
Some(m) => ItemStatic(ty, m, e),
None => ItemConst(ty, e),
};
(id, item, None)
}
/// Parse a `mod <foo> { ... }` or `mod <foo>;` item
fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> ItemInfo {
let id_span = self.span;
let id = self.parse_ident();
if self.check(&token::Semi) {
self.bump();
// This mod is in an external file. Let's go get it!
let (m, attrs) = self.eval_src_mod(id, outer_attrs, id_span);
(id, m, Some(attrs))
} else {
self.push_mod_path(id, outer_attrs);
self.expect(&token::OpenDelim(token::Brace));
let mod_inner_lo = self.span.lo;
let old_owns_directory = self.owns_directory;
self.owns_directory = true;
let (inner, next) = self.parse_inner_attrs_and_next();
let m = self.parse_mod_items(token::CloseDelim(token::Brace), next, mod_inner_lo);
self.expect(&token::CloseDelim(token::Brace));
self.owns_directory = old_owns_directory;
self.pop_mod_path();
(id, ItemMod(m), Some(inner))
}
}
fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) {
let default_path = self.id_to_interned_str(id);
let file_path = match ::attr::first_attr_value_str_by_name(attrs,
"path") {
Some(d) => d,
None => default_path,
};
self.mod_path_stack.push(file_path)
}
fn pop_mod_path(&mut self) {
self.mod_path_stack.pop().unwrap();
}
/// Read a module from a source file.
fn eval_src_mod(&mut self,
id: ast::Ident,
outer_attrs: &[ast::Attribute],
id_sp: Span)
-> (ast::Item_, Vec<ast::Attribute> ) {
let mut prefix = Path::new(self.sess.span_diagnostic.cm.span_to_filename(self.span));
prefix.pop();
let mod_path = Path::new(".").join_many(&self.mod_path_stack[]);
let dir_path = prefix.join(&mod_path);
let mod_string = token::get_ident(id);
let (file_path, owns_directory) = match ::attr::first_attr_value_str_by_name(
outer_attrs, "path") {
Some(d) => (dir_path.join(d), true),
None => {
let mod_name = mod_string.get().to_string();
let default_path_str = format!("{}.rs", mod_name);
let secondary_path_str = format!("{}/mod.rs", mod_name);
let default_path = dir_path.join(&default_path_str[]);
let secondary_path = dir_path.join(&secondary_path_str[]);
let default_exists = default_path.exists();
let secondary_exists = secondary_path.exists();
if !self.owns_directory {
self.span_err(id_sp,
"cannot declare a new module at this location");
let this_module = match self.mod_path_stack.last() {
Some(name) => name.get().to_string(),
None => self.root_module_name.as_ref().unwrap().clone(),
};
self.span_note(id_sp,
&format!("maybe move this module `{0}` \
to its own directory via \
`{0}/mod.rs`",
this_module)[]);
if default_exists || secondary_exists {
self.span_note(id_sp,
&format!("... or maybe `use` the module \
`{}` instead of possibly \
redeclaring it",
mod_name)[]);
}
self.abort_if_errors();
}
match (default_exists, secondary_exists) {
(true, false) => (default_path, false),
(false, true) => (secondary_path, true),
(false, false) => {
self.span_fatal_help(id_sp,
&format!("file not found for module `{}`",
mod_name)[],
&format!("name the file either {} or {} inside \
the directory {:?}",
default_path_str,
secondary_path_str,
dir_path.display())[]);
}
(true, true) => {
self.span_fatal_help(
id_sp,
&format!("file for module `{}` found at both {} \
and {}",
mod_name,
default_path_str,
secondary_path_str)[],
"delete or rename one of them to remove the ambiguity");
}
}
}
};
self.eval_src_mod_from_path(file_path, owns_directory,
mod_string.get().to_string(), id_sp)
}
fn eval_src_mod_from_path(&mut self,
path: Path,
owns_directory: bool,
name: String,
id_sp: Span) -> (ast::Item_, Vec<ast::Attribute> ) {
let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
match included_mod_stack.iter().position(|p| *p == path) {
Some(i) => {
let mut err = String::from_str("circular modules: ");
let len = included_mod_stack.len();
for p in included_mod_stack[i.. len].iter() {
err.push_str(&p.display().as_cow()[]);
err.push_str(" -> ");
}
err.push_str(&path.display().as_cow()[]);
self.span_fatal(id_sp, &err[]);
}
None => ()
}
included_mod_stack.push(path.clone());
drop(included_mod_stack);
let mut p0 =
new_sub_parser_from_file(self.sess,
self.cfg.clone(),
&path,
owns_directory,
Some(name),
id_sp);
let mod_inner_lo = p0.span.lo;
let (mod_attrs, next) = p0.parse_inner_attrs_and_next();
let first_item_outer_attrs = next;
let m0 = p0.parse_mod_items(token::Eof, first_item_outer_attrs, mod_inner_lo);
self.sess.included_mod_stack.borrow_mut().pop();
return (ast::ItemMod(m0), mod_attrs);
}
/// Parse a function declaration from a foreign module
fn parse_item_foreign_fn(&mut self, vis: ast::Visibility,
attrs: Vec<Attribute>) -> P<ForeignItem> {
let lo = self.span.lo;
self.expect_keyword(keywords::Fn);
let (ident, mut generics) = self.parse_fn_header();
let decl = self.parse_fn_decl(true);
self.parse_where_clause(&mut generics);
let hi = self.span.hi;
self.expect(&token::Semi);
P(ast::ForeignItem {
ident: ident,
attrs: attrs,
node: ForeignItemFn(decl, generics),
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
vis: vis
})
}
/// Parse a static item from a foreign module
fn parse_item_foreign_static(&mut self, vis: ast::Visibility,
attrs: Vec<Attribute>) -> P<ForeignItem> {
let lo = self.span.lo;
self.expect_keyword(keywords::Static);
let mutbl = self.eat_keyword(keywords::Mut);
let ident = self.parse_ident();
self.expect(&token::Colon);
let ty = self.parse_ty_sum();
let hi = self.span.hi;
self.expect(&token::Semi);
P(ForeignItem {
ident: ident,
attrs: attrs,
node: ForeignItemStatic(ty, mutbl),
id: ast::DUMMY_NODE_ID,
span: mk_sp(lo, hi),
vis: vis
})
}
/// At this point, this is essentially a wrapper for
/// parse_foreign_items.
fn parse_foreign_mod_items(&mut self,
abi: abi::Abi,
first_item_attrs: Vec<Attribute>)
-> ForeignMod {
let foreign_items = self.parse_foreign_items(first_item_attrs);
assert!(self.token == token::CloseDelim(token::Brace));
ast::ForeignMod {
abi: abi,
items: foreign_items
}
}
/// Parse extern crate links
///
/// # Example
///
/// extern crate url;
/// extern crate foo = "bar"; //deprecated
/// extern crate "bar" as foo;
fn parse_item_extern_crate(&mut self,
lo: BytePos,
visibility: Visibility,
attrs: Vec<Attribute>)
-> P<Item> {
let span = self.span;
let (maybe_path, ident) = match self.token {
token::Ident(..) => {
let the_ident = self.parse_ident();
let path = if self.eat_keyword(keywords::As) {
// skip the ident if there is one
if self.token.is_ident() { self.bump(); }
self.span_err(span, "expected `;`, found `as`");
self.span_help(span,
&format!("perhaps you meant to enclose the crate name `{}` in \
a string?",
the_ident.as_str())[]);
None
} else {
None
};
self.expect(&token::Semi);
(path, the_ident)
},
token::Literal(token::Str_(..), suf) | token::Literal(token::StrRaw(..), suf) => {
let sp = self.span;
self.expect_no_suffix(sp, "extern crate name", suf);
// forgo the internal suffix check of `parse_str` to
// avoid repeats (this unwrap will always succeed due
// to the restriction of the `match`)
let (s, style, _) = self.parse_optional_str().unwrap();
self.expect_keyword(keywords::As);
let the_ident = self.parse_ident();
self.expect(&token::Semi);
(Some((s, style)), the_ident)
},
_ => {
let span = self.span;
let token_str = self.this_token_to_string();
self.span_fatal(span,
&format!("expected extern crate name but \
found `{}`",
token_str)[]);
}
};
let last_span = self.last_span;
self.mk_item(lo,
last_span.hi,
ident,
ItemExternCrate(maybe_path),
visibility,
attrs)
}
/// Parse `extern` for foreign ABIs
/// modules.
///
/// `extern` is expected to have been
/// consumed before calling this method
///
/// # Examples:
///
/// extern "C" {}
/// extern {}
fn parse_item_foreign_mod(&mut self,
lo: BytePos,
opt_abi: Option<abi::Abi>,
visibility: Visibility,
attrs: Vec<Attribute>)
-> P<Item> {
self.expect(&token::OpenDelim(token::Brace));
let abi = opt_abi.unwrap_or(abi::C);
let (inner, next) = self.parse_inner_attrs_and_next();
let m = self.parse_foreign_mod_items(abi, next);
self.expect(&token::CloseDelim(token::Brace));
let last_span = self.last_span;
self.mk_item(lo,
last_span.hi,
special_idents::invalid,
ItemForeignMod(m),
visibility,
maybe_append(attrs, Some(inner)))
}
/// Parse type Foo = Bar;
fn parse_item_type(&mut self) -> ItemInfo {
let ident = self.parse_ident();
let mut tps = self.parse_generics();
self.parse_where_clause(&mut tps);
self.expect(&token::Eq);
let ty = self.parse_ty_sum();
self.expect(&token::Semi);
(ident, ItemTy(ty, tps), None)
}
/// Parse a structure-like enum variant definition
/// this should probably be renamed or refactored...
fn parse_struct_def(&mut self) -> P<StructDef> {
let mut fields: Vec<StructField> = Vec::new();
while self.token != token::CloseDelim(token::Brace) {
fields.push(self.parse_struct_decl_field(false));
}
self.bump();
P(StructDef {
fields: fields,
ctor_id: None,
})
}
/// Parse the part of an "enum" decl following the '{'
fn parse_enum_def(&mut self, _generics: &ast::Generics) -> EnumDef {
let mut variants = Vec::new();
let mut all_nullary = true;
let mut any_disr = None;
while self.token != token::CloseDelim(token::Brace) {
let variant_attrs = self.parse_outer_attributes();
let vlo = self.span.lo;
let vis = self.parse_visibility();
let ident;
let kind;
let mut args = Vec::new();
let mut disr_expr = None;
ident = self.parse_ident();
if self.eat(&token::OpenDelim(token::Brace)) {
// Parse a struct variant.
all_nullary = false;
let start_span = self.span;
let struct_def = self.parse_struct_def();
if struct_def.fields.len() == 0 {
self.span_err(start_span,
&format!("unit-like struct variant should be written \
without braces, as `{},`",
token::get_ident(ident))[]);
}
kind = StructVariantKind(struct_def);
} else if self.check(&token::OpenDelim(token::Paren)) {
all_nullary = false;
let arg_tys = self.parse_enum_variant_seq(
&token::OpenDelim(token::Paren),
&token::CloseDelim(token::Paren),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_ty_sum()
);
for ty in arg_tys.into_iter() {
args.push(ast::VariantArg {
ty: ty,
id: ast::DUMMY_NODE_ID,
});
}
kind = TupleVariantKind(args);
} else if self.eat(&token::Eq) {
disr_expr = Some(self.parse_expr());
any_disr = disr_expr.as_ref().map(|expr| expr.span);
kind = TupleVariantKind(args);
} else {
kind = TupleVariantKind(Vec::new());
}
let vr = ast::Variant_ {
name: ident,
attrs: variant_attrs,
kind: kind,
id: ast::DUMMY_NODE_ID,
disr_expr: disr_expr,
vis: vis,
};
variants.push(P(spanned(vlo, self.last_span.hi, vr)));
if !self.eat(&token::Comma) { break; }
}
self.expect(&token::CloseDelim(token::Brace));
match any_disr {
Some(disr_span) if !all_nullary =>
self.span_err(disr_span,
"discriminator values can only be used with a c-like enum"),
_ => ()
}
ast::EnumDef { variants: variants }
}
/// Parse an "enum" declaration
fn parse_item_enum(&mut self) -> ItemInfo {
let id = self.parse_ident();
let mut generics = self.parse_generics();
self.parse_where_clause(&mut generics);
self.expect(&token::OpenDelim(token::Brace));
let enum_definition = self.parse_enum_def(&generics);
(id, ItemEnum(enum_definition, generics), None)
}
/// Parses a string as an ABI spec on an extern type or module. Consumes
/// the `extern` keyword, if one is found.
fn parse_opt_abi(&mut self) -> Option<abi::Abi> {
match self.token {
token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => {
let sp = self.span;
self.expect_no_suffix(sp, "ABI spec", suf);
self.bump();
let the_string = s.as_str();
match abi::lookup(the_string) {
Some(abi) => Some(abi),
None => {
let last_span = self.last_span;
self.span_err(
last_span,
&format!("illegal ABI: expected one of [{}], \
found `{}`",
abi::all_names().connect(", "),
the_string)[]);
None
}
}
}
_ => None,
}
}
/// Parse one of the items allowed by the flags; on failure,
/// return `Err(remaining_attrs)`.
/// NB: this function no longer parses the items inside an
/// extern crate.
fn parse_item_(&mut self, attrs: Vec<Attribute>,
macros_allowed: bool) -> MaybeItem {
let nt_item = match self.token {
token::Interpolated(token::NtItem(ref item)) => {
Some((**item).clone())
}
_ => None
};
match nt_item {
Some(mut item) => {
self.bump();
let mut attrs = attrs;
mem::swap(&mut item.attrs, &mut attrs);
item.attrs.extend(attrs.into_iter());
return Ok(P(item));
}
None => {}
}
let lo = self.span.lo;
let visibility = self.parse_visibility();
if self.eat_keyword(keywords::Use) {
// USE ITEM
let item_ = ItemUse(self.parse_view_path());
self.expect(&token::Semi);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
token::special_idents::invalid,
item_,
visibility,
attrs);
return Ok(item);
}
if self.eat_keyword(keywords::Extern) {
if self.eat_keyword(keywords::Crate) {
return Ok(self.parse_item_extern_crate(lo, visibility, attrs));
}
let opt_abi = self.parse_opt_abi();
if self.eat_keyword(keywords::Fn) {
// EXTERN FUNCTION ITEM
let abi = opt_abi.unwrap_or(abi::C);
let (ident, item_, extra_attrs) =
self.parse_item_fn(Unsafety::Normal, abi);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
} else if self.check(&token::OpenDelim(token::Brace)) {
return Ok(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs));
}
let span = self.span;
let token_str = self.this_token_to_string();
self.span_fatal(span,
&format!("expected `{}` or `fn`, found `{}`", "{",
token_str)[]);
}
if self.eat_keyword(keywords::Virtual) {
let span = self.span;
self.span_err(span, "`virtual` structs have been removed from the language");
}
if self.token.is_keyword(keywords::Static) {
// STATIC ITEM
self.bump();
let m = if self.eat_keyword(keywords::Mut) {MutMutable} else {MutImmutable};
let (ident, item_, extra_attrs) = self.parse_item_const(Some(m));
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.token.is_keyword(keywords::Const) {
// CONST ITEM
self.bump();
if self.eat_keyword(keywords::Mut) {
let last_span = self.last_span;
self.span_err(last_span, "const globals cannot be mutable");
self.span_help(last_span, "did you mean to declare a static?");
}
let (ident, item_, extra_attrs) = self.parse_item_const(None);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.token.is_keyword(keywords::Unsafe) &&
self.look_ahead(1us, |t| t.is_keyword(keywords::Trait))
{
// UNSAFE TRAIT ITEM
self.expect_keyword(keywords::Unsafe);
self.expect_keyword(keywords::Trait);
let (ident, item_, extra_attrs) =
self.parse_item_trait(ast::Unsafety::Unsafe);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.token.is_keyword(keywords::Unsafe) &&
self.look_ahead(1us, |t| t.is_keyword(keywords::Impl))
{
// IMPL ITEM
self.expect_keyword(keywords::Unsafe);
self.expect_keyword(keywords::Impl);
let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Unsafe);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.token.is_keyword(keywords::Fn) {
// FUNCTION ITEM
self.bump();
let (ident, item_, extra_attrs) =
self.parse_item_fn(Unsafety::Normal, abi::Rust);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.token.is_keyword(keywords::Unsafe)
&& self.look_ahead(1us, |t| *t != token::OpenDelim(token::Brace)) {
// UNSAFE FUNCTION ITEM
self.bump();
let abi = if self.eat_keyword(keywords::Extern) {
self.parse_opt_abi().unwrap_or(abi::C)
} else {
abi::Rust
};
self.expect_keyword(keywords::Fn);
let (ident, item_, extra_attrs) =
self.parse_item_fn(Unsafety::Unsafe, abi);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.eat_keyword(keywords::Mod) {
// MODULE ITEM
let (ident, item_, extra_attrs) =
self.parse_item_mod(&attrs[]);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.eat_keyword(keywords::Type) {
// TYPE ITEM
let (ident, item_, extra_attrs) = self.parse_item_type();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.eat_keyword(keywords::Enum) {
// ENUM ITEM
let (ident, item_, extra_attrs) = self.parse_item_enum();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.eat_keyword(keywords::Trait) {
// TRAIT ITEM
let (ident, item_, extra_attrs) =
self.parse_item_trait(ast::Unsafety::Normal);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.eat_keyword(keywords::Impl) {
// IMPL ITEM
let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Normal);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
if self.eat_keyword(keywords::Struct) {
// STRUCT ITEM
let (ident, item_, extra_attrs) = self.parse_item_struct();
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
ident,
item_,
visibility,
maybe_append(attrs, extra_attrs));
return Ok(item);
}
self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
}
/// Parse a foreign item; on failure, return `Err(remaining_attrs)`.
fn parse_foreign_item(&mut self, attrs: Vec<Attribute>)
-> Result<P<ForeignItem>, Vec<Attribute>> {
let lo = self.span.lo;
let visibility = self.parse_visibility();
if self.token.is_keyword(keywords::Static) {
// FOREIGN STATIC ITEM
return Ok(self.parse_item_foreign_static(visibility, attrs));
}
if self.token.is_keyword(keywords::Fn) || self.token.is_keyword(keywords::Unsafe) {
// FOREIGN FUNCTION ITEM
return Ok(self.parse_item_foreign_fn(visibility, attrs));
}
// FIXME #5668: this will occur for a macro invocation:
let item = try!(self.parse_macro_use_or_failure(attrs, true, lo, visibility));
self.span_fatal(item.span, "macros cannot expand to foreign items");
}
/// This is the fall-through for parsing items.
fn parse_macro_use_or_failure(
&mut self,
attrs: Vec<Attribute> ,
macros_allowed: bool,
lo: BytePos,
visibility: Visibility
) -> MaybeItem {
if macros_allowed && !self.token.is_any_keyword()
&& self.look_ahead(1, |t| *t == token::Not)
&& (self.look_ahead(2, |t| t.is_plain_ident())
|| self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
|| self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
// MACRO INVOCATION ITEM
// item macro.
let pth = self.parse_path(NoTypesAllowed);
self.expect(&token::Not);
// a 'special' identifier (like what `macro_rules!` uses)
// is optional. We should eventually unify invoc syntax
// and remove this.
let id = if self.token.is_plain_ident() {
self.parse_ident()
} else {
token::special_idents::invalid // no special identifier
};
// eat a matched-delimiter token tree:
let delim = self.expect_open_delim();
let tts = self.parse_seq_to_end(&token::CloseDelim(delim),
seq_sep_none(),
|p| p.parse_token_tree());
// single-variant-enum... :
let m = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
let m: ast::Mac = codemap::Spanned { node: m,
span: mk_sp(self.span.lo,
self.span.hi) };
if delim != token::Brace {
if !self.eat(&token::Semi) {
let last_span = self.last_span;
self.span_err(last_span,
"macros that expand to items must either \
be surrounded with braces or followed by \
a semicolon");
}
}
let item_ = ItemMac(m);
let last_span = self.last_span;
let item = self.mk_item(lo,
last_span.hi,
id,
item_,
visibility,
attrs);
return Ok(item);
}
// FAILURE TO PARSE ITEM
match visibility {
Inherited => {}
Public => {
let last_span = self.last_span;
self.span_fatal(last_span, "unmatched visibility `pub`");
}
}
Err(attrs)
}
pub fn parse_item_with_outer_attributes(&mut self) -> Option<P<Item>> {
let attrs = self.parse_outer_attributes();
self.parse_item(attrs)
}
pub fn parse_item(&mut self, attrs: Vec<Attribute>) -> Option<P<Item>> {
self.parse_item_(attrs, true).ok()
}
/// Matches view_path : MOD? non_global_path as IDENT
/// | MOD? non_global_path MOD_SEP LBRACE RBRACE
/// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
/// | MOD? non_global_path MOD_SEP STAR
/// | MOD? non_global_path
fn parse_view_path(&mut self) -> P<ViewPath> {
let lo = self.span.lo;
// Allow a leading :: because the paths are absolute either way.
// This occurs with "use $crate::..." in macros.
self.eat(&token::ModSep);
if self.check(&token::OpenDelim(token::Brace)) {
// use {foo,bar}
let idents = self.parse_unspanned_seq(
&token::OpenDelim(token::Brace),
&token::CloseDelim(token::Brace),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_path_list_item());
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: Vec::new()
};
return P(spanned(lo, self.span.hi, ViewPathList(path, idents)));
}
let first_ident = self.parse_ident();
let mut path = vec!(first_ident);
if let token::ModSep = self.token {
// foo::bar or foo::{a,b,c} or foo::*
while self.check(&token::ModSep) {
self.bump();
match self.token {
token::Ident(i, _) => {
self.bump();
path.push(i);
}
// foo::bar::{a,b,c}
token::OpenDelim(token::Brace) => {
let idents = self.parse_unspanned_seq(
&token::OpenDelim(token::Brace),
&token::CloseDelim(token::Brace),
seq_sep_trailing_allowed(token::Comma),
|p| p.parse_path_list_item()
);
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none(),
}
}).collect()
};
return P(spanned(lo, self.span.hi, ViewPathList(path, idents)));
}
// foo::bar::*
token::BinOp(token::Star) => {
self.bump();
let path = ast::Path {
span: mk_sp(lo, self.span.hi),
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none(),
}
}).collect()
};
return P(spanned(lo, self.span.hi, ViewPathGlob(path)));
}
_ => break
}
}
}
let mut rename_to = path[path.len() - 1us];
let path = ast::Path {
span: mk_sp(lo, self.last_span.hi),
global: false,
segments: path.into_iter().map(|identifier| {
ast::PathSegment {
identifier: identifier,
parameters: ast::PathParameters::none(),
}
}).collect()
};
if self.eat_keyword(keywords::As) {
rename_to = self.parse_ident()
}
P(spanned(lo, self.last_span.hi, ViewPathSimple(rename_to, path)))
}
/// Parses a sequence of foreign items. Stops when it finds program
/// text that can't be parsed as an item
fn parse_foreign_items(&mut self, first_item_attrs: Vec<Attribute>)
-> Vec<P<ForeignItem>> {
let mut attrs = first_item_attrs;
attrs.push_all(&self.parse_outer_attributes()[]);
let mut foreign_items = Vec::new();
loop {
match self.parse_foreign_item(attrs) {
Ok(foreign_item) => {
foreign_items.push(foreign_item);
}
Err(returned_attrs) => {
if self.check(&token::CloseDelim(token::Brace)) {
attrs = returned_attrs;
break
}
self.unexpected();
}
}
attrs = self.parse_outer_attributes();
}
if !attrs.is_empty() {
let last_span = self.last_span;
self.span_err(last_span,
Parser::expected_item_err(&attrs[]));
}
foreign_items
}
/// Parses a source module as a crate. This is the main
/// entry point for the parser.
pub fn parse_crate_mod(&mut self) -> Crate {
let lo = self.span.lo;
// parse the crate's inner attrs, maybe (oops) one
// of the attrs of an item:
let (inner, next) = self.parse_inner_attrs_and_next();
let first_item_outer_attrs = next;
// parse the items inside the crate:
let m = self.parse_mod_items(token::Eof, first_item_outer_attrs, lo);
ast::Crate {
module: m,
attrs: inner,
config: self.cfg.clone(),
span: mk_sp(lo, self.span.lo),
exported_macros: Vec::new(),
}
}
pub fn parse_optional_str(&mut self)
-> Option<(InternedString, ast::StrStyle, Option<ast::Name>)> {
let ret = match self.token {
token::Literal(token::Str_(s), suf) => {
(self.id_to_interned_str(s.ident()), ast::CookedStr, suf)
}
token::Literal(token::StrRaw(s, n), suf) => {
(self.id_to_interned_str(s.ident()), ast::RawStr(n), suf)
}
_ => return None
};
self.bump();
Some(ret)
}
pub fn parse_str(&mut self) -> (InternedString, StrStyle) {
match self.parse_optional_str() {
Some((s, style, suf)) => {
let sp = self.last_span;
self.expect_no_suffix(sp, "str literal", suf);
(s, style)
}
_ => self.fatal("expected string literal")
}
}
}