// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. pub use self::PathParsingMode::*; use abi; use ast::{AssociatedType, BareFnTy}; use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier}; use ast::{ProvidedMethod, Public, Unsafety}; use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue}; use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, BiLt, BiGt, Block}; use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause}; use ast::{Crate, CrateConfig, Decl, DeclItem}; use ast::{DeclLocal, DefaultBlock, DefaultReturn}; use ast::{UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf}; use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain}; use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox}; use ast::{ExprBreak, ExprCall, ExprCast}; use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex}; use ast::{ExprLit, ExprLoop, ExprMac, ExprRange}; use ast::{ExprMethodCall, ExprParen, ExprPath, ExprQPath}; use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary}; use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl}; use ast::{FnUnboxedClosureKind, FnMutUnboxedClosureKind}; use ast::{FnOnceUnboxedClosureKind}; use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod, FunctionRetTy}; use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic}; use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst}; use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy}; use ast::{ItemExternCrate, ItemUse}; use ast::{LifetimeDef, Lit, Lit_}; use ast::{LitBool, LitChar, LitByte, LitBinary}; use ast::{LitStr, LitInt, Local, LocalLet}; use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces}; use ast::{MutImmutable, MutMutable, Mac_, MacInvocTT, MatchSource}; use ast::{Method, MutTy, BiMul, Mutability}; use ast::{MethodImplItem, NamedField, UnNeg, NoReturn, NodeId, UnNot}; use ast::{Pat, PatEnum, PatIdent, PatLit, PatRange, PatRegion, PatStruct}; use ast::{PatTup, PatBox, PatWild, PatWildMulti, PatWildSingle}; use ast::{PolyTraitRef}; use ast::{QPath, RequiredMethod}; use ast::{Return, BiShl, BiShr, Stmt, StmtDecl}; use ast::{StmtExpr, StmtSemi, StmtMac, StructDef, StructField}; use ast::{StructVariantKind, BiSub, StrStyle}; use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue}; use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef}; use ast::{TtDelimited, TtSequence, TtToken}; use ast::{TupleVariantKind, Ty, Ty_, TypeBinding}; use ast::{TyFixedLengthVec, TyBareFn}; use ast::{TyTypeof, TyInfer, TypeMethod}; use ast::{TyParam, TyParamBound, TyParen, TyPath, TyPolyTraitRef, TyPtr, TyQPath}; use ast::{TyRptr, TyTup, TyU32, TyVec, UnUniq}; use ast::{TypeImplItem, TypeTraitItem, Typedef, UnboxedClosureKind}; use ast::{UnnamedField, UnsafeBlock}; use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple}; use ast::{Visibility, WhereClause}; use ast; use ast_util::{self, AS_PREC, ident_to_path, operator_prec}; use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp}; use diagnostic; use ext::tt::macro_parser; use parse; use parse::attr::ParserAttr; use parse::classify; use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed}; use parse::lexer::{Reader, TokenAndSpan}; use parse::obsolete::{ParserObsoleteMethods, ObsoleteSyntax}; use parse::token::{self, MatchNt, SubstNt, SpecialVarNt, InternedString}; use parse::token::{keywords, special_idents, SpecialMacroVar}; use parse::{new_sub_parser_from_file, ParseSess}; use print::pprust; use ptr::P; use owned_slice::OwnedSlice; use std::collections::HashSet; use std::io::fs::PathExtensions; use std::iter; use std::mem; use std::num::Float; use std::rc::Rc; use std::slice; bitflags! { flags Restrictions: u8 { const UNRESTRICTED = 0b0000, const RESTRICTION_STMT_EXPR = 0b0001, const RESTRICTION_NO_BAR_OP = 0b0010, const RESTRICTION_NO_STRUCT_LITERAL = 0b0100, } } type ItemInfo = (Ident, Item_, Option >); /// How to parse a path. There are four different kinds of paths, all of which /// are parsed somewhat differently. #[derive(Copy, PartialEq)] pub enum PathParsingMode { /// A path with no type parameters; e.g. `foo::bar::Baz` NoTypesAllowed, /// A path with a lifetime and type parameters, with no double colons /// before the type parameters; e.g. `foo::bar<'a>::Baz` LifetimeAndTypesWithoutColons, /// A path with a lifetime and type parameters with double colons before /// the type parameters; e.g. `foo::bar::<'a>::Baz::` LifetimeAndTypesWithColons, } /// How to parse a bound, whether to allow bound modifiers such as `?`. #[derive(Copy, PartialEq)] pub enum BoundParsingMode { Bare, Modified, } /// The `Err` case indicates a failure to parse any kind of item. /// The attributes are returned. type MaybeItem = Result, Vec>; /// Possibly accept an `token::Interpolated` expression (a pre-parsed expression /// dropped into the token stream, which happens while parsing the result of /// macro expansion). Placement of these is not as complex as I feared it would /// be. The important thing is to make sure that lookahead doesn't balk at /// `token::Interpolated` tokens. macro_rules! maybe_whole_expr { ($p:expr) => ( { let found = match $p.token { token::Interpolated(token::NtExpr(ref e)) => { Some((*e).clone()) } token::Interpolated(token::NtPath(_)) => { // FIXME: The following avoids an issue with lexical borrowck scopes, // but the clone is unfortunate. let pt = match $p.token { token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(), _ => unreachable!() }; let span = $p.span; Some($p.mk_expr(span.lo, span.hi, ExprPath(pt))) } token::Interpolated(token::NtBlock(_)) => { // FIXME: The following avoids an issue with lexical borrowck scopes, // but the clone is unfortunate. let b = match $p.token { token::Interpolated(token::NtBlock(ref b)) => (*b).clone(), _ => unreachable!() }; let span = $p.span; Some($p.mk_expr(span.lo, span.hi, ExprBlock(b))) } _ => None }; match found { Some(e) => { $p.bump(); return e; } None => () } } ) } /// As maybe_whole_expr, but for things other than expressions macro_rules! maybe_whole { ($p:expr, $constructor:ident) => ( { let found = match ($p).token { token::Interpolated(token::$constructor(_)) => { Some(($p).bump_and_get()) } _ => None }; if let Some(token::Interpolated(token::$constructor(x))) = found { return x.clone(); } } ); (no_clone $p:expr, $constructor:ident) => ( { let found = match ($p).token { token::Interpolated(token::$constructor(_)) => { Some(($p).bump_and_get()) } _ => None }; if let Some(token::Interpolated(token::$constructor(x))) = found { return x; } } ); (deref $p:expr, $constructor:ident) => ( { let found = match ($p).token { token::Interpolated(token::$constructor(_)) => { Some(($p).bump_and_get()) } _ => None }; if let Some(token::Interpolated(token::$constructor(x))) = found { return (*x).clone(); } } ); (Some $p:expr, $constructor:ident) => ( { let found = match ($p).token { token::Interpolated(token::$constructor(_)) => { Some(($p).bump_and_get()) } _ => None }; if let Some(token::Interpolated(token::$constructor(x))) = found { return Some(x.clone()); } } ); (pair_empty $p:expr, $constructor:ident) => ( { let found = match ($p).token { token::Interpolated(token::$constructor(_)) => { Some(($p).bump_and_get()) } _ => None }; if let Some(token::Interpolated(token::$constructor(x))) = found { return (Vec::new(), x); } } ) } fn maybe_append(mut lhs: Vec, rhs: Option>) -> Vec { match rhs { Some(ref attrs) => lhs.extend(attrs.iter().map(|a| a.clone())), None => {} } lhs } /* ident is handled by common.rs */ pub struct Parser<'a> { pub sess: &'a ParseSess, /// the current token: pub token: token::Token, /// the span of the current token: pub span: Span, /// the span of the prior token: pub last_span: Span, pub cfg: CrateConfig, /// the previous token or None (only stashed sometimes). pub last_token: Option>, pub buffer: [TokenAndSpan; 4], pub buffer_start: isize, pub buffer_end: isize, pub tokens_consumed: usize, pub restrictions: Restrictions, pub quote_depth: usize, // not (yet) related to the quasiquoter pub reader: Box, pub interner: Rc, /// The set of seen errors about obsolete syntax. Used to suppress /// extra detail when the same error is seen twice pub obsolete_set: HashSet, /// Used to determine the path to externally loaded source files pub mod_path_stack: Vec, /// Stack of spans of open delimiters. Used for error message. pub open_braces: Vec, /// Flag if this parser "owns" the directory that it is currently parsing /// in. This will affect how nested files are looked up. pub owns_directory: bool, /// Name of the root module this parser originated from. If `None`, then the /// name is not known. This does not change while the parser is descending /// into modules, and sub-parsers have new values for this name. pub root_module_name: Option, pub expected_tokens: Vec, } #[derive(PartialEq, Eq, Clone)] pub enum TokenType { Token(token::Token), Operator, } impl TokenType { fn to_string(&self) -> String { match *self { TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)), TokenType::Operator => "an operator".to_string(), } } } fn is_plain_ident_or_underscore(t: &token::Token) -> bool { t.is_plain_ident() || *t == token::Underscore } impl<'a> Parser<'a> { pub fn new(sess: &'a ParseSess, cfg: ast::CrateConfig, mut rdr: Box) -> Parser<'a> { let tok0 = rdr.real_token(); let span = tok0.sp; let placeholder = TokenAndSpan { tok: token::Underscore, sp: span, }; Parser { reader: rdr, interner: token::get_ident_interner(), sess: sess, cfg: cfg, token: tok0.tok, span: span, last_span: span, last_token: None, buffer: [ placeholder.clone(), placeholder.clone(), placeholder.clone(), placeholder.clone(), ], buffer_start: 0, buffer_end: 0, tokens_consumed: 0, restrictions: UNRESTRICTED, quote_depth: 0, obsolete_set: HashSet::new(), mod_path_stack: Vec::new(), open_braces: Vec::new(), owns_directory: true, root_module_name: None, expected_tokens: Vec::new(), } } /// Convert a token to a string using self's reader pub fn token_to_string(token: &token::Token) -> String { pprust::token_to_string(token) } /// Convert the current token to a string using self's reader pub fn this_token_to_string(&self) -> String { Parser::token_to_string(&self.token) } pub fn unexpected_last(&self, t: &token::Token) -> ! { let token_str = Parser::token_to_string(t); let last_span = self.last_span; self.span_fatal(last_span, &format!("unexpected token: `{}`", token_str)[]); } pub fn unexpected(&self) -> ! { let this_token = self.this_token_to_string(); self.fatal(&format!("unexpected token: `{}`", this_token)[]); } /// Expect and consume the token t. Signal an error if /// the next token is not t. pub fn expect(&mut self, t: &token::Token) { if self.expected_tokens.is_empty() { if self.token == *t { self.bump(); } else { let token_str = Parser::token_to_string(t); let this_token_str = self.this_token_to_string(); self.fatal(&format!("expected `{}`, found `{}`", token_str, this_token_str)[]) } } else { self.expect_one_of(slice::ref_slice(t), &[]); } } /// Expect next token to be edible or inedible token. If edible, /// then consume it; if inedible, then return without consuming /// anything. Signal a fatal error if next token is unexpected. pub fn expect_one_of(&mut self, edible: &[token::Token], inedible: &[token::Token]) { fn tokens_to_string(tokens: &[TokenType]) -> String { let mut i = tokens.iter(); // This might be a sign we need a connect method on Iterator. let b = i.next() .map_or("".to_string(), |t| t.to_string()); i.enumerate().fold(b, |mut b, (i, ref a)| { if tokens.len() > 2 && i == tokens.len() - 2 { b.push_str(", or "); } else if tokens.len() == 2 && i == tokens.len() - 2 { b.push_str(" or "); } else { b.push_str(", "); } b.push_str(&*a.to_string()); b }) } if edible.contains(&self.token) { self.bump(); } else if inedible.contains(&self.token) { // leave it in the input } else { let mut expected = edible.iter().map(|x| TokenType::Token(x.clone())) .collect::>(); expected.extend(inedible.iter().map(|x| TokenType::Token(x.clone()))); expected.push_all(&*self.expected_tokens); expected.sort_by(|a, b| a.to_string().cmp(&b.to_string())); expected.dedup(); let expect = tokens_to_string(&expected[]); let actual = self.this_token_to_string(); self.fatal( &(if expected.len() != 1 { (format!("expected one of {}, found `{}`", expect, actual)) } else { (format!("expected {}, found `{}`", expect, actual)) }[]) ) } } /// Check for erroneous `ident { }`; if matches, signal error and /// recover (without consuming any expected input token). Returns /// true if and only if input was consumed for recovery. pub fn check_for_erroneous_unit_struct_expecting(&mut self, expected: &[token::Token]) -> bool { if self.token == token::OpenDelim(token::Brace) && expected.iter().all(|t| *t != token::OpenDelim(token::Brace)) && self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) { // matched; signal non-fatal error and recover. let span = self.span; self.span_err(span, "unit-like struct construction is written with no trailing `{ }`"); self.eat(&token::OpenDelim(token::Brace)); self.eat(&token::CloseDelim(token::Brace)); true } else { false } } /// Commit to parsing a complete expression `e` expected to be /// followed by some token from the set edible + inedible. Recover /// from anticipated input errors, discarding erroneous characters. pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token], inedible: &[token::Token]) { debug!("commit_expr {:?}", e); if let ExprPath(..) = e.node { // might be unit-struct construction; check for recoverableinput error. let mut expected = edible.iter().map(|x| x.clone()).collect::>(); expected.push_all(inedible); self.check_for_erroneous_unit_struct_expecting(&expected[]); } self.expect_one_of(edible, inedible) } pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) { self.commit_expr(e, &[edible], &[]) } /// Commit to parsing a complete statement `s`, which expects to be /// followed by some token from the set edible + inedible. Check /// for recoverable input errors, discarding erroneous characters. pub fn commit_stmt(&mut self, edible: &[token::Token], inedible: &[token::Token]) { if self.last_token .as_ref() .map_or(false, |t| t.is_ident() || t.is_path()) { let mut expected = edible.iter().map(|x| x.clone()).collect::>(); expected.push_all(&inedible[]); self.check_for_erroneous_unit_struct_expecting( &expected[]); } self.expect_one_of(edible, inedible) } pub fn commit_stmt_expecting(&mut self, edible: token::Token) { self.commit_stmt(&[edible], &[]) } pub fn parse_ident(&mut self) -> ast::Ident { self.check_strict_keywords(); self.check_reserved_keywords(); match self.token { token::Ident(i, _) => { self.bump(); i } token::Interpolated(token::NtIdent(..)) => { self.bug("ident interpolation not converted to real token"); } _ => { let token_str = self.this_token_to_string(); self.fatal(&format!("expected ident, found `{}`", token_str)[]) } } } pub fn parse_path_list_item(&mut self) -> ast::PathListItem { let lo = self.span.lo; let node = if self.eat_keyword(keywords::Mod) { let span = self.last_span; self.span_warn(span, "deprecated syntax; use the `self` keyword now"); ast::PathListMod { id: ast::DUMMY_NODE_ID } } else if self.eat_keyword(keywords::Self) { ast::PathListMod { id: ast::DUMMY_NODE_ID } } else { let ident = self.parse_ident(); ast::PathListIdent { name: ident, id: ast::DUMMY_NODE_ID } }; let hi = self.last_span.hi; spanned(lo, hi, node) } /// Check if the next token is `tok`, and return `true` if so. /// /// This method is will automatically add `tok` to `expected_tokens` if `tok` is not /// encountered. pub fn check(&mut self, tok: &token::Token) -> bool { let is_present = self.token == *tok; if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); } is_present } /// Consume token 'tok' if it exists. Returns true if the given /// token was present, false otherwise. pub fn eat(&mut self, tok: &token::Token) -> bool { let is_present = self.check(tok); if is_present { self.bump() } is_present } /// If the next token is the given keyword, eat it and return /// true. Otherwise, return false. pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool { if self.token.is_keyword(kw) { self.bump(); true } else { false } } /// If the given word is not a keyword, signal an error. /// If the next token is not the given word, signal an error. /// Otherwise, eat it. pub fn expect_keyword(&mut self, kw: keywords::Keyword) { if !self.eat_keyword(kw) { let id_interned_str = token::get_name(kw.to_name()); let token_str = self.this_token_to_string(); self.fatal(&format!("expected `{}`, found `{}`", id_interned_str, token_str)[]) } } /// Signal an error if the given string is a strict keyword pub fn check_strict_keywords(&mut self) { if self.token.is_strict_keyword() { let token_str = self.this_token_to_string(); let span = self.span; self.span_err(span, &format!("expected identifier, found keyword `{}`", token_str)[]); } } /// Signal an error if the current token is a reserved keyword pub fn check_reserved_keywords(&mut self) { if self.token.is_reserved_keyword() { let token_str = self.this_token_to_string(); self.fatal(&format!("`{}` is a reserved keyword", token_str)[]) } } /// Expect and consume an `&`. If `&&` is seen, replace it with a single /// `&` and continue. If an `&` is not seen, signal an error. fn expect_and(&mut self) { match self.token { token::BinOp(token::And) => self.bump(), token::AndAnd => { let span = self.span; let lo = span.lo + BytePos(1); self.replace_token(token::BinOp(token::And), lo, span.hi) } _ => { let token_str = self.this_token_to_string(); let found_token = Parser::token_to_string(&token::BinOp(token::And)); self.fatal(&format!("expected `{}`, found `{}`", found_token, token_str)[]) } } } /// Expect and consume a `|`. If `||` is seen, replace it with a single /// `|` and continue. If a `|` is not seen, signal an error. fn expect_or(&mut self) { match self.token { token::BinOp(token::Or) => self.bump(), token::OrOr => { let span = self.span; let lo = span.lo + BytePos(1); self.replace_token(token::BinOp(token::Or), lo, span.hi) } _ => { let found_token = self.this_token_to_string(); let token_str = Parser::token_to_string(&token::BinOp(token::Or)); self.fatal(&format!("expected `{}`, found `{}`", token_str, found_token)[]) } } } pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option) { match suffix { None => {/* everything ok */} Some(suf) => { let text = suf.as_str(); if text.is_empty() { self.span_bug(sp, "found empty literal suffix in Some") } self.span_err(sp, &*format!("{} with a suffix is illegal", kind)); } } } /// Attempt to consume a `<`. If `<<` is seen, replace it with a single /// `<` and continue. If a `<` is not seen, return false. /// /// This is meant to be used when parsing generics on a path to get the /// starting token. fn eat_lt(&mut self) -> bool { match self.token { token::Lt => { self.bump(); true } token::BinOp(token::Shl) => { let span = self.span; let lo = span.lo + BytePos(1); self.replace_token(token::Lt, lo, span.hi); true } _ => false, } } fn expect_lt(&mut self) { if !self.eat_lt() { let found_token = self.this_token_to_string(); let token_str = Parser::token_to_string(&token::Lt); self.fatal(&format!("expected `{}`, found `{}`", token_str, found_token)[]) } } /// Parse a sequence bracketed by `|` and `|`, stopping before the `|`. fn parse_seq_to_before_or(&mut self, sep: &token::Token, mut f: F) -> Vec where F: FnMut(&mut Parser) -> T, { let mut first = true; let mut vector = Vec::new(); while self.token != token::BinOp(token::Or) && self.token != token::OrOr { if first { first = false } else { self.expect(sep) } vector.push(f(self)) } vector } /// Expect and consume a GT. if a >> is seen, replace it /// with a single > and continue. If a GT is not seen, /// signal an error. pub fn expect_gt(&mut self) { match self.token { token::Gt => self.bump(), token::BinOp(token::Shr) => { let span = self.span; let lo = span.lo + BytePos(1); self.replace_token(token::Gt, lo, span.hi) } token::BinOpEq(token::Shr) => { let span = self.span; let lo = span.lo + BytePos(1); self.replace_token(token::Ge, lo, span.hi) } token::Ge => { let span = self.span; let lo = span.lo + BytePos(1); self.replace_token(token::Eq, lo, span.hi) } _ => { let gt_str = Parser::token_to_string(&token::Gt); let this_token_str = self.this_token_to_string(); self.fatal(&format!("expected `{}`, found `{}`", gt_str, this_token_str)[]) } } } pub fn parse_seq_to_before_gt_or_return(&mut self, sep: Option, mut f: F) -> (OwnedSlice, bool) where F: FnMut(&mut Parser) -> Option, { let mut v = Vec::new(); // This loop works by alternating back and forth between parsing types // and commas. For example, given a string `A, B,>`, the parser would // first parse `A`, then a comma, then `B`, then a comma. After that it // would encounter a `>` and stop. This lets the parser handle trailing // commas in generic parameters, because it can stop either after // parsing a type or after parsing a comma. for i in iter::count(0us, 1) { if self.check(&token::Gt) || self.token == token::BinOp(token::Shr) || self.token == token::Ge || self.token == token::BinOpEq(token::Shr) { break; } if i % 2 == 0 { match f(self) { Some(result) => v.push(result), None => return (OwnedSlice::from_vec(v), true) } } else { sep.as_ref().map(|t| self.expect(t)); } } return (OwnedSlice::from_vec(v), false); } /// Parse a sequence bracketed by '<' and '>', stopping /// before the '>'. pub fn parse_seq_to_before_gt(&mut self, sep: Option, mut f: F) -> OwnedSlice where F: FnMut(&mut Parser) -> T, { let (result, returned) = self.parse_seq_to_before_gt_or_return(sep, |p| Some(f(p))); assert!(!returned); return result; } pub fn parse_seq_to_gt(&mut self, sep: Option, f: F) -> OwnedSlice where F: FnMut(&mut Parser) -> T, { let v = self.parse_seq_to_before_gt(sep, f); self.expect_gt(); return v; } pub fn parse_seq_to_gt_or_return(&mut self, sep: Option, f: F) -> (OwnedSlice, bool) where F: FnMut(&mut Parser) -> Option, { let (v, returned) = self.parse_seq_to_before_gt_or_return(sep, f); if !returned { self.expect_gt(); } return (v, returned); } /// Parse a sequence, including the closing delimiter. The function /// f must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_seq_to_end(&mut self, ket: &token::Token, sep: SeqSep, f: F) -> Vec where F: FnMut(&mut Parser) -> T, { let val = self.parse_seq_to_before_end(ket, sep, f); self.bump(); val } /// Parse a sequence, not including the closing delimiter. The function /// f must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_seq_to_before_end(&mut self, ket: &token::Token, sep: SeqSep, mut f: F) -> Vec where F: FnMut(&mut Parser) -> T, { let mut first: bool = true; let mut v = vec!(); while self.token != *ket { match sep.sep { Some(ref t) => { if first { first = false; } else { self.expect(t); } } _ => () } if sep.trailing_sep_allowed && self.check(ket) { break; } v.push(f(self)); } return v; } /// Parse a sequence, including the closing delimiter. The function /// f must consume tokens until reaching the next separator or /// closing bracket. pub fn parse_unspanned_seq(&mut self, bra: &token::Token, ket: &token::Token, sep: SeqSep, f: F) -> Vec where F: FnMut(&mut Parser) -> T, { self.expect(bra); let result = self.parse_seq_to_before_end(ket, sep, f); self.bump(); result } /// Parse a sequence parameter of enum variant. For consistency purposes, /// these should not be empty. pub fn parse_enum_variant_seq(&mut self, bra: &token::Token, ket: &token::Token, sep: SeqSep, f: F) -> Vec where F: FnMut(&mut Parser) -> T, { let result = self.parse_unspanned_seq(bra, ket, sep, f); if result.is_empty() { let last_span = self.last_span; self.span_err(last_span, "nullary enum variants are written with no trailing `( )`"); } result } // NB: Do not use this function unless you actually plan to place the // spanned list in the AST. pub fn parse_seq(&mut self, bra: &token::Token, ket: &token::Token, sep: SeqSep, f: F) -> Spanned> where F: FnMut(&mut Parser) -> T, { let lo = self.span.lo; self.expect(bra); let result = self.parse_seq_to_before_end(ket, sep, f); let hi = self.span.hi; self.bump(); spanned(lo, hi, result) } /// Advance the parser by one token pub fn bump(&mut self) { self.last_span = self.span; // Stash token for error recovery (sometimes; clone is not necessarily cheap). self.last_token = if self.token.is_ident() || self.token.is_path() { Some(box self.token.clone()) } else { None }; let next = if self.buffer_start == self.buffer_end { self.reader.real_token() } else { // Avoid token copies with `replace`. let buffer_start = self.buffer_start as usize; let next_index = (buffer_start + 1) & 3 as usize; self.buffer_start = next_index as isize; let placeholder = TokenAndSpan { tok: token::Underscore, sp: self.span, }; mem::replace(&mut self.buffer[buffer_start], placeholder) }; self.span = next.sp; self.token = next.tok; self.tokens_consumed += 1us; self.expected_tokens.clear(); // check after each token self.check_unknown_macro_variable(); } /// Advance the parser by one token and return the bumped token. pub fn bump_and_get(&mut self) -> token::Token { let old_token = mem::replace(&mut self.token, token::Underscore); self.bump(); old_token } /// EFFECT: replace the current token and span with the given one pub fn replace_token(&mut self, next: token::Token, lo: BytePos, hi: BytePos) { self.last_span = mk_sp(self.span.lo, lo); self.token = next; self.span = mk_sp(lo, hi); } pub fn buffer_length(&mut self) -> isize { if self.buffer_start <= self.buffer_end { return self.buffer_end - self.buffer_start; } return (4 - self.buffer_start) + self.buffer_end; } pub fn look_ahead(&mut self, distance: usize, f: F) -> R where F: FnOnce(&token::Token) -> R, { let dist = distance as isize; while self.buffer_length() < dist { self.buffer[self.buffer_end as usize] = self.reader.real_token(); self.buffer_end = (self.buffer_end + 1) & 3; } f(&self.buffer[((self.buffer_start + dist - 1) & 3) as usize].tok) } pub fn fatal(&self, m: &str) -> ! { self.sess.span_diagnostic.span_fatal(self.span, m) } pub fn span_fatal(&self, sp: Span, m: &str) -> ! { self.sess.span_diagnostic.span_fatal(sp, m) } pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> ! { self.span_err(sp, m); self.span_help(sp, help); panic!(diagnostic::FatalError); } pub fn span_note(&self, sp: Span, m: &str) { self.sess.span_diagnostic.span_note(sp, m) } pub fn span_help(&self, sp: Span, m: &str) { self.sess.span_diagnostic.span_help(sp, m) } pub fn bug(&self, m: &str) -> ! { self.sess.span_diagnostic.span_bug(self.span, m) } pub fn warn(&self, m: &str) { self.sess.span_diagnostic.span_warn(self.span, m) } pub fn span_warn(&self, sp: Span, m: &str) { self.sess.span_diagnostic.span_warn(sp, m) } pub fn span_err(&self, sp: Span, m: &str) { self.sess.span_diagnostic.span_err(sp, m) } pub fn span_bug(&self, sp: Span, m: &str) -> ! { self.sess.span_diagnostic.span_bug(sp, m) } pub fn abort_if_errors(&self) { self.sess.span_diagnostic.handler().abort_if_errors(); } pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString { token::get_ident(id) } /// Is the current token one of the keywords that signals a bare function /// type? pub fn token_is_bare_fn_keyword(&mut self) -> bool { self.token.is_keyword(keywords::Fn) || self.token.is_keyword(keywords::Unsafe) || self.token.is_keyword(keywords::Extern) } /// Is the current token one of the keywords that signals a closure type? pub fn token_is_closure_keyword(&mut self) -> bool { self.token.is_keyword(keywords::Unsafe) } pub fn get_lifetime(&mut self) -> ast::Ident { match self.token { token::Lifetime(ref ident) => *ident, _ => self.bug("not a lifetime"), } } pub fn parse_for_in_type(&mut self) -> Ty_ { /* Parses whatever can come after a `for` keyword in a type. The `for` has already been consumed. Deprecated: - for <'lt> |S| -> T Eventually: - for <'lt> [unsafe] [extern "ABI"] fn (S) -> T - for <'lt> path::foo(a, b) */ // parse <'lt> let lifetime_defs = self.parse_late_bound_lifetime_defs(); // examine next token to decide to do if self.eat_keyword(keywords::Proc) { self.parse_proc_type(lifetime_defs) } else if self.token_is_bare_fn_keyword() || self.token_is_closure_keyword() { self.parse_ty_bare_fn_or_ty_closure(lifetime_defs) } else if self.check(&token::ModSep) || self.token.is_ident() || self.token.is_path() { let trait_ref = self.parse_trait_ref(); let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs, trait_ref: trait_ref }; let other_bounds = if self.eat(&token::BinOp(token::Plus)) { self.parse_ty_param_bounds(BoundParsingMode::Bare) } else { OwnedSlice::empty() }; let all_bounds = Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter() .chain(other_bounds.into_vec().into_iter()) .collect(); ast::TyPolyTraitRef(all_bounds) } else { self.parse_ty_closure(lifetime_defs) } } pub fn parse_ty_path(&mut self) -> Ty_ { let path = self.parse_path(LifetimeAndTypesWithoutColons); TyPath(path, ast::DUMMY_NODE_ID) } /// parse a TyBareFn type: pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec) -> Ty_ { /* [unsafe] [extern "ABI"] fn <'lt> (S) -> T ^~~~^ ^~~~^ ^~~~^ ^~^ ^ | | | | | | | | | Return type | | | Argument types | | Lifetimes | ABI Function Style */ let unsafety = self.parse_unsafety(); let abi = if self.eat_keyword(keywords::Extern) { self.parse_opt_abi().unwrap_or(abi::C) } else { abi::Rust }; self.expect_keyword(keywords::Fn); let lifetime_defs = self.parse_legacy_lifetime_defs(lifetime_defs); let (inputs, variadic) = self.parse_fn_args(false, true); let ret_ty = self.parse_ret_ty(); let decl = P(FnDecl { inputs: inputs, output: ret_ty, variadic: variadic }); TyBareFn(P(BareFnTy { abi: abi, unsafety: unsafety, lifetimes: lifetime_defs, decl: decl })) } /// Parses a procedure type (`proc`). The initial `proc` keyword must /// already have been parsed. pub fn parse_proc_type(&mut self, lifetime_defs: Vec) -> Ty_ { /* proc <'lt> (S) [:Bounds] -> T ^~~^ ^~~~^ ^ ^~~~~~~~^ ^ | | | | | | | | | Return type | | | Bounds | | Argument types | Legacy lifetimes the `proc` keyword (already consumed) */ let proc_span = self.last_span; // To be helpful, parse the proc as ever let _ = self.parse_legacy_lifetime_defs(lifetime_defs); let _ = self.parse_fn_args(false, false); let _ = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare); let _ = self.parse_ret_ty(); self.obsolete(proc_span, ObsoleteSyntax::ProcType); TyInfer } /// Parses an optional unboxed closure kind (`&:`, `&mut:`, or `:`). pub fn parse_optional_unboxed_closure_kind(&mut self) -> Option { if self.check(&token::BinOp(token::And)) && self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) && self.look_ahead(2, |t| *t == token::Colon) { self.bump(); self.bump(); self.bump(); return Some(FnMutUnboxedClosureKind) } if self.token == token::BinOp(token::And) && self.look_ahead(1, |t| *t == token::Colon) { self.bump(); self.bump(); return Some(FnUnboxedClosureKind) } if self.eat(&token::Colon) { return Some(FnOnceUnboxedClosureKind) } return None } pub fn parse_ty_bare_fn_or_ty_closure(&mut self, lifetime_defs: Vec) -> Ty_ { // Both bare fns and closures can begin with stuff like unsafe // and extern. So we just scan ahead a few tokens to see if we see // a `fn`. // // Closure: [unsafe] <'lt> |S| [:Bounds] -> T // Fn: [unsafe] [extern "ABI"] fn <'lt> (S) -> T if self.token.is_keyword(keywords::Fn) { self.parse_ty_bare_fn(lifetime_defs) } else if self.token.is_keyword(keywords::Extern) { self.parse_ty_bare_fn(lifetime_defs) } else if self.token.is_keyword(keywords::Unsafe) { if self.look_ahead(1, |t| t.is_keyword(keywords::Fn) || t.is_keyword(keywords::Extern)) { self.parse_ty_bare_fn(lifetime_defs) } else { self.parse_ty_closure(lifetime_defs) } } else { self.parse_ty_closure(lifetime_defs) } } /// Parse a TyClosure type pub fn parse_ty_closure(&mut self, lifetime_defs: Vec) -> Ty_ { /* [unsafe] <'lt> |S| [:Bounds] -> T ^~~~~~~^ ^~~~^ ^ ^~~~~~~~^ ^ | | | | | | | | | Return type | | | Closure bounds | | Argument types | Deprecated lifetime defs | Function Style */ let ty_closure_span = self.last_span; // To be helpful, parse the closure type as ever let _ = self.parse_unsafety(); let _ = self.parse_legacy_lifetime_defs(lifetime_defs); if !self.eat(&token::OrOr) { self.expect_or(); let _ = self.parse_seq_to_before_or( &token::Comma, |p| p.parse_arg_general(false)); self.expect_or(); } let _ = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare); let _ = self.parse_ret_ty(); self.obsolete(ty_closure_span, ObsoleteSyntax::ClosureType); TyInfer } pub fn parse_unsafety(&mut self) -> Unsafety { if self.eat_keyword(keywords::Unsafe) { return Unsafety::Unsafe; } else { return Unsafety::Normal; } } /// Parses `[ 'for' '<' lifetime_defs '>' ]' fn parse_legacy_lifetime_defs(&mut self, lifetime_defs: Vec) -> Vec { if self.token == token::Lt { self.bump(); if lifetime_defs.is_empty() { self.warn("deprecated syntax; use the `for` keyword now \ (e.g. change `fn<'a>` to `for<'a> fn`)"); let lifetime_defs = self.parse_lifetime_defs(); self.expect_gt(); lifetime_defs } else { self.fatal("cannot use new `for` keyword and older syntax together"); } } else { lifetime_defs } } /// Parses `type Foo;` in a trait declaration only. The `type` keyword has /// already been parsed. fn parse_associated_type(&mut self, attrs: Vec) -> AssociatedType { let ty_param = self.parse_ty_param(); self.expect(&token::Semi); AssociatedType { attrs: attrs, ty_param: ty_param, } } /// Parses `type Foo = TYPE;` in an implementation declaration only. The /// `type` keyword has already been parsed. fn parse_typedef(&mut self, attrs: Vec, vis: Visibility) -> Typedef { let lo = self.span.lo; let ident = self.parse_ident(); self.expect(&token::Eq); let typ = self.parse_ty_sum(); let hi = self.span.hi; self.expect(&token::Semi); Typedef { id: ast::DUMMY_NODE_ID, span: mk_sp(lo, hi), ident: ident, vis: vis, attrs: attrs, typ: typ, } } /// Parse the items in a trait declaration pub fn parse_trait_items(&mut self) -> Vec { self.parse_unspanned_seq( &token::OpenDelim(token::Brace), &token::CloseDelim(token::Brace), seq_sep_none(), |p| { let attrs = p.parse_outer_attributes(); if p.eat_keyword(keywords::Type) { TypeTraitItem(P(p.parse_associated_type(attrs))) } else { let lo = p.span.lo; let vis = p.parse_visibility(); let style = p.parse_unsafety(); let abi = if p.eat_keyword(keywords::Extern) { p.parse_opt_abi().unwrap_or(abi::C) } else { abi::Rust }; p.expect_keyword(keywords::Fn); let ident = p.parse_ident(); let mut generics = p.parse_generics(); let (explicit_self, d) = p.parse_fn_decl_with_self(|p| { // This is somewhat dubious; We don't want to allow // argument names to be left off if there is a // definition... p.parse_arg_general(false) }); p.parse_where_clause(&mut generics); let hi = p.last_span.hi; match p.token { token::Semi => { p.bump(); debug!("parse_trait_methods(): parsing required method"); RequiredMethod(TypeMethod { ident: ident, attrs: attrs, unsafety: style, decl: d, generics: generics, abi: abi, explicit_self: explicit_self, id: ast::DUMMY_NODE_ID, span: mk_sp(lo, hi), vis: vis, }) } token::OpenDelim(token::Brace) => { debug!("parse_trait_methods(): parsing provided method"); let (inner_attrs, body) = p.parse_inner_attrs_and_block(); let mut attrs = attrs; attrs.push_all(&inner_attrs[]); ProvidedMethod(P(ast::Method { attrs: attrs, id: ast::DUMMY_NODE_ID, span: mk_sp(lo, hi), node: ast::MethDecl(ident, generics, abi, explicit_self, style, d, body, vis) })) } _ => { let token_str = p.this_token_to_string(); p.fatal(&format!("expected `;` or `{{`, found `{}`", token_str)[]) } } } }) } /// Parse a possibly mutable type pub fn parse_mt(&mut self) -> MutTy { let mutbl = self.parse_mutability(); let t = self.parse_ty(); MutTy { ty: t, mutbl: mutbl } } /// Parse optional return type [ -> TY ] in function decl pub fn parse_ret_ty(&mut self) -> FunctionRetTy { if self.eat(&token::RArrow) { if self.eat(&token::Not) { NoReturn(self.span) } else { let t = self.parse_ty(); // We used to allow `fn foo() -> &T + U`, but don't // anymore. If we see it, report a useful error. This // only makes sense because `parse_ret_ty` is only // used in fn *declarations*, not fn types or where // clauses (i.e., not when parsing something like // `FnMut() -> T + Send`, where the `+` is legal). if self.token == token::BinOp(token::Plus) { self.warn("deprecated syntax: `()` are required, see RFC 438 for details"); } Return(t) } } else { let pos = self.span.lo; DefaultReturn(mk_sp(pos, pos)) } } /// Parse a type in a context where `T1+T2` is allowed. pub fn parse_ty_sum(&mut self) -> P { let lo = self.span.lo; let lhs = self.parse_ty(); if !self.eat(&token::BinOp(token::Plus)) { return lhs; } let bounds = self.parse_ty_param_bounds(BoundParsingMode::Bare); // In type grammar, `+` is treated like a binary operator, // and hence both L and R side are required. if bounds.len() == 0 { let last_span = self.last_span; self.span_err(last_span, "at least one type parameter bound \ must be specified"); } let sp = mk_sp(lo, self.last_span.hi); let sum = ast::TyObjectSum(lhs, bounds); P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp}) } /// Parse a type. pub fn parse_ty(&mut self) -> P { maybe_whole!(no_clone self, NtTy); let lo = self.span.lo; let t = if self.check(&token::OpenDelim(token::Paren)) { self.bump(); // (t) is a parenthesized ty // (t,) is the type of a tuple with only one field, // of type t let mut ts = vec![]; let mut last_comma = false; while self.token != token::CloseDelim(token::Paren) { ts.push(self.parse_ty_sum()); if self.check(&token::Comma) { last_comma = true; self.bump(); } else { last_comma = false; break; } } self.expect(&token::CloseDelim(token::Paren)); if ts.len() == 1 && !last_comma { TyParen(ts.into_iter().nth(0).unwrap()) } else { TyTup(ts) } } else if self.check(&token::BinOp(token::Star)) { // STAR POINTER (bare pointer?) self.bump(); TyPtr(self.parse_ptr()) } else if self.check(&token::OpenDelim(token::Bracket)) { // VECTOR self.expect(&token::OpenDelim(token::Bracket)); let t = self.parse_ty_sum(); // Parse the `; e` in `[ i32; e ]` // where `e` is a const expression let t = match self.maybe_parse_fixed_length_of_vec() { None => TyVec(t), Some(suffix) => TyFixedLengthVec(t, suffix) }; self.expect(&token::CloseDelim(token::Bracket)); t } else if self.check(&token::BinOp(token::And)) || self.token == token::AndAnd { // BORROWED POINTER self.expect_and(); self.parse_borrowed_pointee() } else if self.token.is_keyword(keywords::For) { self.parse_for_in_type() } else if self.token_is_bare_fn_keyword() || self.token_is_closure_keyword() { // BARE FUNCTION OR CLOSURE self.parse_ty_bare_fn_or_ty_closure(Vec::new()) } else if self.check(&token::BinOp(token::Or)) || self.token == token::OrOr || (self.token == token::Lt && self.look_ahead(1, |t| { *t == token::Gt || t.is_lifetime() })) { // CLOSURE self.parse_ty_closure(Vec::new()) } else if self.eat_keyword(keywords::Typeof) { // TYPEOF // In order to not be ambiguous, the type must be surrounded by parens. self.expect(&token::OpenDelim(token::Paren)); let e = self.parse_expr(); self.expect(&token::CloseDelim(token::Paren)); TyTypeof(e) } else if self.eat_keyword(keywords::Proc) { self.parse_proc_type(Vec::new()) } else if self.eat_lt() { // QUALIFIED PATH `::item` let self_type = self.parse_ty_sum(); self.expect_keyword(keywords::As); let trait_ref = self.parse_trait_ref(); self.expect(&token::Gt); self.expect(&token::ModSep); let item_name = self.parse_ident(); TyQPath(P(QPath { self_type: self_type, trait_ref: P(trait_ref), item_path: ast::PathSegment { identifier: item_name, parameters: ast::PathParameters::none() } })) } else if self.check(&token::ModSep) || self.token.is_ident() || self.token.is_path() { // NAMED TYPE self.parse_ty_path() } else if self.eat(&token::Underscore) { // TYPE TO BE INFERRED TyInfer } else { let this_token_str = self.this_token_to_string(); let msg = format!("expected type, found `{}`", this_token_str); self.fatal(&msg[]); }; let sp = mk_sp(lo, self.last_span.hi); P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp}) } pub fn parse_borrowed_pointee(&mut self) -> Ty_ { // look for `&'lt` or `&'foo ` and interpret `foo` as the region name: let opt_lifetime = self.parse_opt_lifetime(); let mt = self.parse_mt(); return TyRptr(opt_lifetime, mt); } pub fn parse_ptr(&mut self) -> MutTy { let mutbl = if self.eat_keyword(keywords::Mut) { MutMutable } else if self.eat_keyword(keywords::Const) { MutImmutable } else { let span = self.last_span; self.span_err(span, "bare raw pointers are no longer allowed, you should \ likely use `*mut T`, but otherwise `*T` is now \ known as `*const T`"); MutImmutable }; let t = self.parse_ty(); MutTy { ty: t, mutbl: mutbl } } pub fn is_named_argument(&mut self) -> bool { let offset = match self.token { token::BinOp(token::And) => 1, token::AndAnd => 1, _ if self.token.is_keyword(keywords::Mut) => 1, _ => 0 }; debug!("parser is_named_argument offset:{}", offset); if offset == 0 { is_plain_ident_or_underscore(&self.token) && self.look_ahead(1, |t| *t == token::Colon) } else { self.look_ahead(offset, |t| is_plain_ident_or_underscore(t)) && self.look_ahead(offset + 1, |t| *t == token::Colon) } } /// This version of parse arg doesn't necessarily require /// identifier names. pub fn parse_arg_general(&mut self, require_name: bool) -> Arg { let pat = if require_name || self.is_named_argument() { debug!("parse_arg_general parse_pat (require_name:{})", require_name); let pat = self.parse_pat(); self.expect(&token::Colon); pat } else { debug!("parse_arg_general ident_to_pat"); ast_util::ident_to_pat(ast::DUMMY_NODE_ID, self.last_span, special_idents::invalid) }; let t = self.parse_ty_sum(); Arg { ty: t, pat: pat, id: ast::DUMMY_NODE_ID, } } /// Parse a single function argument pub fn parse_arg(&mut self) -> Arg { self.parse_arg_general(true) } /// Parse an argument in a lambda header e.g. |arg, arg| pub fn parse_fn_block_arg(&mut self) -> Arg { let pat = self.parse_pat(); let t = if self.eat(&token::Colon) { self.parse_ty_sum() } else { P(Ty { id: ast::DUMMY_NODE_ID, node: TyInfer, span: mk_sp(self.span.lo, self.span.hi), }) }; Arg { ty: t, pat: pat, id: ast::DUMMY_NODE_ID } } pub fn maybe_parse_fixed_length_of_vec(&mut self) -> Option> { if self.check(&token::Semi) { self.bump(); Some(self.parse_expr()) } else { None } } /// Matches token_lit = LIT_INTEGER | ... pub fn lit_from_token(&self, tok: &token::Token) -> Lit_ { match *tok { token::Interpolated(token::NtExpr(ref v)) => { match v.node { ExprLit(ref lit) => { lit.node.clone() } _ => { self.unexpected_last(tok); } } } token::Literal(lit, suf) => { let (suffix_illegal, out) = match lit { token::Byte(i) => (true, LitByte(parse::byte_lit(i.as_str()).0)), token::Char(i) => (true, LitChar(parse::char_lit(i.as_str()).0)), // there are some valid suffixes for integer and // float literals, so all the handling is done // internally. token::Integer(s) => { (false, parse::integer_lit(s.as_str(), suf.as_ref().map(|s| s.as_str()), &self.sess.span_diagnostic, self.last_span)) } token::Float(s) => { (false, parse::float_lit(s.as_str(), suf.as_ref().map(|s| s.as_str()), &self.sess.span_diagnostic, self.last_span)) } token::Str_(s) => { (true, LitStr(token::intern_and_get_ident(parse::str_lit(s.as_str()).as_slice()), ast::CookedStr)) } token::StrRaw(s, n) => { (true, LitStr( token::intern_and_get_ident(&parse::raw_str_lit(s.as_str())[]), ast::RawStr(n))) } token::Binary(i) => (true, LitBinary(parse::binary_lit(i.as_str()))), token::BinaryRaw(i, _) => (true, LitBinary(Rc::new(i.as_str().as_bytes().iter().map(|&x| x).collect()))), }; if suffix_illegal { let sp = self.last_span; self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf) } out } _ => { self.unexpected_last(tok); } } } /// Matches lit = true | false | token_lit pub fn parse_lit(&mut self) -> Lit { let lo = self.span.lo; let lit = if self.eat_keyword(keywords::True) { LitBool(true) } else if self.eat_keyword(keywords::False) { LitBool(false) } else { let token = self.bump_and_get(); let lit = self.lit_from_token(&token); lit }; codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) } } /// matches '-' lit | lit pub fn parse_literal_maybe_minus(&mut self) -> P { let minus_lo = self.span.lo; let minus_present = self.eat(&token::BinOp(token::Minus)); let lo = self.span.lo; let literal = P(self.parse_lit()); let hi = self.span.hi; let expr = self.mk_expr(lo, hi, ExprLit(literal)); if minus_present { let minus_hi = self.span.hi; let unary = self.mk_unary(UnNeg, expr); self.mk_expr(minus_lo, minus_hi, unary) } else { expr } } /// Parses a path and optional type parameter bounds, depending on the /// mode. The `mode` parameter determines whether lifetimes, types, and/or /// bounds are permitted and whether `::` must precede type parameter /// groups. pub fn parse_path(&mut self, mode: PathParsingMode) -> ast::Path { // Check for a whole path... let found = match self.token { token::Interpolated(token::NtPath(_)) => Some(self.bump_and_get()), _ => None, }; if let Some(token::Interpolated(token::NtPath(box path))) = found { return path; } let lo = self.span.lo; let is_global = self.eat(&token::ModSep); // Parse any number of segments and bound sets. A segment is an // identifier followed by an optional lifetime and a set of types. // A bound set is a set of type parameter bounds. let segments = match mode { LifetimeAndTypesWithoutColons => { self.parse_path_segments_without_colons() } LifetimeAndTypesWithColons => { self.parse_path_segments_with_colons() } NoTypesAllowed => { self.parse_path_segments_without_types() } }; // Assemble the span. let span = mk_sp(lo, self.last_span.hi); // Assemble the result. ast::Path { span: span, global: is_global, segments: segments, } } /// Examples: /// - `a::b::c` /// - `a::b::c(V) -> W` /// - `a::b::c(V)` pub fn parse_path_segments_without_colons(&mut self) -> Vec { let mut segments = Vec::new(); loop { // First, parse an identifier. let identifier = self.parse_ident(); // Parse types, optionally. let parameters = if self.eat_lt() { let (lifetimes, types, bindings) = self.parse_generic_values_after_lt(); ast::AngleBracketedParameters(ast::AngleBracketedParameterData { lifetimes: lifetimes, types: OwnedSlice::from_vec(types), bindings: OwnedSlice::from_vec(bindings), }) } else if self.eat(&token::OpenDelim(token::Paren)) { let inputs = self.parse_seq_to_end( &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| p.parse_ty_sum()); let output_ty = if self.eat(&token::RArrow) { Some(self.parse_ty()) } else { None }; ast::ParenthesizedParameters(ast::ParenthesizedParameterData { inputs: inputs, output: output_ty }) } else { ast::PathParameters::none() }; // Assemble and push the result. segments.push(ast::PathSegment { identifier: identifier, parameters: parameters }); // Continue only if we see a `::` if !self.eat(&token::ModSep) { return segments; } } } /// Examples: /// - `a::b::::c` pub fn parse_path_segments_with_colons(&mut self) -> Vec { let mut segments = Vec::new(); loop { // First, parse an identifier. let identifier = self.parse_ident(); // If we do not see a `::`, stop. if !self.eat(&token::ModSep) { segments.push(ast::PathSegment { identifier: identifier, parameters: ast::PathParameters::none() }); return segments; } // Check for a type segment. if self.eat_lt() { // Consumed `a::b::<`, go look for types let (lifetimes, types, bindings) = self.parse_generic_values_after_lt(); segments.push(ast::PathSegment { identifier: identifier, parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData { lifetimes: lifetimes, types: OwnedSlice::from_vec(types), bindings: OwnedSlice::from_vec(bindings), }), }); // Consumed `a::b::`, check for `::` before proceeding if !self.eat(&token::ModSep) { return segments; } } else { // Consumed `a::`, go look for `b` segments.push(ast::PathSegment { identifier: identifier, parameters: ast::PathParameters::none(), }); } } } /// Examples: /// - `a::b::c` pub fn parse_path_segments_without_types(&mut self) -> Vec { let mut segments = Vec::new(); loop { // First, parse an identifier. let identifier = self.parse_ident(); // Assemble and push the result. segments.push(ast::PathSegment { identifier: identifier, parameters: ast::PathParameters::none() }); // If we do not see a `::`, stop. if !self.eat(&token::ModSep) { return segments; } } } /// parses 0 or 1 lifetime pub fn parse_opt_lifetime(&mut self) -> Option { match self.token { token::Lifetime(..) => { Some(self.parse_lifetime()) } _ => { None } } } /// Parses a single lifetime /// Matches lifetime = LIFETIME pub fn parse_lifetime(&mut self) -> ast::Lifetime { match self.token { token::Lifetime(i) => { let span = self.span; self.bump(); return ast::Lifetime { id: ast::DUMMY_NODE_ID, span: span, name: i.name }; } _ => { self.fatal(&format!("expected a lifetime name")[]); } } } /// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def = /// lifetime [':' lifetimes]` pub fn parse_lifetime_defs(&mut self) -> Vec { let mut res = Vec::new(); loop { match self.token { token::Lifetime(_) => { let lifetime = self.parse_lifetime(); let bounds = if self.eat(&token::Colon) { self.parse_lifetimes(token::BinOp(token::Plus)) } else { Vec::new() }; res.push(ast::LifetimeDef { lifetime: lifetime, bounds: bounds }); } _ => { return res; } } match self.token { token::Comma => { self.bump(); } token::Gt => { return res; } token::BinOp(token::Shr) => { return res; } _ => { let this_token_str = self.this_token_to_string(); let msg = format!("expected `,` or `>` after lifetime \ name, found `{}`", this_token_str); self.fatal(&msg[]); } } } } /// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty /// one too, but putting that in there messes up the grammar.... /// /// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by /// either a comma or `>`. Used when parsing type parameter lists, where we expect something /// like `<'a, 'b, T>`. pub fn parse_lifetimes(&mut self, sep: token::Token) -> Vec { let mut res = Vec::new(); loop { match self.token { token::Lifetime(_) => { res.push(self.parse_lifetime()); } _ => { return res; } } if self.token != sep { return res; } self.bump(); } } /// Parse mutability declaration (mut/const/imm) pub fn parse_mutability(&mut self) -> Mutability { if self.eat_keyword(keywords::Mut) { MutMutable } else { MutImmutable } } /// Parse ident COLON expr pub fn parse_field(&mut self) -> Field { let lo = self.span.lo; let i = self.parse_ident(); let hi = self.last_span.hi; self.expect(&token::Colon); let e = self.parse_expr(); ast::Field { ident: spanned(lo, hi, i), span: mk_sp(lo, e.span.hi), expr: e, } } pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos, node: Expr_) -> P { P(Expr { id: ast::DUMMY_NODE_ID, node: node, span: mk_sp(lo, hi), }) } pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P) -> ast::Expr_ { ExprUnary(unop, expr) } pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P, rhs: P) -> ast::Expr_ { ExprBinary(binop, lhs, rhs) } pub fn mk_call(&mut self, f: P, args: Vec>) -> ast::Expr_ { ExprCall(f, args) } fn mk_method_call(&mut self, ident: ast::SpannedIdent, tps: Vec>, args: Vec>) -> ast::Expr_ { ExprMethodCall(ident, tps, args) } pub fn mk_index(&mut self, expr: P, idx: P) -> ast::Expr_ { ExprIndex(expr, idx) } pub fn mk_range(&mut self, start: Option>, end: Option>) -> ast::Expr_ { ExprRange(start, end) } pub fn mk_field(&mut self, expr: P, ident: ast::SpannedIdent) -> ast::Expr_ { ExprField(expr, ident) } pub fn mk_tup_field(&mut self, expr: P, idx: codemap::Spanned) -> ast::Expr_ { ExprTupField(expr, idx) } pub fn mk_assign_op(&mut self, binop: ast::BinOp, lhs: P, rhs: P) -> ast::Expr_ { ExprAssignOp(binop, lhs, rhs) } pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos, m: Mac_) -> P { P(Expr { id: ast::DUMMY_NODE_ID, node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}), span: mk_sp(lo, hi), }) } pub fn mk_lit_u32(&mut self, i: u32) -> P { let span = &self.span; let lv_lit = P(codemap::Spanned { node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)), span: *span }); P(Expr { id: ast::DUMMY_NODE_ID, node: ExprLit(lv_lit), span: *span, }) } fn expect_open_delim(&mut self) -> token::DelimToken { match self.token { token::OpenDelim(delim) => { self.bump(); delim }, _ => self.fatal("expected open delimiter"), } } /// At the bottom (top?) of the precedence hierarchy, /// parse things like parenthesized exprs, /// macros, return, etc. pub fn parse_bottom_expr(&mut self) -> P { maybe_whole_expr!(self); let lo = self.span.lo; let mut hi = self.span.hi; let ex: Expr_; // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr(). match self.token { token::OpenDelim(token::Paren) => { self.bump(); // (e) is parenthesized e // (e,) is a tuple with only one field, e let mut es = vec![]; let mut trailing_comma = false; while self.token != token::CloseDelim(token::Paren) { es.push(self.parse_expr()); self.commit_expr(&**es.last().unwrap(), &[], &[token::Comma, token::CloseDelim(token::Paren)]); if self.check(&token::Comma) { trailing_comma = true; self.bump(); } else { trailing_comma = false; break; } } self.bump(); hi = self.span.hi; return if es.len() == 1 && !trailing_comma { self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap())) } else { self.mk_expr(lo, hi, ExprTup(es)) } }, token::OpenDelim(token::Brace) => { self.bump(); let blk = self.parse_block_tail(lo, DefaultBlock); return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)); }, token::BinOp(token::Or) | token::OrOr => { return self.parse_lambda_expr(CaptureByRef); }, // FIXME #13626: Should be able to stick in // token::SELF_KEYWORD_NAME token::Ident(id @ ast::Ident { name: ast::Name(token::SELF_KEYWORD_NAME_NUM), ctxt: _ }, token::Plain) => { self.bump(); let path = ast_util::ident_to_path(mk_sp(lo, hi), id); ex = ExprPath(path); hi = self.last_span.hi; } token::OpenDelim(token::Bracket) => { self.bump(); if self.check(&token::CloseDelim(token::Bracket)) { // Empty vector. self.bump(); ex = ExprVec(Vec::new()); } else { // Nonempty vector. let first_expr = self.parse_expr(); if self.check(&token::Semi) { // Repeating vector syntax: [ 0; 512 ] self.bump(); let count = self.parse_expr(); self.expect(&token::CloseDelim(token::Bracket)); ex = ExprRepeat(first_expr, count); } else if self.check(&token::Comma) { // Vector with two or more elements. self.bump(); let remaining_exprs = self.parse_seq_to_end( &token::CloseDelim(token::Bracket), seq_sep_trailing_allowed(token::Comma), |p| p.parse_expr() ); let mut exprs = vec!(first_expr); exprs.extend(remaining_exprs.into_iter()); ex = ExprVec(exprs); } else { // Vector with one element. self.expect(&token::CloseDelim(token::Bracket)); ex = ExprVec(vec!(first_expr)); } } hi = self.last_span.hi; } _ => { if self.eat_lt() { // QUALIFIED PATH `::item::<'a, T>` let self_type = self.parse_ty_sum(); self.expect_keyword(keywords::As); let trait_ref = self.parse_trait_ref(); self.expect(&token::Gt); self.expect(&token::ModSep); let item_name = self.parse_ident(); let parameters = if self.eat(&token::ModSep) { self.expect_lt(); // Consumed `item::<`, go look for types let (lifetimes, types, bindings) = self.parse_generic_values_after_lt(); ast::AngleBracketedParameters(ast::AngleBracketedParameterData { lifetimes: lifetimes, types: OwnedSlice::from_vec(types), bindings: OwnedSlice::from_vec(bindings), }) } else { ast::PathParameters::none() }; let hi = self.span.hi; return self.mk_expr(lo, hi, ExprQPath(P(QPath { self_type: self_type, trait_ref: P(trait_ref), item_path: ast::PathSegment { identifier: item_name, parameters: parameters } }))); } if self.eat_keyword(keywords::Move) { return self.parse_lambda_expr(CaptureByValue); } if self.eat_keyword(keywords::Proc) { let span = self.last_span; let _ = self.parse_proc_decl(); let _ = self.parse_expr(); return self.obsolete_expr(span, ObsoleteSyntax::ProcExpr); } if self.eat_keyword(keywords::If) { return self.parse_if_expr(); } if self.eat_keyword(keywords::For) { return self.parse_for_expr(None); } if self.eat_keyword(keywords::While) { return self.parse_while_expr(None); } if self.token.is_lifetime() { let lifetime = self.get_lifetime(); self.bump(); self.expect(&token::Colon); if self.eat_keyword(keywords::While) { return self.parse_while_expr(Some(lifetime)) } if self.eat_keyword(keywords::For) { return self.parse_for_expr(Some(lifetime)) } if self.eat_keyword(keywords::Loop) { return self.parse_loop_expr(Some(lifetime)) } self.fatal("expected `while`, `for`, or `loop` after a label") } if self.eat_keyword(keywords::Loop) { return self.parse_loop_expr(None); } if self.eat_keyword(keywords::Continue) { let lo = self.span.lo; let ex = if self.token.is_lifetime() { let lifetime = self.get_lifetime(); self.bump(); ExprAgain(Some(lifetime)) } else { ExprAgain(None) }; let hi = self.span.hi; return self.mk_expr(lo, hi, ex); } if self.eat_keyword(keywords::Match) { return self.parse_match_expr(); } if self.eat_keyword(keywords::Unsafe) { return self.parse_block_expr( lo, UnsafeBlock(ast::UserProvided)); } if self.eat_keyword(keywords::Return) { // RETURN expression if self.token.can_begin_expr() { let e = self.parse_expr(); hi = e.span.hi; ex = ExprRet(Some(e)); } else { ex = ExprRet(None); } } else if self.eat_keyword(keywords::Break) { // BREAK expression if self.token.is_lifetime() { let lifetime = self.get_lifetime(); self.bump(); ex = ExprBreak(Some(lifetime)); } else { ex = ExprBreak(None); } hi = self.span.hi; } else if self.check(&token::ModSep) || self.token.is_ident() && !self.token.is_keyword(keywords::True) && !self.token.is_keyword(keywords::False) { let pth = self.parse_path(LifetimeAndTypesWithColons); // `!`, as an operator, is prefix, so we know this isn't that if self.check(&token::Not) { // MACRO INVOCATION expression self.bump(); let delim = self.expect_open_delim(); let tts = self.parse_seq_to_end( &token::CloseDelim(delim), seq_sep_none(), |p| p.parse_token_tree()); let hi = self.span.hi; return self.mk_mac_expr(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT)); } if self.check(&token::OpenDelim(token::Brace)) { // This is a struct literal, unless we're prohibited // from parsing struct literals here. if !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL) { // It's a struct literal. self.bump(); let mut fields = Vec::new(); let mut base = None; while self.token != token::CloseDelim(token::Brace) { if self.eat(&token::DotDot) { base = Some(self.parse_expr()); break; } fields.push(self.parse_field()); self.commit_expr(&*fields.last().unwrap().expr, &[token::Comma], &[token::CloseDelim(token::Brace)]); } if fields.len() == 0 && base.is_none() { let last_span = self.last_span; self.span_err(last_span, "structure literal must either \ have at least one field or use \ functional structure update \ syntax"); } hi = self.span.hi; self.expect(&token::CloseDelim(token::Brace)); ex = ExprStruct(pth, fields, base); return self.mk_expr(lo, hi, ex); } } hi = pth.span.hi; ex = ExprPath(pth); } else { // other literal expression let lit = self.parse_lit(); hi = lit.span.hi; ex = ExprLit(P(lit)); } } } return self.mk_expr(lo, hi, ex); } /// Parse a block or unsafe block pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode) -> P { self.expect(&token::OpenDelim(token::Brace)); let blk = self.parse_block_tail(lo, blk_mode); return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)); } /// parse a.b or a(13) or a[4] or just a pub fn parse_dot_or_call_expr(&mut self) -> P { let b = self.parse_bottom_expr(); self.parse_dot_or_call_expr_with(b) } pub fn parse_dot_or_call_expr_with(&mut self, e0: P) -> P { let mut e = e0; let lo = e.span.lo; let mut hi; loop { // expr.f if self.eat(&token::Dot) { match self.token { token::Ident(i, _) => { let dot = self.last_span.hi; hi = self.span.hi; self.bump(); let (_, tys, bindings) = if self.eat(&token::ModSep) { self.expect_lt(); self.parse_generic_values_after_lt() } else { (Vec::new(), Vec::new(), Vec::new()) }; if bindings.len() > 0 { let last_span = self.last_span; self.span_err(last_span, "type bindings are only permitted on trait paths"); } // expr.f() method call match self.token { token::OpenDelim(token::Paren) => { let mut es = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| p.parse_expr() ); hi = self.last_span.hi; es.insert(0, e); let id = spanned(dot, hi, i); let nd = self.mk_method_call(id, tys, es); e = self.mk_expr(lo, hi, nd); } _ => { if !tys.is_empty() { let last_span = self.last_span; self.span_err(last_span, "field expressions may not \ have type parameters"); } let id = spanned(dot, hi, i); let field = self.mk_field(e, id); e = self.mk_expr(lo, hi, field); } } } token::Literal(token::Integer(n), suf) => { let sp = self.span; // A tuple index may not have a suffix self.expect_no_suffix(sp, "tuple index", suf); let dot = self.last_span.hi; hi = self.span.hi; self.bump(); let index = n.as_str().parse::(); match index { Some(n) => { let id = spanned(dot, hi, n); let field = self.mk_tup_field(e, id); e = self.mk_expr(lo, hi, field); } None => { let last_span = self.last_span; self.span_err(last_span, "invalid tuple or tuple struct index"); } } } token::Literal(token::Float(n), _suf) => { self.bump(); let last_span = self.last_span; let fstr = n.as_str(); self.span_err(last_span, &format!("unexpected token: `{}`", n.as_str())[]); if fstr.chars().all(|x| "0123456789.".contains_char(x)) { let float = match fstr.parse::() { Some(f) => f, None => continue, }; self.span_help(last_span, &format!("try parenthesizing the first index; e.g., `(foo.{}){}`", float.trunc() as usize, &float.fract().to_string()[1..])[]); } self.abort_if_errors(); } _ => self.unexpected() } continue; } if self.expr_is_complete(&*e) { break; } match self.token { // expr(...) token::OpenDelim(token::Paren) => { let es = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| p.parse_expr() ); hi = self.last_span.hi; let nd = self.mk_call(e, es); e = self.mk_expr(lo, hi, nd); } // expr[...] // Could be either an index expression or a slicing expression. token::OpenDelim(token::Bracket) => { let bracket_pos = self.span.lo; self.bump(); let mut found_dotdot = false; if self.token == token::DotDot && self.look_ahead(1, |t| t == &token::CloseDelim(token::Bracket)) { // Using expr[..], which is a mistake, should be expr[] self.bump(); self.bump(); found_dotdot = true; } if found_dotdot || self.eat(&token::CloseDelim(token::Bracket)) { // No expression, expand to a FullRange // FIXME(#20516) It would be better to use a lang item or // something for FullRange. hi = self.last_span.hi; let range = ExprStruct(ident_to_path(mk_sp(lo, hi), token::special_idents::FullRange), vec![], None); let ix = self.mk_expr(bracket_pos, hi, range); let index = self.mk_index(e, ix); e = self.mk_expr(lo, hi, index) } else { let ix = self.parse_expr(); hi = self.span.hi; self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket)); let index = self.mk_index(e, ix); e = self.mk_expr(lo, hi, index) } if found_dotdot { self.span_err(e.span, "incorrect slicing expression: `[..]`"); self.span_note(e.span, "use `&expr[]` to construct a slice of the whole of expr"); } } _ => return e } } return e; } // Parse unquoted tokens after a `$` in a token tree fn parse_unquoted(&mut self) -> TokenTree { let mut sp = self.span; let (name, namep) = match self.token { token::Dollar => { self.bump(); if self.token == token::OpenDelim(token::Paren) { let Spanned { node: seq, span: seq_span } = self.parse_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_none(), |p| p.parse_token_tree() ); let (sep, repeat) = self.parse_sep_and_kleene_op(); let name_num = macro_parser::count_names(seq.as_slice()); return TtSequence(mk_sp(sp.lo, seq_span.hi), Rc::new(SequenceRepetition { tts: seq, separator: sep, op: repeat, num_captures: name_num })); } else if self.token.is_keyword_allow_following_colon(keywords::Crate) { self.bump(); return TtToken(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar)); } else { sp = mk_sp(sp.lo, self.span.hi); let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain }; let name = self.parse_ident(); (name, namep) } } token::SubstNt(name, namep) => { self.bump(); (name, namep) } _ => unreachable!() }; // continue by trying to parse the `:ident` after `$name` if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() && !t.is_strict_keyword() && !t.is_reserved_keyword()) { self.bump(); sp = mk_sp(sp.lo, self.span.hi); let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain }; let nt_kind = self.parse_ident(); TtToken(sp, MatchNt(name, nt_kind, namep, kindp)) } else { TtToken(sp, SubstNt(name, namep)) } } pub fn check_unknown_macro_variable(&mut self) { if self.quote_depth == 0us { match self.token { token::SubstNt(name, _) => self.fatal(&format!("unknown macro variable `{}`", token::get_ident(name))[]), _ => {} } } } /// Parse an optional separator followed by a Kleene-style /// repetition token (+ or *). pub fn parse_sep_and_kleene_op(&mut self) -> (Option, ast::KleeneOp) { fn parse_kleene_op(parser: &mut Parser) -> Option { match parser.token { token::BinOp(token::Star) => { parser.bump(); Some(ast::ZeroOrMore) }, token::BinOp(token::Plus) => { parser.bump(); Some(ast::OneOrMore) }, _ => None } }; match parse_kleene_op(self) { Some(kleene_op) => return (None, kleene_op), None => {} } let separator = self.bump_and_get(); match parse_kleene_op(self) { Some(zerok) => (Some(separator), zerok), None => self.fatal("expected `*` or `+`") } } /// parse a single token tree from the input. pub fn parse_token_tree(&mut self) -> TokenTree { // FIXME #6994: currently, this is too eager. It // parses token trees but also identifies TtSequence's // and token::SubstNt's; it's too early to know yet // whether something will be a nonterminal or a seq // yet. maybe_whole!(deref self, NtTT); // this is the fall-through for the 'match' below. // invariants: the current token is not a left-delimiter, // not an EOF, and not the desired right-delimiter (if // it were, parse_seq_to_before_end would have prevented // reaching this point. fn parse_non_delim_tt_tok(p: &mut Parser) -> TokenTree { maybe_whole!(deref p, NtTT); match p.token { token::CloseDelim(_) => { // This is a conservative error: only report the last unclosed delimiter. The // previous unclosed delimiters could actually be closed! The parser just hasn't // gotten to them yet. match p.open_braces.last() { None => {} Some(&sp) => p.span_note(sp, "unclosed delimiter"), }; let token_str = p.this_token_to_string(); p.fatal(&format!("incorrect close delimiter: `{}`", token_str)[]) }, /* we ought to allow different depths of unquotation */ token::Dollar | token::SubstNt(..) if p.quote_depth > 0us => { p.parse_unquoted() } _ => { TtToken(p.span, p.bump_and_get()) } } } match self.token { token::Eof => { let open_braces = self.open_braces.clone(); for sp in open_braces.iter() { self.span_help(*sp, "did you mean to close this delimiter?"); } // There shouldn't really be a span, but it's easier for the test runner // if we give it one self.fatal("this file contains an un-closed delimiter "); }, token::OpenDelim(delim) => { // The span for beginning of the delimited section let pre_span = self.span; // Parse the open delimiter. self.open_braces.push(self.span); let open_span = self.span; self.bump(); // Parse the token trees within the delimiters let tts = self.parse_seq_to_before_end( &token::CloseDelim(delim), seq_sep_none(), |p| p.parse_token_tree() ); // Parse the close delimiter. let close_span = self.span; self.bump(); self.open_braces.pop().unwrap(); // Expand to cover the entire delimited token tree let span = Span { hi: self.span.hi, ..pre_span }; TtDelimited(span, Rc::new(Delimited { delim: delim, open_span: open_span, tts: tts, close_span: close_span, })) }, _ => parse_non_delim_tt_tok(self), } } // parse a stream of tokens into a list of TokenTree's, // up to EOF. pub fn parse_all_token_trees(&mut self) -> Vec { let mut tts = Vec::new(); while self.token != token::Eof { tts.push(self.parse_token_tree()); } tts } /// Parse a prefix-operator expr pub fn parse_prefix_expr(&mut self) -> P { let lo = self.span.lo; let hi; // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr() let ex; match self.token { token::Not => { self.bump(); let e = self.parse_prefix_expr(); hi = e.span.hi; ex = self.mk_unary(UnNot, e); } token::BinOp(token::Minus) => { self.bump(); let e = self.parse_prefix_expr(); hi = e.span.hi; ex = self.mk_unary(UnNeg, e); } token::BinOp(token::Star) => { self.bump(); let e = self.parse_prefix_expr(); hi = e.span.hi; ex = self.mk_unary(UnDeref, e); } token::BinOp(token::And) | token::AndAnd => { self.expect_and(); let m = self.parse_mutability(); let e = self.parse_prefix_expr(); hi = e.span.hi; ex = ExprAddrOf(m, e); } token::Ident(_, _) => { if !self.token.is_keyword(keywords::Box) { return self.parse_dot_or_call_expr(); } let lo = self.span.lo; self.bump(); // Check for a place: `box(PLACE) EXPR`. if self.eat(&token::OpenDelim(token::Paren)) { // Support `box() EXPR` as the default. if !self.eat(&token::CloseDelim(token::Paren)) { let place = self.parse_expr(); self.expect(&token::CloseDelim(token::Paren)); // Give a suggestion to use `box()` when a parenthesised expression is used if !self.token.can_begin_expr() { let span = self.span; let this_token_to_string = self.this_token_to_string(); self.span_err(span, &format!("expected expression, found `{}`", this_token_to_string)[]); let box_span = mk_sp(lo, self.last_span.hi); self.span_help(box_span, "perhaps you meant `box() (foo)` instead?"); self.abort_if_errors(); } let subexpression = self.parse_prefix_expr(); hi = subexpression.span.hi; ex = ExprBox(Some(place), subexpression); return self.mk_expr(lo, hi, ex); } } // Otherwise, we use the unique pointer default. let subexpression = self.parse_prefix_expr(); hi = subexpression.span.hi; // FIXME (pnkfelix): After working out kinks with box // desugaring, should be `ExprBox(None, subexpression)` // instead. ex = self.mk_unary(UnUniq, subexpression); } _ => return self.parse_dot_or_call_expr() } return self.mk_expr(lo, hi, ex); } /// Parse an expression of binops pub fn parse_binops(&mut self) -> P { let prefix_expr = self.parse_prefix_expr(); self.parse_more_binops(prefix_expr, 0) } /// Parse an expression of binops of at least min_prec precedence pub fn parse_more_binops(&mut self, lhs: P, min_prec: usize) -> P { if self.expr_is_complete(&*lhs) { return lhs; } // Prevent dynamic borrow errors later on by limiting the // scope of the borrows. if self.token == token::BinOp(token::Or) && self.restrictions.contains(RESTRICTION_NO_BAR_OP) { return lhs; } self.expected_tokens.push(TokenType::Operator); let cur_op_span = self.span; let cur_opt = self.token.to_binop(); match cur_opt { Some(cur_op) => { if ast_util::is_comparison_binop(cur_op) { self.check_no_chained_comparison(&*lhs, cur_op) } let cur_prec = operator_prec(cur_op); if cur_prec >= min_prec { self.bump(); let expr = self.parse_prefix_expr(); let rhs = self.parse_more_binops(expr, cur_prec + 1); let lhs_span = lhs.span; let rhs_span = rhs.span; let binary = self.mk_binary(codemap::respan(cur_op_span, cur_op), lhs, rhs); let bin = self.mk_expr(lhs_span.lo, rhs_span.hi, binary); self.parse_more_binops(bin, min_prec) } else { lhs } } None => { if AS_PREC >= min_prec && self.eat_keyword(keywords::As) { let rhs = self.parse_ty(); let _as = self.mk_expr(lhs.span.lo, rhs.span.hi, ExprCast(lhs, rhs)); self.parse_more_binops(_as, min_prec) } else { lhs } } } } /// Produce an error if comparison operators are chained (RFC #558). /// We only need to check lhs, not rhs, because all comparison ops /// have same precedence and are left-associative fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: ast::BinOp_) { debug_assert!(ast_util::is_comparison_binop(outer_op)); match lhs.node { ExprBinary(op, _, _) if ast_util::is_comparison_binop(op.node) => { // respan to include both operators let op_span = mk_sp(op.span.lo, self.span.hi); self.span_err(op_span, "chained comparison operators require parentheses"); if op.node == BiLt && outer_op == BiGt { self.span_help(op_span, "use `::<...>` instead of `<...>` if you meant to specify type arguments"); } } _ => {} } } /// Parse an assignment expression.... /// actually, this seems to be the main entry point for /// parsing an arbitrary expression. pub fn parse_assign_expr(&mut self) -> P { match self.token { token::DotDot => { // prefix-form of range notation '..expr' // This has the same precedence as assignment expressions // (much lower than other prefix expressions) to be consistent // with the postfix-form 'expr..' let lo = self.span.lo; self.bump(); let rhs = self.parse_binops(); let hi = rhs.span.hi; let ex = self.mk_range(None, Some(rhs)); self.mk_expr(lo, hi, ex) } _ => { let lhs = self.parse_binops(); self.parse_assign_expr_with(lhs) } } } pub fn parse_assign_expr_with(&mut self, lhs: P) -> P { let restrictions = self.restrictions & RESTRICTION_NO_STRUCT_LITERAL; let op_span = self.span; match self.token { token::Eq => { self.bump(); let rhs = self.parse_expr_res(restrictions); self.mk_expr(lhs.span.lo, rhs.span.hi, ExprAssign(lhs, rhs)) } token::BinOpEq(op) => { self.bump(); let rhs = self.parse_expr_res(restrictions); let aop = match op { token::Plus => BiAdd, token::Minus => BiSub, token::Star => BiMul, token::Slash => BiDiv, token::Percent => BiRem, token::Caret => BiBitXor, token::And => BiBitAnd, token::Or => BiBitOr, token::Shl => BiShl, token::Shr => BiShr }; let rhs_span = rhs.span; let span = lhs.span; let assign_op = self.mk_assign_op(codemap::respan(op_span, aop), lhs, rhs); self.mk_expr(span.lo, rhs_span.hi, assign_op) } // A range expression, either `expr..expr` or `expr..`. token::DotDot => { self.bump(); let opt_end = if self.is_at_start_of_range_notation_rhs() { let end = self.parse_binops(); Some(end) } else { None }; let lo = lhs.span.lo; let hi = self.span.hi; let range = self.mk_range(Some(lhs), opt_end); return self.mk_expr(lo, hi, range); } _ => { lhs } } } fn is_at_start_of_range_notation_rhs(&self) -> bool { if self.token.can_begin_expr() { // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`. if self.token == token::OpenDelim(token::Brace) { return !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL); } true } else { false } } /// Parse an 'if' or 'if let' expression ('if' token already eaten) pub fn parse_if_expr(&mut self) -> P { if self.token.is_keyword(keywords::Let) { return self.parse_if_let_expr(); } let lo = self.last_span.lo; let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); let thn = self.parse_block(); let mut els: Option> = None; let mut hi = thn.span.hi; if self.eat_keyword(keywords::Else) { let elexpr = self.parse_else_expr(); hi = elexpr.span.hi; els = Some(elexpr); } self.mk_expr(lo, hi, ExprIf(cond, thn, els)) } /// Parse an 'if let' expression ('if' token already eaten) pub fn parse_if_let_expr(&mut self) -> P { let lo = self.last_span.lo; self.expect_keyword(keywords::Let); let pat = self.parse_pat(); self.expect(&token::Eq); let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); let thn = self.parse_block(); let (hi, els) = if self.eat_keyword(keywords::Else) { let expr = self.parse_else_expr(); (expr.span.hi, Some(expr)) } else { (thn.span.hi, None) }; self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els)) } // `|args| expr` pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause) -> P { let lo = self.span.lo; let (decl, optional_unboxed_closure_kind) = self.parse_fn_block_decl(); let body = self.parse_expr(); let fakeblock = P(ast::Block { id: ast::DUMMY_NODE_ID, stmts: vec![], span: body.span, expr: Some(body), rules: DefaultBlock, }); self.mk_expr( lo, fakeblock.span.hi, ExprClosure(capture_clause, optional_unboxed_closure_kind, decl, fakeblock)) } pub fn parse_else_expr(&mut self) -> P { if self.eat_keyword(keywords::If) { return self.parse_if_expr(); } else { let blk = self.parse_block(); return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)); } } /// Parse a 'for' .. 'in' expression ('for' token already eaten) pub fn parse_for_expr(&mut self, opt_ident: Option) -> P { // Parse: `for in ` let lo = self.last_span.lo; let pat = self.parse_pat(); self.expect_keyword(keywords::In); let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); let loop_block = self.parse_block(); let hi = self.span.hi; self.mk_expr(lo, hi, ExprForLoop(pat, expr, loop_block, opt_ident)) } /// Parse a 'while' or 'while let' expression ('while' token already eaten) pub fn parse_while_expr(&mut self, opt_ident: Option) -> P { if self.token.is_keyword(keywords::Let) { return self.parse_while_let_expr(opt_ident); } let lo = self.last_span.lo; let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); let body = self.parse_block(); let hi = body.span.hi; return self.mk_expr(lo, hi, ExprWhile(cond, body, opt_ident)); } /// Parse a 'while let' expression ('while' token already eaten) pub fn parse_while_let_expr(&mut self, opt_ident: Option) -> P { let lo = self.last_span.lo; self.expect_keyword(keywords::Let); let pat = self.parse_pat(); self.expect(&token::Eq); let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); let body = self.parse_block(); let hi = body.span.hi; return self.mk_expr(lo, hi, ExprWhileLet(pat, expr, body, opt_ident)); } pub fn parse_loop_expr(&mut self, opt_ident: Option) -> P { let lo = self.last_span.lo; let body = self.parse_block(); let hi = body.span.hi; self.mk_expr(lo, hi, ExprLoop(body, opt_ident)) } fn parse_match_expr(&mut self) -> P { let lo = self.last_span.lo; let discriminant = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); self.commit_expr_expecting(&*discriminant, token::OpenDelim(token::Brace)); let mut arms: Vec = Vec::new(); while self.token != token::CloseDelim(token::Brace) { arms.push(self.parse_arm()); } let hi = self.span.hi; self.bump(); return self.mk_expr(lo, hi, ExprMatch(discriminant, arms, MatchSource::Normal)); } pub fn parse_arm(&mut self) -> Arm { let attrs = self.parse_outer_attributes(); let pats = self.parse_pats(); let mut guard = None; if self.eat_keyword(keywords::If) { guard = Some(self.parse_expr()); } self.expect(&token::FatArrow); let expr = self.parse_expr_res(RESTRICTION_STMT_EXPR); let require_comma = !classify::expr_is_simple_block(&*expr) && self.token != token::CloseDelim(token::Brace); if require_comma { self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]); } else { self.eat(&token::Comma); } ast::Arm { attrs: attrs, pats: pats, guard: guard, body: expr, } } /// Parse an expression pub fn parse_expr(&mut self) -> P { return self.parse_expr_res(UNRESTRICTED); } /// Parse an expression, subject to the given restrictions pub fn parse_expr_res(&mut self, r: Restrictions) -> P { let old = self.restrictions; self.restrictions = r; let e = self.parse_assign_expr(); self.restrictions = old; return e; } /// Parse the RHS of a local variable declaration (e.g. '= 14;') fn parse_initializer(&mut self) -> Option> { if self.check(&token::Eq) { self.bump(); Some(self.parse_expr()) } else { None } } /// Parse patterns, separated by '|' s fn parse_pats(&mut self) -> Vec> { let mut pats = Vec::new(); loop { pats.push(self.parse_pat()); if self.check(&token::BinOp(token::Or)) { self.bump(); } else { return pats; } }; } fn parse_pat_vec_elements( &mut self, ) -> (Vec>, Option>, Vec>) { let mut before = Vec::new(); let mut slice = None; let mut after = Vec::new(); let mut first = true; let mut before_slice = true; while self.token != token::CloseDelim(token::Bracket) { if first { first = false; } else { self.expect(&token::Comma); if self.token == token::CloseDelim(token::Bracket) && (before_slice || after.len() != 0) { break } } if before_slice { if self.check(&token::DotDot) { self.bump(); if self.check(&token::Comma) || self.check(&token::CloseDelim(token::Bracket)) { slice = Some(P(ast::Pat { id: ast::DUMMY_NODE_ID, node: PatWild(PatWildMulti), span: self.span, })); before_slice = false; } continue } } let subpat = self.parse_pat(); if before_slice && self.check(&token::DotDot) { self.bump(); slice = Some(subpat); before_slice = false; } else if before_slice { before.push(subpat); } else { after.push(subpat); } } (before, slice, after) } /// Parse the fields of a struct-like pattern fn parse_pat_fields(&mut self) -> (Vec> , bool) { let mut fields = Vec::new(); let mut etc = false; let mut first = true; while self.token != token::CloseDelim(token::Brace) { if first { first = false; } else { self.expect(&token::Comma); // accept trailing commas if self.check(&token::CloseDelim(token::Brace)) { break } } let lo = self.span.lo; let hi; if self.check(&token::DotDot) { self.bump(); if self.token != token::CloseDelim(token::Brace) { let token_str = self.this_token_to_string(); self.fatal(&format!("expected `{}`, found `{}`", "}", token_str)[]) } etc = true; break; } // Check if a colon exists one ahead. This means we're parsing a fieldname. let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) { // Parsing a pattern of the form "fieldname: pat" let fieldname = self.parse_ident(); self.bump(); let pat = self.parse_pat(); hi = pat.span.hi; (pat, fieldname, false) } else { // Parsing a pattern of the form "(box) (ref) (mut) fieldname" let is_box = self.eat_keyword(keywords::Box); let boxed_span_lo = self.span.lo; let is_ref = self.eat_keyword(keywords::Ref); let is_mut = self.eat_keyword(keywords::Mut); let fieldname = self.parse_ident(); hi = self.last_span.hi; let bind_type = match (is_ref, is_mut) { (true, true) => BindByRef(MutMutable), (true, false) => BindByRef(MutImmutable), (false, true) => BindByValue(MutMutable), (false, false) => BindByValue(MutImmutable), }; let fieldpath = codemap::Spanned{span:self.last_span, node:fieldname}; let fieldpat = P(ast::Pat{ id: ast::DUMMY_NODE_ID, node: PatIdent(bind_type, fieldpath, None), span: mk_sp(boxed_span_lo, hi), }); let subpat = if is_box { P(ast::Pat{ id: ast::DUMMY_NODE_ID, node: PatBox(fieldpat), span: mk_sp(lo, hi), }) } else { fieldpat }; (subpat, fieldname, true) }; fields.push(codemap::Spanned { span: mk_sp(lo, hi), node: ast::FieldPat { ident: fieldname, pat: subpat, is_shorthand: is_shorthand }}); } return (fields, etc); } /// Parse a pattern. pub fn parse_pat(&mut self) -> P { maybe_whole!(self, NtPat); let lo = self.span.lo; let mut hi; let pat; match self.token { // parse _ token::Underscore => { self.bump(); pat = PatWild(PatWildSingle); hi = self.last_span.hi; return P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: mk_sp(lo, hi) }) } token::BinOp(token::And) | token::AndAnd => { // parse &pat and &mut pat let lo = self.span.lo; self.expect_and(); let mutability = if self.eat_keyword(keywords::Mut) { ast::MutMutable } else { ast::MutImmutable }; let sub = self.parse_pat(); pat = PatRegion(sub, mutability); hi = self.last_span.hi; return P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: mk_sp(lo, hi) }) } token::OpenDelim(token::Paren) => { // parse (pat,pat,pat,...) as tuple self.bump(); if self.check(&token::CloseDelim(token::Paren)) { self.bump(); pat = PatTup(vec![]); } else { let mut fields = vec!(self.parse_pat()); if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) { while self.check(&token::Comma) { self.bump(); if self.check(&token::CloseDelim(token::Paren)) { break; } fields.push(self.parse_pat()); } } if fields.len() == 1 { self.expect(&token::Comma); } self.expect(&token::CloseDelim(token::Paren)); pat = PatTup(fields); } hi = self.last_span.hi; return P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: mk_sp(lo, hi) }) } token::OpenDelim(token::Bracket) => { // parse [pat,pat,...] as vector pattern self.bump(); let (before, slice, after) = self.parse_pat_vec_elements(); self.expect(&token::CloseDelim(token::Bracket)); pat = ast::PatVec(before, slice, after); hi = self.last_span.hi; return P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: mk_sp(lo, hi) }) } _ => {} } // at this point, token != _, ~, &, &&, (, [ if (!(self.token.is_ident() || self.token.is_path()) && self.token != token::ModSep) || self.token.is_keyword(keywords::True) || self.token.is_keyword(keywords::False) { // Parse an expression pattern or exp .. exp. // // These expressions are limited to literals (possibly // preceded by unary-minus) or identifiers. let val = self.parse_literal_maybe_minus(); if (self.check(&token::DotDotDot)) && self.look_ahead(1, |t| { *t != token::Comma && *t != token::CloseDelim(token::Bracket) }) { self.bump(); let end = if self.token.is_ident() || self.token.is_path() { let path = self.parse_path(LifetimeAndTypesWithColons); let hi = self.span.hi; self.mk_expr(lo, hi, ExprPath(path)) } else { self.parse_literal_maybe_minus() }; pat = PatRange(val, end); } else { pat = PatLit(val); } } else if self.eat_keyword(keywords::Mut) { pat = self.parse_pat_ident(BindByValue(MutMutable)); } else if self.eat_keyword(keywords::Ref) { // parse ref pat let mutbl = self.parse_mutability(); pat = self.parse_pat_ident(BindByRef(mutbl)); } else if self.eat_keyword(keywords::Box) { // `box PAT` // // FIXME(#13910): Rename to `PatBox` and extend to full DST // support. let sub = self.parse_pat(); pat = PatBox(sub); hi = self.last_span.hi; return P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: mk_sp(lo, hi) }) } else { let can_be_enum_or_struct = self.look_ahead(1, |t| { match *t { token::OpenDelim(_) | token::Lt | token::ModSep => true, _ => false, } }); if self.look_ahead(1, |t| *t == token::DotDotDot) && self.look_ahead(2, |t| { *t != token::Comma && *t != token::CloseDelim(token::Bracket) }) { let start = self.parse_expr_res(RESTRICTION_NO_BAR_OP); self.eat(&token::DotDotDot); let end = self.parse_expr_res(RESTRICTION_NO_BAR_OP); pat = PatRange(start, end); } else if self.token.is_plain_ident() && !can_be_enum_or_struct { let id = self.parse_ident(); let id_span = self.last_span; let pth1 = codemap::Spanned{span:id_span, node: id}; if self.eat(&token::Not) { // macro invocation let delim = self.expect_open_delim(); let tts = self.parse_seq_to_end(&token::CloseDelim(delim), seq_sep_none(), |p| p.parse_token_tree()); let mac = MacInvocTT(ident_to_path(id_span,id), tts, EMPTY_CTXT); pat = ast::PatMac(codemap::Spanned {node: mac, span: self.span}); } else { let sub = if self.eat(&token::At) { // parse foo @ pat Some(self.parse_pat()) } else { // or just foo None }; pat = PatIdent(BindByValue(MutImmutable), pth1, sub); } } else { // parse an enum pat let enum_path = self.parse_path(LifetimeAndTypesWithColons); match self.token { token::OpenDelim(token::Brace) => { self.bump(); let (fields, etc) = self.parse_pat_fields(); self.bump(); pat = PatStruct(enum_path, fields, etc); } _ => { let mut args: Vec> = Vec::new(); match self.token { token::OpenDelim(token::Paren) => { let is_dotdot = self.look_ahead(1, |t| { match *t { token::DotDot => true, _ => false, } }); if is_dotdot { // This is a "top constructor only" pat self.bump(); self.bump(); self.expect(&token::CloseDelim(token::Paren)); pat = PatEnum(enum_path, None); } else { args = self.parse_enum_variant_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| p.parse_pat() ); pat = PatEnum(enum_path, Some(args)); } }, _ => { if !enum_path.global && enum_path.segments.len() == 1 && enum_path.segments[0].parameters.is_empty() { // it could still be either an enum // or an identifier pattern, resolve // will sort it out: pat = PatIdent(BindByValue(MutImmutable), codemap::Spanned{ span: enum_path.span, node: enum_path.segments[0] .identifier}, None); } else { pat = PatEnum(enum_path, Some(args)); } } } } } } } hi = self.last_span.hi; P(ast::Pat { id: ast::DUMMY_NODE_ID, node: pat, span: mk_sp(lo, hi), }) } /// Parse ident or ident @ pat /// used by the copy foo and ref foo patterns to give a good /// error message when parsing mistakes like ref foo(a,b) fn parse_pat_ident(&mut self, binding_mode: ast::BindingMode) -> ast::Pat_ { if !self.token.is_plain_ident() { let span = self.span; let tok_str = self.this_token_to_string(); self.span_fatal(span, &format!("expected identifier, found `{}`", tok_str)[]); } let ident = self.parse_ident(); let last_span = self.last_span; let name = codemap::Spanned{span: last_span, node: ident}; let sub = if self.eat(&token::At) { Some(self.parse_pat()) } else { None }; // just to be friendly, if they write something like // ref Some(i) // we end up here with ( as the current token. This shortly // leads to a parse error. Note that if there is no explicit // binding mode then we do not end up here, because the lookahead // will direct us over to parse_enum_variant() if self.token == token::OpenDelim(token::Paren) { let last_span = self.last_span; self.span_fatal( last_span, "expected identifier, found enum pattern"); } PatIdent(binding_mode, name, sub) } /// Parse a local variable declaration fn parse_local(&mut self) -> P { let lo = self.span.lo; let pat = self.parse_pat(); let mut ty = None; if self.eat(&token::Colon) { ty = Some(self.parse_ty_sum()); } let init = self.parse_initializer(); P(ast::Local { ty: ty, pat: pat, init: init, id: ast::DUMMY_NODE_ID, span: mk_sp(lo, self.last_span.hi), source: LocalLet, }) } /// Parse a "let" stmt fn parse_let(&mut self) -> P { let lo = self.span.lo; let local = self.parse_local(); P(spanned(lo, self.last_span.hi, DeclLocal(local))) } /// Parse a structure field fn parse_name_and_ty(&mut self, pr: Visibility, attrs: Vec ) -> StructField { let lo = self.span.lo; if !self.token.is_plain_ident() { self.fatal("expected ident"); } let name = self.parse_ident(); self.expect(&token::Colon); let ty = self.parse_ty_sum(); spanned(lo, self.last_span.hi, ast::StructField_ { kind: NamedField(name, pr), id: ast::DUMMY_NODE_ID, ty: ty, attrs: attrs, }) } /// Get an expected item after attributes error message. fn expected_item_err(attrs: &[Attribute]) -> &'static str { match attrs.last() { Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => { "expected item after doc comment" } _ => "expected item after attributes", } } /// Parse a statement. may include decl. /// Precondition: any attributes are parsed already pub fn parse_stmt(&mut self, item_attrs: Vec) -> P { maybe_whole!(self, NtStmt); fn check_expected_item(p: &mut Parser, attrs: &[Attribute]) { // If we have attributes then we should have an item if !attrs.is_empty() { let last_span = p.last_span; p.span_err(last_span, Parser::expected_item_err(attrs)); } } let lo = self.span.lo; if self.token.is_keyword(keywords::Let) { check_expected_item(self, &item_attrs[]); self.expect_keyword(keywords::Let); let decl = self.parse_let(); P(spanned(lo, decl.span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID))) } else if self.token.is_ident() && !self.token.is_any_keyword() && self.look_ahead(1, |t| *t == token::Not) { // it's a macro invocation: check_expected_item(self, &item_attrs[]); // Potential trouble: if we allow macros with paths instead of // idents, we'd need to look ahead past the whole path here... let pth = self.parse_path(NoTypesAllowed); self.bump(); let id = match self.token { token::OpenDelim(_) => token::special_idents::invalid, // no special identifier _ => self.parse_ident(), }; // check that we're pointing at delimiters (need to check // again after the `if`, because of `parse_ident` // consuming more tokens). let delim = match self.token { token::OpenDelim(delim) => delim, _ => { // we only expect an ident if we didn't parse one // above. let ident_str = if id.name == token::special_idents::invalid.name { "identifier, " } else { "" }; let tok_str = self.this_token_to_string(); self.fatal(&format!("expected {}`(` or `{{`, found `{}`", ident_str, tok_str)[]) }, }; let tts = self.parse_unspanned_seq( &token::OpenDelim(delim), &token::CloseDelim(delim), seq_sep_none(), |p| p.parse_token_tree() ); let hi = self.span.hi; let style = if delim == token::Brace { MacStmtWithBraces } else { MacStmtWithoutBraces }; if id.name == token::special_idents::invalid.name { P(spanned(lo, hi, StmtMac(P(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))), style))) } else { // if it has a special ident, it's definitely an item // // Require a semicolon or braces. if style != MacStmtWithBraces { if !self.eat(&token::Semi) { let last_span = self.last_span; self.span_err(last_span, "macros that expand to items must \ either be surrounded with braces or \ followed by a semicolon"); } } P(spanned(lo, hi, StmtDecl( P(spanned(lo, hi, DeclItem( self.mk_item( lo, hi, id /*id is good here*/, ItemMac(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))), Inherited, Vec::new(/*no attrs*/))))), ast::DUMMY_NODE_ID))) } } else { let found_attrs = !item_attrs.is_empty(); let item_err = Parser::expected_item_err(&item_attrs[]); match self.parse_item_(item_attrs, false) { Ok(i) => { let hi = i.span.hi; let decl = P(spanned(lo, hi, DeclItem(i))); P(spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID))) } Err(_) => { if found_attrs { let last_span = self.last_span; self.span_err(last_span, item_err); } // Remainder are line-expr stmts. let e = self.parse_expr_res(RESTRICTION_STMT_EXPR); P(spanned(lo, e.span.hi, StmtExpr(e, ast::DUMMY_NODE_ID))) } } } } /// Is this expression a successfully-parsed statement? fn expr_is_complete(&mut self, e: &Expr) -> bool { self.restrictions.contains(RESTRICTION_STMT_EXPR) && !classify::expr_requires_semi_to_be_stmt(e) } /// Parse a block. No inner attrs are allowed. pub fn parse_block(&mut self) -> P { maybe_whole!(no_clone self, NtBlock); let lo = self.span.lo; if !self.eat(&token::OpenDelim(token::Brace)) { let sp = self.span; let tok = self.this_token_to_string(); self.span_fatal_help(sp, &format!("expected `{{`, found `{}`", tok)[], "place this code inside a block"); } return self.parse_block_tail_(lo, DefaultBlock, Vec::new()); } /// Parse a block. Inner attrs are allowed. fn parse_inner_attrs_and_block(&mut self) -> (Vec , P) { maybe_whole!(pair_empty self, NtBlock); let lo = self.span.lo; self.expect(&token::OpenDelim(token::Brace)); let (inner, next) = self.parse_inner_attrs_and_next(); (inner, self.parse_block_tail_(lo, DefaultBlock, next)) } /// Precondition: already parsed the '{'. fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> P { self.parse_block_tail_(lo, s, Vec::new()) } /// Parse the rest of a block expression or function body fn parse_block_tail_(&mut self, lo: BytePos, s: BlockCheckMode, first_item_attrs: Vec) -> P { let mut stmts = vec![]; let mut expr = None; let mut attributes_box = first_item_attrs; while self.token != token::CloseDelim(token::Brace) { // parsing items even when they're not allowed lets us give // better error messages and recover more gracefully. attributes_box.push_all(&self.parse_outer_attributes()[]); match self.token { token::Semi => { if !attributes_box.is_empty() { let last_span = self.last_span; self.span_err(last_span, Parser::expected_item_err(&attributes_box[])); attributes_box = Vec::new(); } self.bump(); // empty } token::CloseDelim(token::Brace) => { // fall through and out. } _ => { let stmt = self.parse_stmt(attributes_box); attributes_box = Vec::new(); stmt.and_then(|Spanned {node, span}| match node { StmtExpr(e, stmt_id) => { self.handle_expression_like_statement(e, stmt_id, span, &mut stmts, &mut expr); } StmtMac(mac, MacStmtWithoutBraces) => { // statement macro without braces; might be an // expr depending on whether a semicolon follows match self.token { token::Semi => { stmts.push(P(Spanned { node: StmtMac(mac, MacStmtWithSemicolon), span: span, })); self.bump(); } _ => { let e = self.mk_mac_expr(span.lo, span.hi, mac.and_then(|m| m.node)); let e = self.parse_dot_or_call_expr_with(e); let e = self.parse_more_binops(e, 0); let e = self.parse_assign_expr_with(e); self.handle_expression_like_statement( e, ast::DUMMY_NODE_ID, span, &mut stmts, &mut expr); } } } StmtMac(m, style) => { // statement macro; might be an expr match self.token { token::Semi => { stmts.push(P(Spanned { node: StmtMac(m, MacStmtWithSemicolon), span: span, })); self.bump(); } token::CloseDelim(token::Brace) => { // if a block ends in `m!(arg)` without // a `;`, it must be an expr expr = Some( self.mk_mac_expr(span.lo, span.hi, m.and_then(|x| x.node))); } _ => { stmts.push(P(Spanned { node: StmtMac(m, style), span: span })); } } } _ => { // all other kinds of statements: if classify::stmt_ends_with_semi(&node) { self.commit_stmt_expecting(token::Semi); } stmts.push(P(Spanned { node: node, span: span })); } }) } } } if !attributes_box.is_empty() { let last_span = self.last_span; self.span_err(last_span, Parser::expected_item_err(&attributes_box[])); } let hi = self.span.hi; self.bump(); P(ast::Block { stmts: stmts, expr: expr, id: ast::DUMMY_NODE_ID, rules: s, span: mk_sp(lo, hi), }) } fn handle_expression_like_statement( &mut self, e: P, stmt_id: NodeId, span: Span, stmts: &mut Vec>, last_block_expr: &mut Option>) { // expression without semicolon if classify::expr_requires_semi_to_be_stmt(&*e) { // Just check for errors and recover; do not eat semicolon yet. self.commit_stmt(&[], &[token::Semi, token::CloseDelim(token::Brace)]); } match self.token { token::Semi => { self.bump(); let span_with_semi = Span { lo: span.lo, hi: self.last_span.hi, expn_id: span.expn_id, }; stmts.push(P(Spanned { node: StmtSemi(e, stmt_id), span: span_with_semi, })); } token::CloseDelim(token::Brace) => *last_block_expr = Some(e), _ => { stmts.push(P(Spanned { node: StmtExpr(e, stmt_id), span: span })); } } } // Parses a sequence of bounds if a `:` is found, // otherwise returns empty list. fn parse_colon_then_ty_param_bounds(&mut self, mode: BoundParsingMode) -> OwnedSlice { if !self.eat(&token::Colon) { OwnedSlice::empty() } else { self.parse_ty_param_bounds(mode) } } // matches bounds = ( boundseq )? // where boundseq = ( polybound + boundseq ) | polybound // and polybound = ( 'for' '<' 'region '>' )? bound // and bound = 'region | trait_ref fn parse_ty_param_bounds(&mut self, mode: BoundParsingMode) -> OwnedSlice { let mut result = vec!(); loop { let question_span = self.span; let ate_question = self.eat(&token::Question); match self.token { token::Lifetime(lifetime) => { if ate_question { self.span_err(question_span, "`?` may only modify trait bounds, not lifetime bounds"); } result.push(RegionTyParamBound(ast::Lifetime { id: ast::DUMMY_NODE_ID, span: self.span, name: lifetime.name })); self.bump(); } token::ModSep | token::Ident(..) => { let poly_trait_ref = self.parse_poly_trait_ref(); let modifier = if ate_question { if mode == BoundParsingMode::Modified { TraitBoundModifier::Maybe } else { self.span_err(question_span, "unexpected `?`"); TraitBoundModifier::None } } else { TraitBoundModifier::None }; result.push(TraitTyParamBound(poly_trait_ref, modifier)) } _ => break, } if !self.eat(&token::BinOp(token::Plus)) { break; } } return OwnedSlice::from_vec(result); } fn trait_ref_from_ident(ident: Ident, span: Span) -> TraitRef { let segment = ast::PathSegment { identifier: ident, parameters: ast::PathParameters::none() }; let path = ast::Path { span: span, global: false, segments: vec![segment], }; ast::TraitRef { path: path, ref_id: ast::DUMMY_NODE_ID, } } /// Matches typaram = (unbound `?`)? IDENT (`?` unbound)? optbounds ( EQ ty )? fn parse_ty_param(&mut self) -> TyParam { // This is a bit hacky. Currently we are only interested in a single // unbound, and it may only be `Sized`. To avoid backtracking and other // complications, we parse an ident, then check for `?`. If we find it, // we use the ident as the unbound, otherwise, we use it as the name of // type param. Even worse, we need to check for `?` before or after the // bound. let mut span = self.span; let mut ident = self.parse_ident(); let mut unbound = None; if self.eat(&token::Question) { let tref = Parser::trait_ref_from_ident(ident, span); unbound = Some(tref); span = self.span; ident = self.parse_ident(); self.obsolete(span, ObsoleteSyntax::Sized); } let mut bounds = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified); if let Some(unbound) = unbound { let mut bounds_as_vec = bounds.into_vec(); bounds_as_vec.push(TraitTyParamBound(PolyTraitRef { bound_lifetimes: vec![], trait_ref: unbound }, TraitBoundModifier::Maybe)); bounds = OwnedSlice::from_vec(bounds_as_vec); }; let default = if self.check(&token::Eq) { self.bump(); Some(self.parse_ty_sum()) } else { None }; TyParam { ident: ident, id: ast::DUMMY_NODE_ID, bounds: bounds, default: default, span: span, } } /// Parse a set of optional generic type parameter declarations. Where /// clauses are not parsed here, and must be added later via /// `parse_where_clause()`. /// /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > ) /// | ( < lifetimes , typaramseq ( , )? > ) /// where typaramseq = ( typaram ) | ( typaram , typaramseq ) pub fn parse_generics(&mut self) -> ast::Generics { if self.eat(&token::Lt) { let lifetime_defs = self.parse_lifetime_defs(); let mut seen_default = false; let ty_params = self.parse_seq_to_gt(Some(token::Comma), |p| { p.forbid_lifetime(); let ty_param = p.parse_ty_param(); if ty_param.default.is_some() { seen_default = true; } else if seen_default { let last_span = p.last_span; p.span_err(last_span, "type parameters with a default must be trailing"); } ty_param }); ast::Generics { lifetimes: lifetime_defs, ty_params: ty_params, where_clause: WhereClause { id: ast::DUMMY_NODE_ID, predicates: Vec::new(), } } } else { ast_util::empty_generics() } } fn parse_generic_values_after_lt(&mut self) -> (Vec, Vec>, Vec>) { let lifetimes = self.parse_lifetimes(token::Comma); // First parse types. let (types, returned) = self.parse_seq_to_gt_or_return( Some(token::Comma), |p| { p.forbid_lifetime(); if p.look_ahead(1, |t| t == &token::Eq) { None } else { Some(p.parse_ty_sum()) } } ); // If we found the `>`, don't continue. if !returned { return (lifetimes, types.into_vec(), Vec::new()); } // Then parse type bindings. let bindings = self.parse_seq_to_gt( Some(token::Comma), |p| { p.forbid_lifetime(); let lo = p.span.lo; let ident = p.parse_ident(); let found_eq = p.eat(&token::Eq); if !found_eq { let span = p.span; p.span_warn(span, "whoops, no =?"); } let ty = p.parse_ty(); let hi = p.span.hi; let span = mk_sp(lo, hi); return P(TypeBinding{id: ast::DUMMY_NODE_ID, ident: ident, ty: ty, span: span, }); } ); (lifetimes, types.into_vec(), bindings.into_vec()) } fn forbid_lifetime(&mut self) { if self.token.is_lifetime() { let span = self.span; self.span_fatal(span, "lifetime parameters must be declared \ prior to type parameters"); } } /// Parses an optional `where` clause and places it in `generics`. /// /// ``` /// where T : Trait + 'b, 'a : 'b /// ``` fn parse_where_clause(&mut self, generics: &mut ast::Generics) { if !self.eat_keyword(keywords::Where) { return } let mut parsed_something = false; loop { let lo = self.span.lo; match self.token { token::OpenDelim(token::Brace) => { break } token::Lifetime(..) => { let bounded_lifetime = self.parse_lifetime(); self.eat(&token::Colon); let bounds = self.parse_lifetimes(token::BinOp(token::Plus)); let hi = self.span.hi; let span = mk_sp(lo, hi); generics.where_clause.predicates.push(ast::WherePredicate::RegionPredicate( ast::WhereRegionPredicate { span: span, lifetime: bounded_lifetime, bounds: bounds } )); parsed_something = true; } _ => { let bounded_ty = self.parse_ty(); if self.eat(&token::Colon) { let bounds = self.parse_ty_param_bounds(BoundParsingMode::Bare); let hi = self.span.hi; let span = mk_sp(lo, hi); if bounds.len() == 0 { self.span_err(span, "each predicate in a `where` clause must have \ at least one bound in it"); } generics.where_clause.predicates.push(ast::WherePredicate::BoundPredicate( ast::WhereBoundPredicate { span: span, bounded_ty: bounded_ty, bounds: bounds, })); parsed_something = true; } else if self.eat(&token::Eq) { // let ty = self.parse_ty(); let hi = self.span.hi; let span = mk_sp(lo, hi); // generics.where_clause.predicates.push( // ast::WherePredicate::EqPredicate(ast::WhereEqPredicate { // id: ast::DUMMY_NODE_ID, // span: span, // path: panic!("NYI"), //bounded_ty, // ty: ty, // })); // parsed_something = true; // // FIXME(#18433) self.span_err(span, "equality constraints are not yet supported \ in where clauses (#20041)"); } else { let last_span = self.last_span; self.span_err(last_span, "unexpected token in `where` clause"); } } }; if !self.eat(&token::Comma) { break } } if !parsed_something { let last_span = self.last_span; self.span_err(last_span, "a `where` clause must have at least one predicate \ in it"); } } fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool) -> (Vec , bool) { let sp = self.span; let mut args: Vec> = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| { if p.token == token::DotDotDot { p.bump(); if allow_variadic { if p.token != token::CloseDelim(token::Paren) { let span = p.span; p.span_fatal(span, "`...` must be last in argument list for variadic function"); } } else { let span = p.span; p.span_fatal(span, "only foreign functions are allowed to be variadic"); } None } else { Some(p.parse_arg_general(named_args)) } } ); let variadic = match args.pop() { Some(None) => true, Some(x) => { // Need to put back that last arg args.push(x); false } None => false }; if variadic && args.is_empty() { self.span_err(sp, "variadic function must be declared with at least one named argument"); } let args = args.into_iter().map(|x| x.unwrap()).collect(); (args, variadic) } /// Parse the argument list and result type of a function declaration pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> P { let (args, variadic) = self.parse_fn_args(true, allow_variadic); let ret_ty = self.parse_ret_ty(); P(FnDecl { inputs: args, output: ret_ty, variadic: variadic }) } fn is_self_ident(&mut self) -> bool { match self.token { token::Ident(id, token::Plain) => id.name == special_idents::self_.name, _ => false } } fn expect_self_ident(&mut self) -> ast::Ident { match self.token { token::Ident(id, token::Plain) if id.name == special_idents::self_.name => { self.bump(); id }, _ => { let token_str = self.this_token_to_string(); self.fatal(&format!("expected `self`, found `{}`", token_str)[]) } } } /// Parse the argument list and result type of a function /// that may have a self type. fn parse_fn_decl_with_self(&mut self, parse_arg_fn: F) -> (ExplicitSelf, P) where F: FnMut(&mut Parser) -> Arg, { fn maybe_parse_borrowed_explicit_self(this: &mut Parser) -> ast::ExplicitSelf_ { // The following things are possible to see here: // // fn(&mut self) // fn(&mut self) // fn(&'lt self) // fn(&'lt mut self) // // We already know that the current token is `&`. if this.look_ahead(1, |t| t.is_keyword(keywords::Self)) { this.bump(); SelfRegion(None, MutImmutable, this.expect_self_ident()) } else if this.look_ahead(1, |t| t.is_mutability()) && this.look_ahead(2, |t| t.is_keyword(keywords::Self)) { this.bump(); let mutability = this.parse_mutability(); SelfRegion(None, mutability, this.expect_self_ident()) } else if this.look_ahead(1, |t| t.is_lifetime()) && this.look_ahead(2, |t| t.is_keyword(keywords::Self)) { this.bump(); let lifetime = this.parse_lifetime(); SelfRegion(Some(lifetime), MutImmutable, this.expect_self_ident()) } else if this.look_ahead(1, |t| t.is_lifetime()) && this.look_ahead(2, |t| t.is_mutability()) && this.look_ahead(3, |t| t.is_keyword(keywords::Self)) { this.bump(); let lifetime = this.parse_lifetime(); let mutability = this.parse_mutability(); SelfRegion(Some(lifetime), mutability, this.expect_self_ident()) } else { SelfStatic } } self.expect(&token::OpenDelim(token::Paren)); // A bit of complexity and lookahead is needed here in order to be // backwards compatible. let lo = self.span.lo; let mut self_ident_lo = self.span.lo; let mut self_ident_hi = self.span.hi; let mut mutbl_self = MutImmutable; let explicit_self = match self.token { token::BinOp(token::And) => { let eself = maybe_parse_borrowed_explicit_self(self); self_ident_lo = self.last_span.lo; self_ident_hi = self.last_span.hi; eself } token::BinOp(token::Star) => { // Possibly "*self" or "*mut self" -- not supported. Try to avoid // emitting cryptic "unexpected token" errors. self.bump(); let _mutability = if self.token.is_mutability() { self.parse_mutability() } else { MutImmutable }; if self.is_self_ident() { let span = self.span; self.span_err(span, "cannot pass self by unsafe pointer"); self.bump(); } // error case, making bogus self ident: SelfValue(special_idents::self_) } token::Ident(..) => { if self.is_self_ident() { let self_ident = self.expect_self_ident(); // Determine whether this is the fully explicit form, `self: // TYPE`. if self.eat(&token::Colon) { SelfExplicit(self.parse_ty_sum(), self_ident) } else { SelfValue(self_ident) } } else if self.token.is_mutability() && self.look_ahead(1, |t| t.is_keyword(keywords::Self)) { mutbl_self = self.parse_mutability(); let self_ident = self.expect_self_ident(); // Determine whether this is the fully explicit form, // `self: TYPE`. if self.eat(&token::Colon) { SelfExplicit(self.parse_ty_sum(), self_ident) } else { SelfValue(self_ident) } } else { SelfStatic } } _ => SelfStatic, }; let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi); // shared fall-through for the three cases below. borrowing prevents simply // writing this as a closure macro_rules! parse_remaining_arguments { ($self_id:ident) => { // If we parsed a self type, expect a comma before the argument list. match self.token { token::Comma => { self.bump(); let sep = seq_sep_trailing_allowed(token::Comma); let mut fn_inputs = self.parse_seq_to_before_end( &token::CloseDelim(token::Paren), sep, parse_arg_fn ); fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id)); fn_inputs } token::CloseDelim(token::Paren) => { vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id)) } _ => { let token_str = self.this_token_to_string(); self.fatal(&format!("expected `,` or `)`, found `{}`", token_str)[]) } } } } let fn_inputs = match explicit_self { SelfStatic => { let sep = seq_sep_trailing_allowed(token::Comma); self.parse_seq_to_before_end(&token::CloseDelim(token::Paren), sep, parse_arg_fn) } SelfValue(id) => parse_remaining_arguments!(id), SelfRegion(_,_,id) => parse_remaining_arguments!(id), SelfExplicit(_,id) => parse_remaining_arguments!(id), }; self.expect(&token::CloseDelim(token::Paren)); let hi = self.span.hi; let ret_ty = self.parse_ret_ty(); let fn_decl = P(FnDecl { inputs: fn_inputs, output: ret_ty, variadic: false }); (spanned(lo, hi, explicit_self), fn_decl) } // parse the |arg, arg| header on a lambda fn parse_fn_block_decl(&mut self) -> (P, Option) { let (optional_unboxed_closure_kind, inputs_captures) = { if self.eat(&token::OrOr) { (None, Vec::new()) } else { self.expect(&token::BinOp(token::Or)); let optional_unboxed_closure_kind = self.parse_optional_unboxed_closure_kind(); let args = self.parse_seq_to_before_end( &token::BinOp(token::Or), seq_sep_trailing_allowed(token::Comma), |p| p.parse_fn_block_arg() ); self.bump(); (optional_unboxed_closure_kind, args) } }; let output = self.parse_ret_ty(); (P(FnDecl { inputs: inputs_captures, output: output, variadic: false }), optional_unboxed_closure_kind) } /// Parses the `(arg, arg) -> return_type` header on a procedure. fn parse_proc_decl(&mut self) -> P { let inputs = self.parse_unspanned_seq(&token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| p.parse_fn_block_arg()); let output = self.parse_ret_ty(); P(FnDecl { inputs: inputs, output: output, variadic: false }) } /// Parse the name and optional generic types of a function header. fn parse_fn_header(&mut self) -> (Ident, ast::Generics) { let id = self.parse_ident(); let generics = self.parse_generics(); (id, generics) } fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident, node: Item_, vis: Visibility, attrs: Vec) -> P { P(Item { ident: ident, attrs: attrs, id: ast::DUMMY_NODE_ID, node: node, vis: vis, span: mk_sp(lo, hi) }) } /// Parse an item-position function declaration. fn parse_item_fn(&mut self, unsafety: Unsafety, abi: abi::Abi) -> ItemInfo { let (ident, mut generics) = self.parse_fn_header(); let decl = self.parse_fn_decl(false); self.parse_where_clause(&mut generics); let (inner_attrs, body) = self.parse_inner_attrs_and_block(); (ident, ItemFn(decl, unsafety, abi, generics, body), Some(inner_attrs)) } /// Parse a method in a trait impl pub fn parse_method_with_outer_attributes(&mut self) -> P { let attrs = self.parse_outer_attributes(); let visa = self.parse_visibility(); self.parse_method(attrs, visa) } /// Parse a method in a trait impl, starting with `attrs` attributes. pub fn parse_method(&mut self, attrs: Vec, visa: Visibility) -> P { let lo = self.span.lo; // code copied from parse_macro_use_or_failure... abstraction! let (method_, hi, new_attrs) = { if !self.token.is_any_keyword() && self.look_ahead(1, |t| *t == token::Not) && (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren)) || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) { // method macro. let pth = self.parse_path(NoTypesAllowed); self.expect(&token::Not); // eat a matched-delimiter token tree: let delim = self.expect_open_delim(); let tts = self.parse_seq_to_end(&token::CloseDelim(delim), seq_sep_none(), |p| p.parse_token_tree()); let m_ = ast::MacInvocTT(pth, tts, EMPTY_CTXT); let m: ast::Mac = codemap::Spanned { node: m_, span: mk_sp(self.span.lo, self.span.hi) }; if delim != token::Brace { self.expect(&token::Semi) } (ast::MethMac(m), self.span.hi, attrs) } else { let unsafety = self.parse_unsafety(); let abi = if self.eat_keyword(keywords::Extern) { self.parse_opt_abi().unwrap_or(abi::C) } else { abi::Rust }; self.expect_keyword(keywords::Fn); let ident = self.parse_ident(); let mut generics = self.parse_generics(); let (explicit_self, decl) = self.parse_fn_decl_with_self(|p| { p.parse_arg() }); self.parse_where_clause(&mut generics); let (inner_attrs, body) = self.parse_inner_attrs_and_block(); let body_span = body.span; let mut new_attrs = attrs; new_attrs.push_all(&inner_attrs[]); (ast::MethDecl(ident, generics, abi, explicit_self, unsafety, decl, body, visa), body_span.hi, new_attrs) } }; P(ast::Method { attrs: new_attrs, id: ast::DUMMY_NODE_ID, span: mk_sp(lo, hi), node: method_, }) } /// Parse trait Foo { ... } fn parse_item_trait(&mut self, unsafety: Unsafety) -> ItemInfo { let ident = self.parse_ident(); let mut tps = self.parse_generics(); let unbound = self.parse_for_sized(); // Parse supertrait bounds. let mut bounds = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare); if let Some(unbound) = unbound { let mut bounds_as_vec = bounds.into_vec(); bounds_as_vec.push(TraitTyParamBound(PolyTraitRef { bound_lifetimes: vec![], trait_ref: unbound }, TraitBoundModifier::Maybe)); bounds = OwnedSlice::from_vec(bounds_as_vec); }; self.parse_where_clause(&mut tps); let meths = self.parse_trait_items(); (ident, ItemTrait(unsafety, tps, bounds, meths), None) } fn parse_impl_items(&mut self) -> (Vec, Vec) { let mut impl_items = Vec::new(); self.expect(&token::OpenDelim(token::Brace)); let (inner_attrs, mut method_attrs) = self.parse_inner_attrs_and_next(); loop { method_attrs.extend(self.parse_outer_attributes().into_iter()); if method_attrs.is_empty() && self.eat(&token::CloseDelim(token::Brace)) { break; } let vis = self.parse_visibility(); if self.eat_keyword(keywords::Type) { impl_items.push(TypeImplItem(P(self.parse_typedef( method_attrs, vis)))) } else { impl_items.push(MethodImplItem(self.parse_method( method_attrs, vis))); } method_attrs = vec![]; } (impl_items, inner_attrs) } /// Parses two variants (with the region/type params always optional): /// impl Foo { ... } /// impl ToString for ~[T] { ... } fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> ItemInfo { // First, parse type parameters if necessary. let mut generics = self.parse_generics(); // Special case: if the next identifier that follows is '(', don't // allow this to be parsed as a trait. let could_be_trait = self.token != token::OpenDelim(token::Paren); let neg_span = self.span; let polarity = if self.eat(&token::Not) { ast::ImplPolarity::Negative } else { ast::ImplPolarity::Positive }; // Parse the trait. let mut ty = self.parse_ty_sum(); // Parse traits, if necessary. let opt_trait = if could_be_trait && self.eat_keyword(keywords::For) { // New-style trait. Reinterpret the type as a trait. let opt_trait_ref = match ty.node { TyPath(ref path, node_id) => { Some(TraitRef { path: (*path).clone(), ref_id: node_id, }) } _ => { self.span_err(ty.span, "not a trait"); None } }; ty = self.parse_ty_sum(); opt_trait_ref } else { match polarity { ast::ImplPolarity::Negative => { // This is a negated type implementation // `impl !MyType {}`, which is not allowed. self.span_err(neg_span, "inherent implementation can't be negated"); }, _ => {} } None }; self.parse_where_clause(&mut generics); let (impl_items, attrs) = self.parse_impl_items(); let ident = ast_util::impl_pretty_name(&opt_trait, &*ty); (ident, ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items), Some(attrs)) } /// Parse a::B fn parse_trait_ref(&mut self) -> TraitRef { ast::TraitRef { path: self.parse_path(LifetimeAndTypesWithoutColons), ref_id: ast::DUMMY_NODE_ID, } } fn parse_late_bound_lifetime_defs(&mut self) -> Vec { if self.eat_keyword(keywords::For) { self.expect(&token::Lt); let lifetime_defs = self.parse_lifetime_defs(); self.expect_gt(); lifetime_defs } else { Vec::new() } } /// Parse for<'l> a::B fn parse_poly_trait_ref(&mut self) -> PolyTraitRef { let lifetime_defs = self.parse_late_bound_lifetime_defs(); ast::PolyTraitRef { bound_lifetimes: lifetime_defs, trait_ref: self.parse_trait_ref() } } /// Parse struct Foo { ... } fn parse_item_struct(&mut self) -> ItemInfo { let class_name = self.parse_ident(); let mut generics = self.parse_generics(); if self.eat(&token::Colon) { let ty = self.parse_ty_sum(); self.span_err(ty.span, "`virtual` structs have been removed from the language"); } // There is a special case worth noting here, as reported in issue #17904. // If we are parsing a tuple struct it is the case that the where clause // should follow the field list. Like so: // // struct Foo(T) where T: Copy; // // If we are parsing a normal record-style struct it is the case // that the where clause comes before the body, and after the generics. // So if we look ahead and see a brace or a where-clause we begin // parsing a record style struct. // // Otherwise if we look ahead and see a paren we parse a tuple-style // struct. let (fields, ctor_id) = if self.token.is_keyword(keywords::Where) { self.parse_where_clause(&mut generics); if self.eat(&token::Semi) { // If we see a: `struct Foo where T: Copy;` style decl. (Vec::new(), Some(ast::DUMMY_NODE_ID)) } else { // If we see: `struct Foo where T: Copy { ... }` (self.parse_record_struct_body(&class_name), None) } // No `where` so: `struct Foo;` } else if self.eat(&token::Semi) { (Vec::new(), Some(ast::DUMMY_NODE_ID)) // Record-style struct definition } else if self.token == token::OpenDelim(token::Brace) { let fields = self.parse_record_struct_body(&class_name); (fields, None) // Tuple-style struct definition with optional where-clause. } else { let fields = self.parse_tuple_struct_body(&class_name, &mut generics); (fields, Some(ast::DUMMY_NODE_ID)) }; (class_name, ItemStruct(P(ast::StructDef { fields: fields, ctor_id: ctor_id, }), generics), None) } pub fn parse_record_struct_body(&mut self, class_name: &ast::Ident) -> Vec { let mut fields = Vec::new(); if self.eat(&token::OpenDelim(token::Brace)) { while self.token != token::CloseDelim(token::Brace) { fields.push(self.parse_struct_decl_field(true)); } if fields.len() == 0 { self.fatal(&format!("unit-like struct definition should be \ written as `struct {};`", token::get_ident(class_name.clone()))[]); } self.bump(); } else { let token_str = self.this_token_to_string(); self.fatal(&format!("expected `where`, or `{}` after struct \ name, found `{}`", "{", token_str)[]); } fields } pub fn parse_tuple_struct_body(&mut self, class_name: &ast::Ident, generics: &mut ast::Generics) -> Vec { // This is the case where we find `struct Foo(T) where T: Copy;` if self.check(&token::OpenDelim(token::Paren)) { let fields = self.parse_unspanned_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| { let attrs = p.parse_outer_attributes(); let lo = p.span.lo; let struct_field_ = ast::StructField_ { kind: UnnamedField(p.parse_visibility()), id: ast::DUMMY_NODE_ID, ty: p.parse_ty_sum(), attrs: attrs, }; spanned(lo, p.span.hi, struct_field_) }); if fields.len() == 0 { self.fatal(&format!("unit-like struct definition should be \ written as `struct {};`", token::get_ident(class_name.clone()))[]); } self.parse_where_clause(generics); self.expect(&token::Semi); fields // This is the case where we just see struct Foo where T: Copy; } else if self.token.is_keyword(keywords::Where) { self.parse_where_clause(generics); self.expect(&token::Semi); Vec::new() // This case is where we see: `struct Foo;` } else { let token_str = self.this_token_to_string(); self.fatal(&format!("expected `where`, `{}`, `(`, or `;` after struct \ name, found `{}`", "{", token_str)[]); } } /// Parse a structure field declaration pub fn parse_single_struct_field(&mut self, vis: Visibility, attrs: Vec ) -> StructField { let a_var = self.parse_name_and_ty(vis, attrs); match self.token { token::Comma => { self.bump(); } token::CloseDelim(token::Brace) => {} _ => { let span = self.span; let token_str = self.this_token_to_string(); self.span_fatal_help(span, &format!("expected `,`, or `}}`, found `{}`", token_str)[], "struct fields should be separated by commas") } } a_var } /// Parse an element of a struct definition fn parse_struct_decl_field(&mut self, allow_pub: bool) -> StructField { let attrs = self.parse_outer_attributes(); if self.eat_keyword(keywords::Pub) { if !allow_pub { let span = self.last_span; self.span_err(span, "`pub` is not allowed here"); } return self.parse_single_struct_field(Public, attrs); } return self.parse_single_struct_field(Inherited, attrs); } /// Parse visibility: PUB, PRIV, or nothing fn parse_visibility(&mut self) -> Visibility { if self.eat_keyword(keywords::Pub) { Public } else { Inherited } } fn parse_for_sized(&mut self) -> Option { // FIXME, this should really use TraitBoundModifier, but it will get // re-jigged shortly in any case, so leaving the hacky version for now. if self.eat_keyword(keywords::For) { let span = self.span; let mut ate_question = false; if self.eat(&token::Question) { ate_question = true; } let ident = self.parse_ident(); if self.eat(&token::Question) { if ate_question { self.span_err(span, "unexpected `?`"); } ate_question = true; } if !ate_question { self.span_err(span, "expected `?Sized` after `for` in trait item"); return None; } let _tref = Parser::trait_ref_from_ident(ident, span); self.obsolete(span, ObsoleteSyntax::ForSized); None } else { None } } /// Given a termination token and a vector of already-parsed /// attributes (of length 0 or 1), parse all of the items in a module fn parse_mod_items(&mut self, term: token::Token, first_item_attrs: Vec, inner_lo: BytePos) -> Mod { // Parse all of the items up to closing or an attribute. let mut attrs = first_item_attrs; attrs.push_all(&self.parse_outer_attributes()[]); let mut items = vec![]; loop { match self.parse_item_(attrs, true) { Err(returned_attrs) => { attrs = returned_attrs; break } Ok(item) => { attrs = self.parse_outer_attributes(); items.push(item) } } } // don't think this other loop is even necessary.... while self.token != term { let mut attrs = mem::replace(&mut attrs, vec![]); attrs.push_all(&self.parse_outer_attributes()[]); debug!("parse_mod_items: parse_item_(attrs={:?})", attrs); match self.parse_item_(attrs, true /* macros allowed */) { Ok(item) => items.push(item), Err(_) => { let token_str = self.this_token_to_string(); self.fatal(&format!("expected item, found `{}`", token_str)[]) } } } if !attrs.is_empty() { // We parsed attributes for the first item but didn't find it let last_span = self.last_span; self.span_err(last_span, Parser::expected_item_err(&attrs[])); } ast::Mod { inner: mk_sp(inner_lo, self.span.lo), items: items } } fn parse_item_const(&mut self, m: Option) -> ItemInfo { let id = self.parse_ident(); self.expect(&token::Colon); let ty = self.parse_ty_sum(); self.expect(&token::Eq); let e = self.parse_expr(); self.commit_expr_expecting(&*e, token::Semi); let item = match m { Some(m) => ItemStatic(ty, m, e), None => ItemConst(ty, e), }; (id, item, None) } /// Parse a `mod { ... }` or `mod ;` item fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> ItemInfo { let id_span = self.span; let id = self.parse_ident(); if self.check(&token::Semi) { self.bump(); // This mod is in an external file. Let's go get it! let (m, attrs) = self.eval_src_mod(id, outer_attrs, id_span); (id, m, Some(attrs)) } else { self.push_mod_path(id, outer_attrs); self.expect(&token::OpenDelim(token::Brace)); let mod_inner_lo = self.span.lo; let old_owns_directory = self.owns_directory; self.owns_directory = true; let (inner, next) = self.parse_inner_attrs_and_next(); let m = self.parse_mod_items(token::CloseDelim(token::Brace), next, mod_inner_lo); self.expect(&token::CloseDelim(token::Brace)); self.owns_directory = old_owns_directory; self.pop_mod_path(); (id, ItemMod(m), Some(inner)) } } fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) { let default_path = self.id_to_interned_str(id); let file_path = match ::attr::first_attr_value_str_by_name(attrs, "path") { Some(d) => d, None => default_path, }; self.mod_path_stack.push(file_path) } fn pop_mod_path(&mut self) { self.mod_path_stack.pop().unwrap(); } /// Read a module from a source file. fn eval_src_mod(&mut self, id: ast::Ident, outer_attrs: &[ast::Attribute], id_sp: Span) -> (ast::Item_, Vec ) { let mut prefix = Path::new(self.sess.span_diagnostic.cm.span_to_filename(self.span)); prefix.pop(); let mod_path = Path::new(".").join_many(&self.mod_path_stack[]); let dir_path = prefix.join(&mod_path); let mod_string = token::get_ident(id); let (file_path, owns_directory) = match ::attr::first_attr_value_str_by_name( outer_attrs, "path") { Some(d) => (dir_path.join(d), true), None => { let mod_name = mod_string.get().to_string(); let default_path_str = format!("{}.rs", mod_name); let secondary_path_str = format!("{}/mod.rs", mod_name); let default_path = dir_path.join(&default_path_str[]); let secondary_path = dir_path.join(&secondary_path_str[]); let default_exists = default_path.exists(); let secondary_exists = secondary_path.exists(); if !self.owns_directory { self.span_err(id_sp, "cannot declare a new module at this location"); let this_module = match self.mod_path_stack.last() { Some(name) => name.get().to_string(), None => self.root_module_name.as_ref().unwrap().clone(), }; self.span_note(id_sp, &format!("maybe move this module `{0}` \ to its own directory via \ `{0}/mod.rs`", this_module)[]); if default_exists || secondary_exists { self.span_note(id_sp, &format!("... or maybe `use` the module \ `{}` instead of possibly \ redeclaring it", mod_name)[]); } self.abort_if_errors(); } match (default_exists, secondary_exists) { (true, false) => (default_path, false), (false, true) => (secondary_path, true), (false, false) => { self.span_fatal_help(id_sp, &format!("file not found for module `{}`", mod_name)[], &format!("name the file either {} or {} inside \ the directory {:?}", default_path_str, secondary_path_str, dir_path.display())[]); } (true, true) => { self.span_fatal_help( id_sp, &format!("file for module `{}` found at both {} \ and {}", mod_name, default_path_str, secondary_path_str)[], "delete or rename one of them to remove the ambiguity"); } } } }; self.eval_src_mod_from_path(file_path, owns_directory, mod_string.get().to_string(), id_sp) } fn eval_src_mod_from_path(&mut self, path: Path, owns_directory: bool, name: String, id_sp: Span) -> (ast::Item_, Vec ) { let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut(); match included_mod_stack.iter().position(|p| *p == path) { Some(i) => { let mut err = String::from_str("circular modules: "); let len = included_mod_stack.len(); for p in included_mod_stack[i.. len].iter() { err.push_str(&p.display().as_cow()[]); err.push_str(" -> "); } err.push_str(&path.display().as_cow()[]); self.span_fatal(id_sp, &err[]); } None => () } included_mod_stack.push(path.clone()); drop(included_mod_stack); let mut p0 = new_sub_parser_from_file(self.sess, self.cfg.clone(), &path, owns_directory, Some(name), id_sp); let mod_inner_lo = p0.span.lo; let (mod_attrs, next) = p0.parse_inner_attrs_and_next(); let first_item_outer_attrs = next; let m0 = p0.parse_mod_items(token::Eof, first_item_outer_attrs, mod_inner_lo); self.sess.included_mod_stack.borrow_mut().pop(); return (ast::ItemMod(m0), mod_attrs); } /// Parse a function declaration from a foreign module fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, attrs: Vec) -> P { let lo = self.span.lo; self.expect_keyword(keywords::Fn); let (ident, mut generics) = self.parse_fn_header(); let decl = self.parse_fn_decl(true); self.parse_where_clause(&mut generics); let hi = self.span.hi; self.expect(&token::Semi); P(ast::ForeignItem { ident: ident, attrs: attrs, node: ForeignItemFn(decl, generics), id: ast::DUMMY_NODE_ID, span: mk_sp(lo, hi), vis: vis }) } /// Parse a static item from a foreign module fn parse_item_foreign_static(&mut self, vis: ast::Visibility, attrs: Vec) -> P { let lo = self.span.lo; self.expect_keyword(keywords::Static); let mutbl = self.eat_keyword(keywords::Mut); let ident = self.parse_ident(); self.expect(&token::Colon); let ty = self.parse_ty_sum(); let hi = self.span.hi; self.expect(&token::Semi); P(ForeignItem { ident: ident, attrs: attrs, node: ForeignItemStatic(ty, mutbl), id: ast::DUMMY_NODE_ID, span: mk_sp(lo, hi), vis: vis }) } /// At this point, this is essentially a wrapper for /// parse_foreign_items. fn parse_foreign_mod_items(&mut self, abi: abi::Abi, first_item_attrs: Vec) -> ForeignMod { let foreign_items = self.parse_foreign_items(first_item_attrs); assert!(self.token == token::CloseDelim(token::Brace)); ast::ForeignMod { abi: abi, items: foreign_items } } /// Parse extern crate links /// /// # Example /// /// extern crate url; /// extern crate foo = "bar"; //deprecated /// extern crate "bar" as foo; fn parse_item_extern_crate(&mut self, lo: BytePos, visibility: Visibility, attrs: Vec) -> P { let span = self.span; let (maybe_path, ident) = match self.token { token::Ident(..) => { let the_ident = self.parse_ident(); let path = if self.eat_keyword(keywords::As) { // skip the ident if there is one if self.token.is_ident() { self.bump(); } self.span_err(span, "expected `;`, found `as`"); self.span_help(span, &format!("perhaps you meant to enclose the crate name `{}` in \ a string?", the_ident.as_str())[]); None } else { None }; self.expect(&token::Semi); (path, the_ident) }, token::Literal(token::Str_(..), suf) | token::Literal(token::StrRaw(..), suf) => { let sp = self.span; self.expect_no_suffix(sp, "extern crate name", suf); // forgo the internal suffix check of `parse_str` to // avoid repeats (this unwrap will always succeed due // to the restriction of the `match`) let (s, style, _) = self.parse_optional_str().unwrap(); self.expect_keyword(keywords::As); let the_ident = self.parse_ident(); self.expect(&token::Semi); (Some((s, style)), the_ident) }, _ => { let span = self.span; let token_str = self.this_token_to_string(); self.span_fatal(span, &format!("expected extern crate name but \ found `{}`", token_str)[]); } }; let last_span = self.last_span; self.mk_item(lo, last_span.hi, ident, ItemExternCrate(maybe_path), visibility, attrs) } /// Parse `extern` for foreign ABIs /// modules. /// /// `extern` is expected to have been /// consumed before calling this method /// /// # Examples: /// /// extern "C" {} /// extern {} fn parse_item_foreign_mod(&mut self, lo: BytePos, opt_abi: Option, visibility: Visibility, attrs: Vec) -> P { self.expect(&token::OpenDelim(token::Brace)); let abi = opt_abi.unwrap_or(abi::C); let (inner, next) = self.parse_inner_attrs_and_next(); let m = self.parse_foreign_mod_items(abi, next); self.expect(&token::CloseDelim(token::Brace)); let last_span = self.last_span; self.mk_item(lo, last_span.hi, special_idents::invalid, ItemForeignMod(m), visibility, maybe_append(attrs, Some(inner))) } /// Parse type Foo = Bar; fn parse_item_type(&mut self) -> ItemInfo { let ident = self.parse_ident(); let mut tps = self.parse_generics(); self.parse_where_clause(&mut tps); self.expect(&token::Eq); let ty = self.parse_ty_sum(); self.expect(&token::Semi); (ident, ItemTy(ty, tps), None) } /// Parse a structure-like enum variant definition /// this should probably be renamed or refactored... fn parse_struct_def(&mut self) -> P { let mut fields: Vec = Vec::new(); while self.token != token::CloseDelim(token::Brace) { fields.push(self.parse_struct_decl_field(false)); } self.bump(); P(StructDef { fields: fields, ctor_id: None, }) } /// Parse the part of an "enum" decl following the '{' fn parse_enum_def(&mut self, _generics: &ast::Generics) -> EnumDef { let mut variants = Vec::new(); let mut all_nullary = true; let mut any_disr = None; while self.token != token::CloseDelim(token::Brace) { let variant_attrs = self.parse_outer_attributes(); let vlo = self.span.lo; let vis = self.parse_visibility(); let ident; let kind; let mut args = Vec::new(); let mut disr_expr = None; ident = self.parse_ident(); if self.eat(&token::OpenDelim(token::Brace)) { // Parse a struct variant. all_nullary = false; let start_span = self.span; let struct_def = self.parse_struct_def(); if struct_def.fields.len() == 0 { self.span_err(start_span, &format!("unit-like struct variant should be written \ without braces, as `{},`", token::get_ident(ident))[]); } kind = StructVariantKind(struct_def); } else if self.check(&token::OpenDelim(token::Paren)) { all_nullary = false; let arg_tys = self.parse_enum_variant_seq( &token::OpenDelim(token::Paren), &token::CloseDelim(token::Paren), seq_sep_trailing_allowed(token::Comma), |p| p.parse_ty_sum() ); for ty in arg_tys.into_iter() { args.push(ast::VariantArg { ty: ty, id: ast::DUMMY_NODE_ID, }); } kind = TupleVariantKind(args); } else if self.eat(&token::Eq) { disr_expr = Some(self.parse_expr()); any_disr = disr_expr.as_ref().map(|expr| expr.span); kind = TupleVariantKind(args); } else { kind = TupleVariantKind(Vec::new()); } let vr = ast::Variant_ { name: ident, attrs: variant_attrs, kind: kind, id: ast::DUMMY_NODE_ID, disr_expr: disr_expr, vis: vis, }; variants.push(P(spanned(vlo, self.last_span.hi, vr))); if !self.eat(&token::Comma) { break; } } self.expect(&token::CloseDelim(token::Brace)); match any_disr { Some(disr_span) if !all_nullary => self.span_err(disr_span, "discriminator values can only be used with a c-like enum"), _ => () } ast::EnumDef { variants: variants } } /// Parse an "enum" declaration fn parse_item_enum(&mut self) -> ItemInfo { let id = self.parse_ident(); let mut generics = self.parse_generics(); self.parse_where_clause(&mut generics); self.expect(&token::OpenDelim(token::Brace)); let enum_definition = self.parse_enum_def(&generics); (id, ItemEnum(enum_definition, generics), None) } /// Parses a string as an ABI spec on an extern type or module. Consumes /// the `extern` keyword, if one is found. fn parse_opt_abi(&mut self) -> Option { match self.token { token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => { let sp = self.span; self.expect_no_suffix(sp, "ABI spec", suf); self.bump(); let the_string = s.as_str(); match abi::lookup(the_string) { Some(abi) => Some(abi), None => { let last_span = self.last_span; self.span_err( last_span, &format!("illegal ABI: expected one of [{}], \ found `{}`", abi::all_names().connect(", "), the_string)[]); None } } } _ => None, } } /// Parse one of the items allowed by the flags; on failure, /// return `Err(remaining_attrs)`. /// NB: this function no longer parses the items inside an /// extern crate. fn parse_item_(&mut self, attrs: Vec, macros_allowed: bool) -> MaybeItem { let nt_item = match self.token { token::Interpolated(token::NtItem(ref item)) => { Some((**item).clone()) } _ => None }; match nt_item { Some(mut item) => { self.bump(); let mut attrs = attrs; mem::swap(&mut item.attrs, &mut attrs); item.attrs.extend(attrs.into_iter()); return Ok(P(item)); } None => {} } let lo = self.span.lo; let visibility = self.parse_visibility(); if self.eat_keyword(keywords::Use) { // USE ITEM let item_ = ItemUse(self.parse_view_path()); self.expect(&token::Semi); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, token::special_idents::invalid, item_, visibility, attrs); return Ok(item); } if self.eat_keyword(keywords::Extern) { if self.eat_keyword(keywords::Crate) { return Ok(self.parse_item_extern_crate(lo, visibility, attrs)); } let opt_abi = self.parse_opt_abi(); if self.eat_keyword(keywords::Fn) { // EXTERN FUNCTION ITEM let abi = opt_abi.unwrap_or(abi::C); let (ident, item_, extra_attrs) = self.parse_item_fn(Unsafety::Normal, abi); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } else if self.check(&token::OpenDelim(token::Brace)) { return Ok(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs)); } let span = self.span; let token_str = self.this_token_to_string(); self.span_fatal(span, &format!("expected `{}` or `fn`, found `{}`", "{", token_str)[]); } if self.eat_keyword(keywords::Virtual) { let span = self.span; self.span_err(span, "`virtual` structs have been removed from the language"); } if self.token.is_keyword(keywords::Static) { // STATIC ITEM self.bump(); let m = if self.eat_keyword(keywords::Mut) {MutMutable} else {MutImmutable}; let (ident, item_, extra_attrs) = self.parse_item_const(Some(m)); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.token.is_keyword(keywords::Const) { // CONST ITEM self.bump(); if self.eat_keyword(keywords::Mut) { let last_span = self.last_span; self.span_err(last_span, "const globals cannot be mutable"); self.span_help(last_span, "did you mean to declare a static?"); } let (ident, item_, extra_attrs) = self.parse_item_const(None); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.token.is_keyword(keywords::Unsafe) && self.look_ahead(1us, |t| t.is_keyword(keywords::Trait)) { // UNSAFE TRAIT ITEM self.expect_keyword(keywords::Unsafe); self.expect_keyword(keywords::Trait); let (ident, item_, extra_attrs) = self.parse_item_trait(ast::Unsafety::Unsafe); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.token.is_keyword(keywords::Unsafe) && self.look_ahead(1us, |t| t.is_keyword(keywords::Impl)) { // IMPL ITEM self.expect_keyword(keywords::Unsafe); self.expect_keyword(keywords::Impl); let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Unsafe); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.token.is_keyword(keywords::Fn) { // FUNCTION ITEM self.bump(); let (ident, item_, extra_attrs) = self.parse_item_fn(Unsafety::Normal, abi::Rust); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.token.is_keyword(keywords::Unsafe) && self.look_ahead(1us, |t| *t != token::OpenDelim(token::Brace)) { // UNSAFE FUNCTION ITEM self.bump(); let abi = if self.eat_keyword(keywords::Extern) { self.parse_opt_abi().unwrap_or(abi::C) } else { abi::Rust }; self.expect_keyword(keywords::Fn); let (ident, item_, extra_attrs) = self.parse_item_fn(Unsafety::Unsafe, abi); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.eat_keyword(keywords::Mod) { // MODULE ITEM let (ident, item_, extra_attrs) = self.parse_item_mod(&attrs[]); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.eat_keyword(keywords::Type) { // TYPE ITEM let (ident, item_, extra_attrs) = self.parse_item_type(); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.eat_keyword(keywords::Enum) { // ENUM ITEM let (ident, item_, extra_attrs) = self.parse_item_enum(); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.eat_keyword(keywords::Trait) { // TRAIT ITEM let (ident, item_, extra_attrs) = self.parse_item_trait(ast::Unsafety::Normal); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.eat_keyword(keywords::Impl) { // IMPL ITEM let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Normal); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } if self.eat_keyword(keywords::Struct) { // STRUCT ITEM let (ident, item_, extra_attrs) = self.parse_item_struct(); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, ident, item_, visibility, maybe_append(attrs, extra_attrs)); return Ok(item); } self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility) } /// Parse a foreign item; on failure, return `Err(remaining_attrs)`. fn parse_foreign_item(&mut self, attrs: Vec) -> Result, Vec> { let lo = self.span.lo; let visibility = self.parse_visibility(); if self.token.is_keyword(keywords::Static) { // FOREIGN STATIC ITEM return Ok(self.parse_item_foreign_static(visibility, attrs)); } if self.token.is_keyword(keywords::Fn) || self.token.is_keyword(keywords::Unsafe) { // FOREIGN FUNCTION ITEM return Ok(self.parse_item_foreign_fn(visibility, attrs)); } // FIXME #5668: this will occur for a macro invocation: let item = try!(self.parse_macro_use_or_failure(attrs, true, lo, visibility)); self.span_fatal(item.span, "macros cannot expand to foreign items"); } /// This is the fall-through for parsing items. fn parse_macro_use_or_failure( &mut self, attrs: Vec , macros_allowed: bool, lo: BytePos, visibility: Visibility ) -> MaybeItem { if macros_allowed && !self.token.is_any_keyword() && self.look_ahead(1, |t| *t == token::Not) && (self.look_ahead(2, |t| t.is_plain_ident()) || self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren)) || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) { // MACRO INVOCATION ITEM // item macro. let pth = self.parse_path(NoTypesAllowed); self.expect(&token::Not); // a 'special' identifier (like what `macro_rules!` uses) // is optional. We should eventually unify invoc syntax // and remove this. let id = if self.token.is_plain_ident() { self.parse_ident() } else { token::special_idents::invalid // no special identifier }; // eat a matched-delimiter token tree: let delim = self.expect_open_delim(); let tts = self.parse_seq_to_end(&token::CloseDelim(delim), seq_sep_none(), |p| p.parse_token_tree()); // single-variant-enum... : let m = ast::MacInvocTT(pth, tts, EMPTY_CTXT); let m: ast::Mac = codemap::Spanned { node: m, span: mk_sp(self.span.lo, self.span.hi) }; if delim != token::Brace { if !self.eat(&token::Semi) { let last_span = self.last_span; self.span_err(last_span, "macros that expand to items must either \ be surrounded with braces or followed by \ a semicolon"); } } let item_ = ItemMac(m); let last_span = self.last_span; let item = self.mk_item(lo, last_span.hi, id, item_, visibility, attrs); return Ok(item); } // FAILURE TO PARSE ITEM match visibility { Inherited => {} Public => { let last_span = self.last_span; self.span_fatal(last_span, "unmatched visibility `pub`"); } } Err(attrs) } pub fn parse_item_with_outer_attributes(&mut self) -> Option> { let attrs = self.parse_outer_attributes(); self.parse_item(attrs) } pub fn parse_item(&mut self, attrs: Vec) -> Option> { self.parse_item_(attrs, true).ok() } /// Matches view_path : MOD? non_global_path as IDENT /// | MOD? non_global_path MOD_SEP LBRACE RBRACE /// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE /// | MOD? non_global_path MOD_SEP STAR /// | MOD? non_global_path fn parse_view_path(&mut self) -> P { let lo = self.span.lo; // Allow a leading :: because the paths are absolute either way. // This occurs with "use $crate::..." in macros. self.eat(&token::ModSep); if self.check(&token::OpenDelim(token::Brace)) { // use {foo,bar} let idents = self.parse_unspanned_seq( &token::OpenDelim(token::Brace), &token::CloseDelim(token::Brace), seq_sep_trailing_allowed(token::Comma), |p| p.parse_path_list_item()); let path = ast::Path { span: mk_sp(lo, self.span.hi), global: false, segments: Vec::new() }; return P(spanned(lo, self.span.hi, ViewPathList(path, idents))); } let first_ident = self.parse_ident(); let mut path = vec!(first_ident); if let token::ModSep = self.token { // foo::bar or foo::{a,b,c} or foo::* while self.check(&token::ModSep) { self.bump(); match self.token { token::Ident(i, _) => { self.bump(); path.push(i); } // foo::bar::{a,b,c} token::OpenDelim(token::Brace) => { let idents = self.parse_unspanned_seq( &token::OpenDelim(token::Brace), &token::CloseDelim(token::Brace), seq_sep_trailing_allowed(token::Comma), |p| p.parse_path_list_item() ); let path = ast::Path { span: mk_sp(lo, self.span.hi), global: false, segments: path.into_iter().map(|identifier| { ast::PathSegment { identifier: identifier, parameters: ast::PathParameters::none(), } }).collect() }; return P(spanned(lo, self.span.hi, ViewPathList(path, idents))); } // foo::bar::* token::BinOp(token::Star) => { self.bump(); let path = ast::Path { span: mk_sp(lo, self.span.hi), global: false, segments: path.into_iter().map(|identifier| { ast::PathSegment { identifier: identifier, parameters: ast::PathParameters::none(), } }).collect() }; return P(spanned(lo, self.span.hi, ViewPathGlob(path))); } _ => break } } } let mut rename_to = path[path.len() - 1us]; let path = ast::Path { span: mk_sp(lo, self.last_span.hi), global: false, segments: path.into_iter().map(|identifier| { ast::PathSegment { identifier: identifier, parameters: ast::PathParameters::none(), } }).collect() }; if self.eat_keyword(keywords::As) { rename_to = self.parse_ident() } P(spanned(lo, self.last_span.hi, ViewPathSimple(rename_to, path))) } /// Parses a sequence of foreign items. Stops when it finds program /// text that can't be parsed as an item fn parse_foreign_items(&mut self, first_item_attrs: Vec) -> Vec> { let mut attrs = first_item_attrs; attrs.push_all(&self.parse_outer_attributes()[]); let mut foreign_items = Vec::new(); loop { match self.parse_foreign_item(attrs) { Ok(foreign_item) => { foreign_items.push(foreign_item); } Err(returned_attrs) => { if self.check(&token::CloseDelim(token::Brace)) { attrs = returned_attrs; break } self.unexpected(); } } attrs = self.parse_outer_attributes(); } if !attrs.is_empty() { let last_span = self.last_span; self.span_err(last_span, Parser::expected_item_err(&attrs[])); } foreign_items } /// Parses a source module as a crate. This is the main /// entry point for the parser. pub fn parse_crate_mod(&mut self) -> Crate { let lo = self.span.lo; // parse the crate's inner attrs, maybe (oops) one // of the attrs of an item: let (inner, next) = self.parse_inner_attrs_and_next(); let first_item_outer_attrs = next; // parse the items inside the crate: let m = self.parse_mod_items(token::Eof, first_item_outer_attrs, lo); ast::Crate { module: m, attrs: inner, config: self.cfg.clone(), span: mk_sp(lo, self.span.lo), exported_macros: Vec::new(), } } pub fn parse_optional_str(&mut self) -> Option<(InternedString, ast::StrStyle, Option)> { let ret = match self.token { token::Literal(token::Str_(s), suf) => { (self.id_to_interned_str(s.ident()), ast::CookedStr, suf) } token::Literal(token::StrRaw(s, n), suf) => { (self.id_to_interned_str(s.ident()), ast::RawStr(n), suf) } _ => return None }; self.bump(); Some(ret) } pub fn parse_str(&mut self) -> (InternedString, StrStyle) { match self.parse_optional_str() { Some((s, style, suf)) => { let sp = self.last_span; self.expect_no_suffix(sp, "str literal", suf); (s, style) } _ => self.fatal("expected string literal") } } }